Compare commits

...

1418 Commits

Author SHA1 Message Date
Kevin Gibbons
f364eb6fb5 switch to using localizedDescription (#7010) 2024-04-30 17:14:02 +02:00
Georgi Gerganov
77e15bec62 metal : remove deprecated error code (#7008) 2024-04-30 15:52:21 +03:00
Kevin Gibbons
a68a1e7ed0 metal : log more info on error (#6987) 2024-04-30 12:34:50 +03:00
Georgi Gerganov
9c67c2773d ggml : add Flash Attention (#5021)
* ggml : add ggml_flash_attn_ext API

* ggml : fix GQA support in ggml_flash_attn_ext

* ggml : online attention (CPU)

* metal : initial implementation

* metal : f16 precision

* metal : reduce branches

* metal : specialize for head size

* wip : 8 rows per simd group

* wip : 4 rows per simd group

* wip : template for rows per warp

* metal : parallelize across KV size

* metal : parallel reduce across heads

* metal : efficient flash_attn_f16 implementation

* metal : avoid redundant loads of the attention

* metal : scale and mask in matrix form

* metal : fix comment

* llama : avoid ggml_cast, use F32 query

* metal : add parallel reduce version (disabled)

* metal : move output into local memory + optimize

- the result from each simdgroup now stays in the registers
- significantly reduced SRAM usage
- more efficient skipping of -INF blocks
- avoid simdgroup barrier in hot loop
- add comments

* metal : add tests, fix scaling, support C > 32

* metal : improve precision

* ggml : fix f16 mad

* metal : minor

* metal : support Q > 8

* tests : add ATTN tests

* metal : disable buffer allocation logs

* tests : more

* metal : faster inner loop for C == 32

* metal : fix array initialization

* tests : ifdef

* ggml : switch to padded F16 mask for ggml_soft_max, ggml_flash_attn_ext

* ggml : fix ggml_soft_max mask requirement

* cuda : fix soft_max to use correct mask size

* cuda : add flash_attn kernel (wip)

* metal : optimize softmax for C > 32

* metal : optimize softmax

* tests : minor fix

* cuda : avoid zeroing fragments

* tests : update dims

* cuda : fix __hisinf() result check

* cuda : avoid warp_reduce for smax

* cuda : use int instead of int64_t

Noticeably improves performance (thanks to Johannes)

* cuda : make loops use the same loop values

Thanks Johannes again for the tip

* cuda : unroll some of the loops

* cuda : avoid __hisinf branches

* cuda : use half2 in softmax

* cuda : switch to 1 warp for bs > 16

* cuda : speed-up reduce part of the kernel

* cuda : unroll Q*K^T loop

* cuda : fix -INF block check

* cuda : simplify softmax

* cuda : fix matrix names

* cuda : minor

* llama : adapt to F16 KQ_pos

* llama : adapt new models to F16 KQ_mask

* ggml : fix F16 store (ARM NEON)

* llama : fix type of KQ_mask and KQ_pos

* ggml : fix CPU soft_max

* tests : add hs=256

* cuda : fix build

* metal : improve perf via smaller int registers

* cuda : adapt soft_max to F16 mask and pos

* CUDA: faster FlashAttention, kernel for bs == 1

* 16 cols for Phi-2

* no vec for hs, no hs==256 ncols==32 for Volta

* adjust kernel selection logic

* 4 warps, 256 stride for all D

* no ncols == 64

* Multiple parallel blocks for batch size 1

* fix compile warnings

* fix excessive KQ_b loads

* fix cmake build

* fix KV cache padding, NaN from INFINITY (#6438)

* llama : flash_attn cparam + fix defrag

* server: support flash_attn param

* server: bench: enable flash_attn param

* CUDA: refactor host code, dyn. par. blocks

* fix flash_attn_vec_f16 race condition

* flush softmax exp below threshold to 0

* store temp KQ in registers

* Calculate KQ as FP32 if KQV has GGML_PREC_F32

* Add __hgt2_mask implementation for CUDA 11

* fix KQ FP32 precision fpr parallel_blocks > 1

* llama-bench : add -fa,--flash-attn arg

* metal : add BS=1 kernel for flash attention (#6508)

* metal : add BS=1 kernel for flash attention (wip)

* metal : support more than 1 warps

* metal : opts

* metal : opt

* metal : switch to parallel reduce

* metal : reduce registers

* metal : simplify

* metal : initial FA vec kernel

* metal : use F32 attention accumulators

* batched-bench : add fattn arg

* llama : simplify llama_build_kv_store

ggml-ci

* llama : adapt build_olmo to changes

* ggml : fix arm fp16 store on windows

* metal : clean-up

* metal : clean-up kernel code

* metal : minor

* tests : remove benchmarks

ggml-ci

* ggml : fix avx512 const correctness

ggml-ci

* ggml : fix soft_max with bias on CPU

ggml-ci

* common : print --flash-attn in help

* ggml : fix num dimensions in ggml_flash_attn_ext

* llama : force disable flash attention for incompatible models

* ggml : ggml_soft_max support F16/F32 mask/pos

ggml-ci

* cuda : uint -> uint32_t

* cuda : "constexpr dim3" -> "const dim3"

ggml-ci

* cuda : try to fix __hgt2_mask

ggml-ci

* ggml : add TODO's for F16/F32 mask/pos support in other backends

* llama : replace bool need_kq_pos with use_alibi

* llama : prep ALiBi support for BERT models

ggml-ci

* llama : fix n_batch requirements

ggml-ci

* cont

* server : add help for --flash-attn arg

* llama : disable FA for AMD

* tests : remove TMP_ATTN_BENCH

ggml-ci

* llama : support save/load state with FA enabled

ggml-ci

* ci : add CUDA save-load-state tests

ggml-ci

* llama : llama_kv_cache_clear zeroes data + fix save-load seq

ggml-ci

* llama : fix copy-paste errors, add TODO

* llama : disallow incompatible states

* llama : update llama_state_get_size after v_trans field

* metal : remove tmp log

* llama : add static reminder for llama_state_get_size

* metal : fix max nsg

ggml-ci

* ci : fix arg order

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-04-30 12:16:08 +03:00
Georgi Gerganov
952d03dbea convert : use utf8 encoding (#7000)
* convert : use utf8 encoding

* convert : update instructions and warning message
2024-04-30 11:05:25 +03:00
Olivier Chafik
8843a98c2b Improve usability of --model-url & related flags (#6930)
* args: default --model to models/ + filename from --model-url or --hf-file (or else legacy models/7B/ggml-model-f16.gguf)

* args: main & server now call gpt_params_handle_model_default

* args: define DEFAULT_MODEL_PATH + update cli docs

* curl: check url of previous download (.json metadata w/ url, etag & lastModified)

* args: fix update to quantize-stats.cpp

* curl: support legacy .etag / .lastModified companion files

* curl: rm legacy .etag file support

* curl: reuse regex across headers callback calls

* curl: unique_ptr to manage lifecycle of curl & outfile

* curl: nit: no need for multiline regex flag

* curl: update failed test (model file collision) + gitignore *.gguf.json
2024-04-30 00:52:50 +01:00
Clint Herron
b8c1476e44 Extending grammar integration tests (#6644)
* Cleaning up integration tests to share code between tests and make it simpler to add new tests.

* Add tests around quantifiers to ensure both matching and non-matching compliance.

* Add slightly more complex grammar with quantifiers to test references with quantifiers.

* Fixing build when C++17 is not present.

* Separating test calls to give more helpful stack traces on failure. Adding verbose messages to give visibility for what is being tested.

* Adding quotes around strings to explicitly show whitespace

* Removing trailing whitespace.

* Implementing suggestions from @ochafik -- grammars and test strings now print and flush before tests to aid in debugging segfaults and whatnot.

* Cleaning up forgotten symbols. Modifying simple test to use test harness. Added comments for more verbose descriptions of what each test is accomplishing.

* Unicode symbol modifications to hopefully make log easier to parse visually.
2024-04-29 14:40:14 -04:00
Daniel Bevenius
5539e6fdd1 main : fix typo in comment in main.cpp (#6985)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-29 13:56:59 -04:00
Olivier Chafik
b8a7a5a90f build(cmake): simplify instructions (cmake -B build && cmake --build build ...) (#6964)
* readme: cmake . -B build && cmake --build build

* build: fix typo

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* build: drop implicit . from cmake config command

* build: remove another superfluous .

* build: update MinGW cmake commands

* Update README-sycl.md

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* build: reinstate --config Release as not the default w/ some generators + document how to build Debug

* build: revert more --config Release

* build: nit / remove -H from cmake example

* build: reword debug instructions around single/multi config split

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2024-04-29 17:02:45 +01:00
Georgi Gerganov
d2c898f746 ci : tmp disable gguf-split (#6983)
ggml-ci
2024-04-29 18:36:39 +03:00
Georgi Gerganov
544f1f10ad ggml : fix __MSC_VER -> _MSC_VER (#6977)
ggml-ci
2024-04-29 17:55:02 +03:00
cpumaxx
ffe666572f llava-cli : multiple images (#6969)
Co-authored-by: root <root@nenya.lothlorien.ca>
2024-04-29 17:34:24 +03:00
Georgi Gerganov
24affa7db3 readme : update hot topics 2024-04-29 17:06:19 +03:00
Georgi Gerganov
f4ab2a4147 llama : fix BPE pre-tokenization (#6920)
* merged the changes from deepseeker models to main branch

* Moved regex patterns to unicode.cpp and updated unicode.h

* Moved header files

* Resolved issues

* added and refactored unicode_regex_split and related functions

* Updated/merged the deepseek coder pr

* Refactored code

* Adding unicode regex mappings

* Adding unicode regex function

* Added needed functionality, testing remains

* Fixed issues

* Fixed issue with gpt2 regex custom preprocessor

* unicode : fix? unicode_wstring_to_utf8

* lint : fix whitespaces

* tests : add tokenizer tests for numbers

* unicode : remove redundant headers

* tests : remove and rename tokenizer test scripts

* tests : add sample usage

* gguf-py : reader prints warnings on duplicate keys

* llama : towards llama3 tokenization support (wip)

* unicode : shot in the dark to fix tests on Windows

* unicode : first try custom implementations

* convert : add "tokenizer.ggml.pre" GGUF KV (wip)

* llama : use new pre-tokenizer type

* convert : fix pre-tokenizer type writing

* lint : fix

* make : add test-tokenizer-0-llama-v3

* wip

* models : add llama v3 vocab file

* llama : adapt punctuation regex + add llama 3 regex

* minor

* unicode : set bomb

* unicode : set bomb

* unicode : always use std::wregex

* unicode : support \p{N}, \p{L} and \p{P} natively

* unicode : try fix windows

* unicode : category support via std::regex

* unicode : clean-up

* unicode : simplify

* convert : add convert-hf-to-gguf-update.py

ggml-ci

* lint : update

* convert : add falcon

ggml-ci

* unicode : normalize signatures

* lint : fix

* lint : fix

* convert : remove unused functions

* convert : add comments

* convert : exercise contractions

ggml-ci

* lint : fix

* cmake : refactor test targets

* tests : refactor vocab tests

ggml-ci

* tests : add more vocabs and tests

ggml-ci

* unicode : cleanup

* scripts : ignore new update script in check-requirements.sh

* models : add phi-3, mpt, gpt-2, starcoder

* tests : disable obsolete

ggml-ci

* tests : use faster bpe test

ggml-ci

* llama : more prominent warning for old BPE models

* tests : disable test-tokenizer-1-bpe due to slowness

ggml-ci

---------

Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
2024-04-29 16:58:41 +03:00
David Renshaw
3f167476b1 sampling : use std::random_device{}() for default random seed (#6962) 2024-04-29 16:35:45 +03:00
Christian Zhou-Zheng
3055a41805 convert : fix conversion of some BERT embedding models (#6937) 2024-04-29 16:34:41 +03:00
Przemysław Pawełczyk
577277ffd2 make : change GNU make default CXX from g++ to c++ (#6966) 2024-04-29 16:08:20 +03:00
Przemysław Pawełczyk
ca7f29f568 ci : add building in MSYS2 environments (Windows) (#6967) 2024-04-29 15:59:47 +03:00
Johannes Gäßler
c4f708a93f llama : fix typo LAMMAFILE -> LLAMAFILE (#6974) 2024-04-29 15:36:22 +03:00
DAN™
e00b4a8f81 Fix more int overflow during quant (PPL/CUDA). (#6563)
* Fix more int overflow during quant.

* Fix some more int overflow in softmax.

* Revert back to int64_t.
2024-04-29 00:38:44 +02:00
Xuan Son Nguyen
7bb36ccf91 gguf : enforce that tensor names are unique (#6905)
* not allow adding duplicated tensor name

* no duplicated tensor while reading gguf

* typo

* throw exception inside llama_model_loader

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-04-28 17:36:18 +02:00
Neo Zhang
ce023f6f2f add device version in device list (#6959)
Co-authored-by: arthw <>
2024-04-28 22:40:31 +08:00
github-actions[bot]
6e472f58e4 flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/5c24cf2f0a12ad855f444c30b2421d044120c66f?narHash=sha256-XtTSSIB2DA6tOv%2Bl0FhvfDMiyCmhoRbNB%2B0SeInZkbk%3D' (2024-04-19)
  → 'github:NixOS/nixpkgs/7bb2ccd8cdc44c91edba16c48d2c8f331fb3d856?narHash=sha256-Drmja/f5MRHZCskS6mvzFqxEaZMeciScCTFxWVLqWEY%3D' (2024-04-25)
2024-04-28 11:12:50 +00:00
mgroeber9110
4dba7e8114 Replace "alternative" boolean operator in conditional compilation directive (#6949) 2024-04-27 21:02:06 +02:00
Pierrick Hymbert
b7368332e2 ci: server: tests python env on github container ubuntu latest / fix n_predict (#6935)
* ci: server: fix python env

* ci: server: fix server tests after #6638

* ci: server: fix windows is not building PR branch
2024-04-27 17:50:48 +02:00
agray3
928e0b7013 Reset schedule earlier to allow overlap with ggml graph computation on device (#6933)
* Reset schedule earlier to allow overlap with graph computation on device
2024-04-26 20:08:30 +02:00
Pierrick Hymbert
0c4d489e29 quantize: add imatrix and dataset metadata in GGUF (#6658)
* imatrix: save the dataset file used in the output file

* llama: support kv overrides type string string

* common: factorize KV Overrides parsing between common and server

* quantize: add imatrix n entries and dataset KV metadata
quantize: factorize KV Overrides parsing between common
#6656

* llama: remove kv override str_value initialization as it does not compile on some toolchain

* quantize: add imatrix m_last_call as `quantize.imatrix.chunks_count`

* quantize: add imatrix filename in KV

* llama: add llama_model_kv_override_free

* common: add llama_model_kv_override_free
common: free kv override if used after model loading

* llama: finally move the string KV override value to the stack

* llama : minor

* no need to add a NUL to the std::vector, std::string can be initialized from a pair of iterators.

Co-authored-by: slaren <slarengh@gmail.com>

* kv override: ensure string termination

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 20:06:33 +02:00
slaren
017e6999b5 add basic tensor data validation function (#6884)
* add basic tensor data validation function

* add --check-tensors command line argument

tensor validation is disabled by default and can be enabled by adding
`--check-tensors` to the command line arguments.

quantize always validates tensors.
2024-04-26 18:39:58 +02:00
slaren
e2764cd7ca gguf : fix mismatch between alloc and free functions (#6929) 2024-04-26 18:07:42 +03:00
Justine Tunney
4b1c3c98b4 llamafile : use 64-bit integers in sgemm (#6928) 2024-04-26 17:05:33 +03:00
Pierrick Hymbert
bbe3c6e761 ci: server: fix python installation (#6925) 2024-04-26 12:27:25 +02:00
Pierrick Hymbert
7f5ff558ee server: stop generation at n_ctx_train if n_predict is not set (#6638)
* server: cap n_predict if not set to n_ctx_train

* server: fix infinite loop

* server: infinite loop, move in process_token
server: infinite loop: set stop limit to true

* minor: spaces

* minor: spaces

* server: include prompt tokens in the EOS limit
2024-04-26 12:15:30 +02:00
Pierrick Hymbert
9e4e077ec5 ci: server: fix python installation (#6922) 2024-04-26 11:11:51 +02:00
Georgi Gerganov
83b72cb086 Merge pull request from GHSA-p5mv-gjc5-mwqv
* always use calloc

clamp n_kv on failure to read a kv

* ggml : alternative ctx->header.n_kv update

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-04-26 10:41:53 +03:00
Pierrick Hymbert
d4a9afc100 ci: server: fix python installation (#6918) 2024-04-26 09:27:49 +02:00
Pierrick Hymbert
7d641c26ac ci: fix concurrency for pull_request_target (#6917) 2024-04-26 09:26:59 +02:00
Pierrick Hymbert
5790c8dac1 bench: server add stop word for PHI-2 (#6916) 2024-04-26 09:26:16 +02:00
vik
46e12c4692 llava : add support for moondream vision language model (#6899)
* add support for moondream vision language model

This required making the following changes to the CLIP model:

1. Support for patch embedding bias.
2. Make class embedding and pre-layernorm optional.
3. Add support for post-layernorm.

* Update examples/llava/clip.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-25 22:38:31 +03:00
Georgi Gerganov
dba497e0c1 cmake : restore LLAMA_LLAMAFILE_DEFAULT 2024-04-25 21:37:27 +03:00
Georgi Gerganov
fa0b4ad252 cmake : remove obsolete ANDROID check 2024-04-25 18:59:51 +03:00
slaren
d6e1d44f16 llama : synchronize before get/set session data (#6911) 2024-04-25 17:59:03 +02:00
Georgi Gerganov
853d06ffe2 ci : tmp disable slow tests 2024-04-25 17:06:27 +03:00
BarfingLemurs
3fe0596c18 readme : update model list (#6908)
* Update README.md

* missing space

* llama3 !
2024-04-25 16:52:28 +03:00
slaren
0ead1f1072 llama : check that all the tensor data is in the model file (#6885)
* llama : check that all the tensor data is in the model file

* also check for unsigned overflow
2024-04-25 15:23:47 +02:00
Georgi Gerganov
51543729ff ggml : fix redefinition of vaddvq_f32 for 32-bit ARM (#6906) 2024-04-25 15:48:25 +03:00
Daniel Bevenius
4ab99d8d47 clip : rename lerp function to avoid conflict (#6894)
This commit renamesthe lerp (linear interpolation) function in clip.cpp
to avoid a conflict with the lerp function in the <cmath> standard C++
library when using c++20.

The motivation for this change is to enable projects that use c++20 to
be able to compile clip.cpp without having to resort to patching it. The
lerp function was added to cmath in version C++20 (202002L) and is why
this is not causing any issue at the moment as C++11/C++17 is currently
used by llama.cpp.

I realize that llama.cpp uses either C++11 (or C++17 in the case for
SYCL) but wanted to ask if this would be an acceptable change just the
same.

Refs: https://en.cppreference.com/w/cpp/numeric/lerp

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-25 15:38:14 +03:00
Georgi Gerganov
54770413c4 ggml : fix MIN / MAX macros (#6904)
ggml-ci
2024-04-25 15:12:28 +03:00
Georgi Gerganov
aa750c1ede tests : minor bash stuff (#6902)
* tests : minor bash stuff

ggml-ci

* llama : fix build

ggml-ci

* tests : fix CUR_DIR -> ROOT_DIR

ggml-ci

* tests : fix fname

ggml-ci
2024-04-25 14:27:20 +03:00
jiez
1966eb2615 quantize : add '--keep-split' to quantize model into shards (#6688)
* Implement '--keep-split' to quantize model into several shards

* Add test script

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Split model correctly even if tensor id is out-of-order

* Update llama_model_quantize_params

* Fix preci failures

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-25 13:29:35 +03:00
Johannes Gäßler
784e11dea1 README: add graphic for matrix multiplication (#6881) 2024-04-24 21:29:13 +02:00
Douglas Hanley
b4e4b8a935 llama : add llama_get_pooling_type function (#6862)
* add llama_get_pooling_type function

* fix argument name, move with ctx funcs
2024-04-24 16:10:07 +03:00
mgroeber9110
3fe847b574 server : do not apply Markdown formatting in code sections (#6850) 2024-04-24 13:54:24 +03:00
Kyle Mistele
37246b1031 common : revert showing control tokens by default for server (#6860)
* fix: revert showing control tokens by default

* feat: revert changes to default behavior of llama_token_to_piece; provide overridden declaration to receive "bool special" param to toggle showing control tokens

* feat: use the overridden declaration of llama_token_to_piece from common/common.cpp to specify "false" so that control tokens are not shown in chat completion responses"

* common : simplify

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24 13:15:29 +03:00
Johannes Gäßler
28103f4832 Server: fix seed for multiple slots (#6835)
* Server: add tests for consistent results

* sampling: separate rng per sampling context
2024-04-24 11:08:36 +02:00
Georgi Gerganov
c0d1b3e03e ggml : move 32-bit arm compat in ggml-impl.h (#6865)
ggml-ci
2024-04-24 12:00:07 +03:00
Tristan Druyen
abd3314064 llama : add phi 3 chat template (#6857)
* Add phi 3 chat template & tests

* test : fix chat template result

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24 11:52:37 +03:00
Junyang Lin
3fec68be4e convert : add support of codeqwen due to tokenizer (#6707)
* add support of codeqwen due to tokenizer

* override load_hparams

* fix typo

* fix load_params

* convert : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24 10:16:21 +03:00
liuwei-git
c8297c6af5 llama : add phi3 support (#6852)
* add explicit phi3 support

* add explicit phi3 support

* remove unused code

* convert : add BOS token

* llama : match EOT token <|end|>

* llama : minor / style

* llama : tabs -> spaces

* convert : fix lint checks

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-24 10:00:37 +03:00
Anas Ahouzi
4e96a812b3 [SYCL] Windows default build instructions without -DLLAMA_SYCL_F16 flag activated (#6767)
* Fix FP32/FP16 build instructions

* Fix typo

* Recommended build instruction

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Recommended build instruction

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Recommended build instruction

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Add comments in Intel GPU linux

---------

Co-authored-by: Anas Ahouzi <112881240+aahouzi-intel@users.noreply.github.com>
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2024-04-23 08:53:18 +08:00
Justine Tunney
192090bae4 llamafile : improve sgemm.cpp (#6796)
* llamafile : improve sgemm.cpp

- Re-enable by default
- Fix issue described in #6716
- Make code more abstract, elegant, and maintainable
- Faster handling of weirdly shaped `m` an `n` edge cases

* Address review comments

* Help clang produce fma instructions

* Address review comments
2024-04-22 22:00:36 +03:00
Dave Airlie
e931888d50 ggml : fix calloc argument ordering. (#6820)
Latest gcc complains here:
/home/airlied/devel/llama.cpp/ggml-alloc.c: In function ‘ggml_gallocr_new_n’:
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: warning: ‘calloc’ sizes specified with ‘sizeof’ in the earlier argument and not in the later argument [-Wcalloc-transposed-args]
  374 |     ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1);
      |                                                           ^~~~~~
/home/airlied/devel/llama.cpp/ggml-alloc.c:374:59: note: earlier argument should specify number of elements, later size of each element

and a bunch more.

calloc is specified to take nmemb first then size, so realign the code.

In a couple of places there was a * x, 1 so I fixed those to use calloc properly.
2024-04-22 16:05:06 +02:00
Georgi Gerganov
8960fe86ae llama : fix typo in <|im_end|> token text (#6745) 2024-04-22 15:41:11 +03:00
Pierrick Hymbert
c0956b09ba ci: fix job are cancelling each other (#6781) 2024-04-22 13:22:54 +02:00
github-actions[bot]
e9b4a1bf68 flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/1042fd8b148a9105f3c0aca3a6177fd1d9360ba5?narHash=sha256-3sbWO1mbpWsLepZGbWaMovSO7ndZeFqDSdX0hZ9nVyw%3D' (2024-04-10)
  → 'github:NixOS/nixpkgs/5c24cf2f0a12ad855f444c30b2421d044120c66f?narHash=sha256-XtTSSIB2DA6tOv%2Bl0FhvfDMiyCmhoRbNB%2B0SeInZkbk%3D' (2024-04-19)
2024-04-22 10:42:43 +00:00
Olivier Chafik
5cf5e7d490 build: generate hex dump of server assets during build (#6661)
* `build`: generate hex dumps of server assets on the fly

* build: workaround lack of -n on gnu xxd

* build: don't use xxd in cmake

* build: don't call xxd from build.zig

* build: more idiomatic hexing

* build: don't use xxd in Makefile (od hackery instead)

* build: avoid exceeding max cmd line limit in makefile hex dump

* build: hex dump assets at cmake build time (not config time)
2024-04-21 18:48:53 +01:00
Georgi Gerganov
40f74e4d73 llama : add option to render special/control tokens (#6807)
* make : fix common dep on llama.h

* llama : add option to render special tokens

* readme : add API change notice

ggml-ci

* swift : fix build
2024-04-21 18:36:45 +03:00
Georgi Gerganov
b9cc76d87e ggml : fix ggml_backend_cpu_supports_op() for CPY (#0) 2024-04-21 16:48:50 +03:00
Wouter
7dbdba5690 llama : add llama-3 chat template (#6751)
* Added llama-3 chat template

* Update llama.cpp

Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com>

* Update llama.cpp

Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com>

* Update tests/test-chat-template.cpp

Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com>

* Added EOS stop sequence according to https://github.com/ggerganov/llama.cpp/pull/6751#issuecomment-2065602862

* Removed adding of BOS token before first message

* Removed bos token from expected output from llama-3

* Update tests/test-chat-template.cpp

Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>

* Update tests/test-chat-template.cpp

Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>

* Added <|end_of_text|> as another stop token

* Reverted last change of adding the end_of_text stop word for llama 3

---------

Co-authored-by: Wouter Tichelaar <tichelaarw@spar.net>
Co-authored-by: Samuel Tallet <36248671+SamuelTallet@users.noreply.github.com>
Co-authored-by: Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-21 16:03:39 +03:00
pmysl
c1386c936e gguf-py : add IQ1_M to GGML_QUANT_SIZES (#6761) 2024-04-21 15:49:30 +03:00
Jan Boon
e8d35f47cb doc : add link to falcon (#6789) 2024-04-21 15:35:40 +03:00
Mohammadreza Hendiani
2cca09d509 readme : add Fedora instructions (#6783)
* added fedora to list of distros that may need the package (the packages have the same name on Fedora)

* how to add clblast that is avalible in the fedora repos
2024-04-21 15:32:05 +03:00
Justine Tunney
89b0bf0d5d llava : use logger in llava-cli (#6797)
This change removes printf() logging so llava-cli is shell scriptable.
2024-04-21 15:19:04 +03:00
Pedro Cuenca
b97bc3966e llama : support Llama 3 HF conversion (#6745)
* Support Llama 3 conversion

The tokenizer is BPE.

* style

* Accept suggestion

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* llama : add llama_token_is_eog()

ggml-ci

* llama : auto-detect more EOT tokens when missing in KV data

* convert : replacing EOS token is a hack

* llama : fix codegemma EOT token + add TODOs

* llama : fix model type string for 8B model

---------

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-21 14:50:41 +03:00
Jan Boon
b8109bc013 doc : server tests require llama to be built with curl enabled (#6788) 2024-04-20 18:29:50 +02:00
Georgi Gerganov
aed82f6837 common : try to fix Android CI (#6780)
* common : disable get_math_cpu_count() until Android CI gets fixed

* common : another try
2024-04-20 13:27:12 +03:00
loonerin
0e4802b2ec ci: add ubuntu latest release and fix missing build number (mac & ubuntu) (#6748) 2024-04-19 19:03:35 +02:00
Pierrick Hymbert
637e9a86c2 server: static: upstream upgrade (#6765) 2024-04-19 13:19:01 +02:00
nopperl
9958c81b79 Implement the OLMo architecture (#6741)
* implement olmo architecture

* remove unused variable

* remove unused moe branch

* remove check for weight

* remove superfluous moe, bias and rope tensors

* clarified comment

* fix clamp_kqv setting

* remove obsolete parameter name filter
2024-04-19 11:35:54 +02:00
Austin
8b1b1f4982 train : add general name (#6752)
* llama : make general.name optional

* train: Add 'general.name' to model metadata

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>

---------

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-19 10:16:45 +03:00
Neo Zhang
bca40e9814 fix wrong parameter in cmd in readme-sycl.md (#6755)
Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
2024-04-19 09:16:31 +08:00
slaren
0d56246f4b ggml : group all experts in a single ggml_mul_mat_id (#6505)
* ggml : group all experts in a single ggml_mul_mat_id
cuda : improve mmid row copy

* cuda : fix bin bcast with non-cont src0

* test-backend-ops : only run all mul mat tests for base types

* llama : disable moe offloading with SYCL

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-18 15:18:48 +02:00
Sigbjørn Skjæret
03c0946d73 convert : support models with multiple chat templates (#6588)
* Support converting models with multiple chat templates

Adds the following metadata:
* tokenizer.chat_templates
* tokenizer.chat_template.<name1>
* tokenizer.chat_template.<name2>
* tokenizer.chat_template.<...>

Where `tokenizer.chat_templates` is an array of the template names (except `default`), `default` is added to the regular `tokenizer.chat_template`.

* replace filtered characters with underscore

* New script to add/modify/remove metadata

This scripts creates a copy of a GGUF file and allows you to add/modify/remove metadata in the process.

Most importantly this allows you to update chat templates, either as a string or directly from an updated tokenizer_config.json file.

* Add files via upload

add new script to project/readme

* flake--
2024-04-18 14:49:01 +03:00
Ren Xuancheng
e11b2e6e1e Qwen2 : assume tied weights if lm_head/output weights is missing (#6738) 2024-04-18 14:38:04 +03:00
slaren
c71bfd736e llama : fix compatibility with old 2 expert models (#6735) 2024-04-18 10:04:47 +03:00
Georgi Gerganov
3b8f1ec4b1 llamafile : tmp disable + build sgemm.o when needed (#6716)
* build : sgemm.o only when needed

ggml-ci

* llamafile : tmp disable due to MoE bug

ggml-ci
2024-04-17 23:58:26 +03:00
Yaroslav
8dd1ec8b3f readme : add UI (#6724)
* Update README.md

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-17 15:47:50 +03:00
Zheng.Deng
facb8b56f8 convert : fix autoawq gemma (#6704)
* fix autoawq quantized gemma model convert error

using autoawq to quantize gemma model will include a lm_head.weight tensor in model-00001-of-00002.safetensors. it result in this situation that convert-hf-to-gguf.py can't map lm_head.weight. skip loading this tensor could prevent this error.

* change code to full string match and print necessary message

change code to full string match and print a short message to inform users that lm_head.weight has been skipped.

---------

Co-authored-by: Zheng.Deng <32841220+CUGfred@users.noreply.github.com>
2024-04-16 23:51:07 +03:00
Georgi Gerganov
532c1737a1 llama : make general.name optional (#6709) 2024-04-16 23:50:38 +03:00
Georgi Gerganov
666867b799 ggml : fix llamafile sgemm wdata offsets (#6710)
ggml-ci
2024-04-16 23:50:22 +03:00
Justine Tunney
8cc91dc63c ggml : add llamafile sgemm (#6414)
This change upstreams llamafile's cpu matrix multiplication kernels
which improve image and prompt evaluation speed. For starters, Q4_0
and Q8_0 weights should go ~40% faster on CPU. The biggest benefits
are with data types like f16 / f32, which process prompts 2x faster
thus making them faster than quantized data types for prompt evals.

This change also introduces bona fide AVX512 support since tinyBLAS
is able to exploit the larger register file. For example, on my CPU
llama.cpp llava-cli processes an image prompt at 305 tokens/second,
using the Q4_K and Q4_0 types, which has always been faster than if
we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With
this change, f16 LLaVA performance leap frogs to 464 tokens/second.

On Intel Core i9-14900K this change improves F16 prompt perf by 5x.
For example, using llama.cpp at HEAD with Mistral 7b f16 to process
a 215 token prompt will go 13 tok/sec. This change has fixes making
it go 52 tok/sec. It's mostly thanks to my vectorized outer product
kernels but also because I added support for correctly counting the
number of cores on Alderlake, so the default thread count discounts
Intel's new efficiency cores. Only Linux right now can count cores.

This work was sponsored by Mozilla who's given permission to change
the license of this code from Apache 2.0 to MIT. To read more about
what's improved, and how it works, see: https://justine.lol/matmul/
2024-04-16 21:55:30 +03:00
Ashish
dbceec87c0 llama : add StableLM2 12B (#6635)
* StableLM2 12B support for huggingface -> GGUF

* StableLM12 tensormapping and constants

* StableLM-2-12b model support

* fix

* Added 12B support

* Removed autoformatting; resolved bug where model_arch was not selecting StableLM2

* Formatting

* Do QK norm stacking in model conversion step

* Converge StableLM and StableLM2 code to simplify graph construction

* Fix accidental removal

* Removed warnings

* Revert formatter

* Move QK norm stack to private function so it's easier to read

* refactor stablelm graph builder to support 1.6, 3b and 12b more efficiently

* Proper check for None type for new_name to avoid crash; formatting; revert change to base class `write_tensors()`

* Format

* Formatting

* format

Co-authored-by: compilade <git@compilade.net>

* Fix incorrect check for K norm

* space after commas; Keep indentation multiple of 4 spaces

* Flake8 format

* Removed unnecessary conditional branches

* Removed unused comment

* Fixed incorrect tensor passing

* Format

---------

Co-authored-by: compilade <git@compilade.net>
2024-04-16 18:48:35 +03:00
Shijie
f4dea7da18 llama : add qwen2moe (#6074)
* support qwen2moe

* fix-review

* metal : support unary ops for nelements % 4 != 0

* metal : require contiguousness for float4 unary kernels

* metal : require contiguousness for float4 unary kernels (cont)

* fix-review

* names : for brevity "SHARED_EXP" -> "SHEXP"

* llama : reuse build_moe_ffn()

* llama : add model type name

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-16 18:40:48 +03:00
Daniel Bevenius
8a56075b07 gritlm : add --outdir option to hf.sh script (#6699)
This commit updates the hf.sh script usage to include the --outdir option
and specifies the models directory as the output directory.

The motivation for this is to avoid cluttering the root directory with
model files.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-16 09:34:06 +03:00
Georgi Gerganov
58227ffdeb perplexity : require positive --ctx-size arg (#6695) 2024-04-16 09:28:33 +03:00
Daniel Bevenius
4fbd8098e6 gguf : add special tokens metadata for FIM/Infill (#6689)
This commit adds special token metadata for Fill-In-the-Middle
(FIM)/Infill to the GGUF model.

The motivation for this is that currently there is support for CodeLlama
but other models exist now like CodeGemma, but the different models use
different token ids for the special tokens and this commit allows for
supporting multiple models.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-16 09:13:13 +03:00
Olivier Chafik
7593639ce3 main: add --json-schema / -j flag (#6659)
* main: add --json-schema / -j

* json: move json-schema-to-grammar to common lib

* json: fix zig build
2024-04-15 18:35:21 +01:00
compilade
132f55795e llama : fix restoring the number of outputs from state files (#6687) 2024-04-15 15:56:55 +03:00
Pierrick Hymbert
3272896d79 server : revert "minor layout improvements" (#6684)
This reverts commit b3a96f27f0.
2024-04-15 15:18:47 +03:00
Steven Prichard
7fc16a2c32 swift : linux support (#6590)
- Package.swift now supports conditional compilation based on OS
- Allows for package to be used by SPM on Non-Apple platforms

Co-authored-by: Steven Prichard <steven.prichard@justeattakeaway.com>
2024-04-15 13:14:46 +03:00
Neo Zhang Jianyu
17e98d4c96 fix mul_mat_id() for new input, make the ut pass (#6682) 2024-04-15 17:12:26 +08:00
David Renshaw
1958f7e06c llama : add missing kv clear in llama_beam_search (#6664) 2024-04-14 15:24:15 -04:00
Chao Jiang
04fbc5f23e Add Command R chat template (#6650)
* Add chat template for command-r model series

* Fix indentation

* Add chat template test for command-r models and update the implementation to trim whitespaces

* Remove debug print
2024-04-14 18:16:34 +02:00
Georgi Gerganov
f184dd9208 flake.lock: Update (#6669) 2024-04-14 06:55:30 -07:00
Dave
422c2aff1c Added support for GGML_OP_CLAMP in Metal (#6662)
* Added support for GGML_OP_CLAMP in Metal

* Corrected size

---------

Co-authored-by: dave-fl <dave@Davids-MacBook-Pro.local>
2024-04-14 13:14:19 +02:00
Sigbjørn Skjæret
8800226d65 Fix --split-max-size (#6655)
* Fix --split-max-size

Byte size calculation was done on int and overflowed.

* add tests.sh

* add examples test scripts to ci run

Will autodiscover examples/*/tests.sh scripts and run them.

* move WORK_PATH to a subdirectory

* clean up before and after test

* explicitly define which scripts to run

* add --split-max-size to readme
2024-04-14 13:12:59 +02:00
Jaemin Son
e689fc4e91 [bug fix] convert github repository_owner to lowercase (#6673) 2024-04-14 13:12:36 +02:00
James A Capozzoli
a4ec34e1cd convert : enable the --use-temp-file cli flag (#6645) 2024-04-14 11:40:18 +03:00
Neo Zhang Jianyu
de17e3f745 fix memcpy() crash, add missed cmd in guide, fix softmax (#6622)
* disable mmap to fix memcpy crash, add missed cmd in guide, fix softmax

* refactor to disable mmap for SYCL backend

* fix compile error in other os

* refactor the solution, use host buf to fix it, instead of disable mmap

* keep to support mmap()

* use host buff to reduce malloc times

* revert to malloc/free solution, for threaad safe
2024-04-14 10:42:29 +08:00
Johannes Gäßler
b5e7285baf CUDA: fix matrix multiplication logic for tests (#6667) 2024-04-14 00:21:55 +02:00
Pierrick Hymbert
4bd0f93e4a model: support arch DbrxForCausalLM (#6515)
* model: dbrx convert to gguf
#6344

* llama: support dbrx
#6344

* doc: dbrx: add the model as supported

* scripts: get-wikitext-2 add unzip

* llama: increase maximum experts allowed

* llama: factorize moe graph implementation between grok, mixtral and dbrx


---------

Co-authored-by: Megha Agarwal <16129366+megha95@users.noreply.github.com>
2024-04-13 11:33:52 +02:00
Olivier Chafik
ab9a3240a9 JSON schema conversion: ️ faster repetitions, min/maxLength for strings, cap number length (#6555)
* json: rename python schema converter to make import easier

* server: skip null json_schema / grammar fields

* json: deps management for primitive rules (+ allow null values)

* json: optimize repetitions for minItems/maxItems and regexps: `a{,3}` goes from `"a"? "a"? "a"?` (explosive combos) to `(a (a (a)?)?)?`

* grammars: add troubleshooting section to readme

* json: cap length of numbers to 15 digits before/after decimal point

(avoids infinite gen, e.g. "one third" -> `0.333333333333...`)

* json: unify all repetition code (w/ or w/o sep)

* json: support string minLength/maxLength

* server+json: update server/README w/ result_format

* nits

* json: fix type error w/ python 3.8

* json: fix server/README (json_schema in /completion vs. result_format in /v1/chat/completions)

* json: simplify DOT `{"type": "string", "pattern": "^.$"}`

* json: remove recursion in opt_repetitions (avoids Python stack overflow)

* json: rm dead code

* json: rm useless assert & ggml.h import
2024-04-12 19:43:38 +01:00
slaren
fbbc030ba9 metal : unify mul_mv_id kernels (#6556) 2024-04-12 18:13:20 +02:00
Daniel Bevenius
4cc120c744 infill : add download instructions for model (#6626)
* infill : add download instructions for model

This commit adds instructions on how to download a CodeLlama model
using the `hf.sh` script. This will download the model and place it
in the `models` directory which is the same model use later by the
infill example.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! infill : add download instructions for model

Clarify the reason for using CodeLlama.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-12 15:11:46 +03:00
Pierrick Hymbert
24ee66ed0d server : coherent log output for KV cache full (#6637) 2024-04-12 14:49:21 +03:00
jiez
91c736015b llama : add gguf_remove_key + remove split meta during quantize (#6591)
* Remove split metadata when quantize model shards

* Find metadata key by enum

* Correct loop range for gguf_remove_key and code format

* Free kv memory

---------

Co-authored-by: z5269887 <z5269887@unsw.edu.au>
2024-04-12 13:45:06 +03:00
Rene Leonhardt
5c4d767ac0 chore: Fix markdown warnings (#6625) 2024-04-12 10:52:36 +02:00
Georgi Gerganov
ef21ce4ccb imatrix : remove invalid assert (#6632) 2024-04-12 11:49:58 +03:00
MasterYi1024
dee7f8d692 Correct free memory and total memory. (#6630)
Co-authored-by: MasterYi <zouxiaoyi@kylinos.cn>
2024-04-12 10:28:12 +02:00
Pierrick Hymbert
81da18e71c eval-callback: use ggml_op_desc to pretty print unary operator name (#6631) 2024-04-12 10:26:47 +02:00
Georgi Gerganov
9ed2737acc ci : disable Metal for macOS-latest-cmake-x64 (#6628) 2024-04-12 11:15:05 +03:00
Clint Herron
04a5ac211e Optimization: eliminate addition of redundant stacks when advancing grammar. (#6616) 2024-04-11 21:44:50 -04:00
Clint Herron
f7001ccc5a As suggested by @slaren, disabling Metal for test to fix CI build on OSX from #6576 (#6619) 2024-04-11 17:44:48 -04:00
Nikolas
a474f50ebb Refactor Error Handling for CUDA (#6575)
* Refactor Error Handling for CUDA

Add guidance for setting CUDA_DOCKER_ARCH to match GPU compute capability for CUDA versions < 11.7. Include link to NVIDIA's CUDA GPUs documentation for compute capability reference.

* Update Makefile

Improved wording

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-04-11 21:56:29 +02:00
Olivier Chafik
cbaadc9294 grammars: 1.5x faster inference w/ complex grammars (vector reserves / reuses) (#6609)
* grammars: reserve rejects & next candidates

* grammars: reuse new_stacks

* grammars: fix missing sig change in llama.h

* grammars: fix test (api changed)

* grammars: update gbnf-validator.cpp

* grammars: simpler syntax (no swap)
2024-04-11 19:47:34 +01:00
Hugo Roussel
1bbdaf6ecd ci: download artifacts to release directory (#6612)
When action download-artifact was updated to v4, the default download path changed.
This fix binaries not being uploaded to releases.
2024-04-11 19:52:21 +02:00
Daniel Bevenius
f4183afe6a scripts : add --outdir option to hf.sh (#6600)
* scripts : add --outdir option to hf.sh

This commit adds an option to the hf.sh script that allows the user to
specify an output directory for the downloaded file.

The motivation for this changes is that examples that use the hf.sh
script to download models from huggingface can now specify the output
directory, perhaps to the `models` directory to keep them in one place
and not clutter the root directory.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! scripts : add --outdir option to hf.sh

Fix format of the --outdir option in the usage message.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-11 16:22:47 +03:00
Pierrick Hymbert
b804b1ef77 eval-callback: Example how to use eval callback for debugging (#6576)
* gguf-debug: Example how to use ggml callback for debugging

* gguf-debug: no mutex, verify type, fix stride.

* llama: cv eval: move cb eval field in common gpt_params

* ggml_debug: use common gpt_params to pass cb eval.
Fix get tensor SIGV random.

* ggml_debug: ci: add tests

* ggml_debug: EOL in CMakeLists.txt

* ggml_debug: Remove unused param n_batch, no batching here

* ggml_debug: fix trailing spaces

* ggml_debug: fix trailing spaces

* common: fix cb_eval and user data not initialized

* ci: build revert label

* ggml_debug: add main test label

* doc: add a model: add a link to ggml-debug

* ggml-debug: add to make toolchain

* ggml-debug: tests add the main label

* ggml-debug: ci add test curl label

* common: allow the warmup to be disabled in llama_init_from_gpt_params

* ci: add curl test

* ggml-debug: better tensor type support

* gitignore : ggml-debug

* ggml-debug: printing also the sum of each tensor

* ggml-debug: remove block size

* eval-callback: renamed from ggml-debug

* eval-callback: fix make toolchain

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-11 14:51:07 +02:00
Daniel Bevenius
8228b66dbc gguf : add option to not check tensor data (#6582)
This commit adds an option to the gguf example to not check the tensor
data.

The motivation for this is that it can be nice to use the gguf tool to
read other .gguf files that were not created by the gguf tool.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-10 21:16:48 +03:00
Ralph Soika
b3a96f27f0 minor layout improvements (#6572)
* minor layout improvements

* added missing file, run deps.sh locally
2024-04-10 19:18:25 +02:00
slaren
4f407a0a35 llama : add model types for mixtral (#6589) 2024-04-10 17:24:14 +02:00
slaren
65c64dc36f convert.py : add consolidated.safetensors for mixtral 8x22b (#6587) 2024-04-10 15:23:12 +02:00
Pierrick Hymbert
67fac4b95f docs : how to add a model (#6565)
* docs: how to add a model

* docs: model: typo and docs

* docs: model: add prevision on RoPE

* docs: model: rephrasing README.md

* docs: model: rephrasing README.md

* docs: model: README.md fix trailing spaces

* docs : some fixes

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-10 09:58:48 +03:00
Artem Zinnatullin
29122d32ac readme : fix ROCm link (#6579) 2024-04-10 09:49:12 +03:00
sjxx
b231b37b09 readme : update UI list (#6560) 2024-04-10 09:34:00 +03:00
Jiří Sejkora
ba5e134e07 readme: fix typo in amdgpu target name (#6573) 2024-04-10 00:23:02 +02:00
Jared Van Bortel
1b67731e18 BERT tokenizer fixes (#6498)
Key changes:
* BERT conversion: fix abuse of LlamaHfVocab, do not set BOS or EOS
* Nomic Embed conversion: pad vocab instead of slicing embedding tensor
* llama_tokenize: handle added special tokens like HF does
2024-04-09 13:44:08 -04:00
Georgi Gerganov
c4a3a4ff47 sync : ggml 2024-04-09 20:29:06 +03:00
Ed Lee
400d5d722d server : detect search query to start webchat (#6554) 2024-04-09 10:31:47 +02:00
Carolinabanana
5dc9dd7152 llama : add Command R Plus support (#6491)
* Add Command R Plus GGUF

* Add Command R Plus GGUF

* Loading works up to LayerNorm2D

* Export new tensors in 1D so they are not quantized.

* Fix embedding layer based on Noeda's example

* Whitespace

* Add line

* Fix unexpected tokens on MPS. Re-add F16 fix. ((Noeda)

* dranger003: Fix block index overflow in CUDA dequantizing.

* Reverted blocked multiplication code as it still has issues and could affect other Llama arches

* export norms as f32

* fix overflow issues during quant and other cleanup

* Type convention

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* dranger003: Fix more int overflow during quant.

---------

Co-authored-by: S <seast@Ss-Mac-Studio.local>
Co-authored-by: S <s@example.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-09 11:16:13 +03:00
Georgi Gerganov
e11a8999b5 license : update copyright notice + add AUTHORS (#6405)
* license : add AUTHORS

* authors : update

* scipts : add LICENSE and gen-authors.sh to sync
2024-04-09 09:23:19 +03:00
Georgi Gerganov
cc4a95426d llama : fix attention layer count sanity check (#6550)
* llama : fix attention layer count sanity check

* llama : fix parentheses in attention layer count sanity check

There was otherwise a warning when compiling.

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2024-04-08 22:25:49 +03:00
kunnis
cecd8d3c98 Comment explaining a decision (#6531) 2024-04-08 17:44:19 +02:00
Georgi Gerganov
b73e564b16 quantize : fix precedence of cli args (#6541) 2024-04-08 16:23:01 +03:00
Rick G
e3c337d87c llama : support negative ith in llama_get_ API (#6519)
* llama_sampling_sample with default args is more naively usable

* Batches populated by either llama_batch_get_one or llama_batch_add work with default args
  * Previously get_one could use the default argument
  * Previously add should usually have used the last index where logits[idx] == true
* This hopefully encourages the use of llama_batch_add
  * By giving expected results when using default arguments.
* Adds "negative indexing" feature to llama_get_logits_ith and llama_get_embeddings_ith
* Believed to work with any currently well behaved program
  * Default arg now works for both cases (previously would give strange results for add case)
  * Any non-negative number is unaffected and behaves as previously
  * Negative arguments were previously invalid.
* Implemented as a special case of indexing as suggested by @compilade in https://github.com/ggerganov/llama.cpp/pull/6519

* Fixed mismatch type errors

* cited in macOS CI tests
* Missed in original updates based on PR feedback in https://github.com/ggerganov/llama.cpp/pull/6519
2024-04-08 16:02:30 +03:00
Jan Boon
beea6e1b16 llama : save and restore kv cache for single seq id (#6341)
* llama : save and restore kv cache for single seq id

* remove trailing whitespace

* respond error in case there's no space in the kv cache

* add kv seq save restore to test case

* add --slot-save-path arg to enable save restore and restrict save location

* Returning 0 for some cases, instead of asserting.

* cleanup error cases

* rename sequence state functions

* rename state get set functions

* add previous function names back in with DEPRECATED notice

* update doc

* adjust endpoints to preferred style

* fix restoring zero cell count

* handle seq rm return value

* unused param

* keep in the size check

* fix return types

* add server test case for slot save restore

* cleanup

* add cake

* cleanup style

* add special

* removing a whole sequence never fails

* move sequence state file functionality from server to llama to match session api and add version tags

* catch exceptions on save as well

* error log messages

* check types for stricter restore

* update server doc

* readme : update API changes date

* strict filename validation

* move include, reject bom as well

* also reject empty filename

* reject whitespace and trailing dot

---------

Co-authored-by: Martin Evans <martindevans@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-08 15:43:30 +03:00
Abhilash Majumder
87fb5b4234 remove row=1 cond (#6532) 2024-04-08 16:26:01 +08:00
Firat
d752327c33 Adding KodiBot to UI list (#6535)
KodiBot is free and open source ai chat app released under the GNU General Public License.
2024-04-08 09:48:29 +02:00
Mark Fairbairn
855f54402e Change Windows AMD example to release build to make inference much faster. (#6525) 2024-04-07 20:52:19 +02:00
Georgi Gerganov
b909236c0b flake.lock: Update (#6517)
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2' (2024-03-01)
  → 'github:hercules-ci/flake-parts/9126214d0a59633752a136528f5f3b9aa8565b7d' (2024-04-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8?dir=lib' (2024-02-29)
  → 'github:NixOS/nixpkgs/d8fe5e6c92d0d190646fb9f1056741a229980089?dir=lib' (2024-03-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/d8fe5e6c92d0d190646fb9f1056741a229980089' (2024-03-29)
  → 'github:NixOS/nixpkgs/fd281bd6b7d3e32ddfa399853946f782553163b5' (2024-04-03)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-04-07 11:25:30 -07:00
DAN™
e0717e751e Add GritLM as supported models. (#6513) 2024-04-07 19:33:59 +02:00
Georgi Gerganov
c37247796b sync : ggml 2024-04-07 17:05:51 +03:00
Slava Primenko
f77261a7c5 ggml: bypass code incompatible with CUDA < 11.1 (whisper/2020)
`cudaHostRegisterReadOnly` parameter was only introduced in CUDA 11.1

See this issue for more details:
https://github.com/ggerganov/examples/whisper/whisper.cpp/issues/2007
2024-04-07 17:05:40 +03:00
Georgi Gerganov
43e8995e75 scripts : sync ggml-cuda folder 2024-04-07 16:08:12 +03:00
limitedAtonement
9472bce308 Run make to build the project (#6457) 2024-04-07 13:05:40 +02:00
Neo Zhang Jianyu
d4f220a5cc support/fix OPs GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M (#6521) 2024-04-07 10:55:59 +08:00
Georgi Gerganov
54ea0698fb sync : ggml 2024-04-06 18:27:46 +03:00
Daniel Bevenius
b66aec675c backend : fix typo in scheduler documentation (ggml/781)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-06 17:42:26 +03:00
Clint Herron
57dd02c44b Tests: Added integration tests for GBNF parser (#6472)
* Added integration tests for GBNF parser to validate correctness of parsing, as well as correctness of string matching. Intended for use to pin behavior while working on performance improvements.

* Fixing whitespace errors and cleaning error message alert to be clearer.

* Removing hacky include to llama.cpp from grammar integration test now that needed functions are available via internal API.

* Comment cleanup.

* Reorganizing tests for readability.

* Cleaning up debug message to make a bit more sense.
2024-04-06 10:31:33 -04:00
Pierrick Hymbert
75cd4c7729 ci: bench: support sse and fix prompt processing time / server: add tokens usage in stream OAI response (#6495)
* ci: bench: support sse and fix prompt processing time
server: add tokens usage in stream mode

* ci: bench: README.md EOL

* ci: bench: remove total pp and tg as it is not accurate

* ci: bench: fix case when there is no token generated

* ci: bench: change to the 95 percentile for pp and tg as it is closer to what the server exports in metrics

* ci: bench: fix finish reason rate
2024-04-06 05:40:47 +02:00
Brian
a8bd14d557 gguf.py : add licence and version to gguf writer (#6504) 2024-04-05 21:41:38 +03:00
Hoang Nguyen
d0f5deebf8 readme : update UI list (#6503)
* Add MindMac to UI list

* Update proprietary description

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-04-05 21:39:43 +03:00
Ting Sun
87e21bbacd bench : make n_batch and n_ubatch configurable in Batched bench (#6500)
* bench: make n_batch and n_ubatch configurable

* bench: update doc for batched bench
2024-04-05 21:34:53 +03:00
Ouadie EL FAROUKI
1b496a745c [SYCL] Fixed minor bug when enabling FP16 for non intel targets (#6464)
* moved INTEL_MKL guard from gemm_impl to gemm (wrapper)

* Update ggml-sycl.cpp

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>

---------

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
2024-04-05 19:05:06 +05:30
alexpinel
a307375c02 readme : add Dot to UI list (#6487) 2024-04-04 13:22:50 -04:00
Jun Jie
b660a5729e readme : fix typo (#6481) 2024-04-04 13:16:37 -04:00
Ed Lepedus
0a1d889e27 server: add cURL support to server Dockerfiles (#6474)
* server: add cURL support to `full.Dockerfile`

* server: add cURL support to `full-cuda.Dockerfile` and `server-cuda.Dockerfile`

* server: add cURL support to `full-rocm.Dockerfile` and `server-rocm.Dockerfile`

* server: add cURL support to `server-intel.Dockerfile`

* server: add cURL support to `server-vulkan.Dockerfile`

* fix typo in `server-vulkan.Dockerfile`

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-04 18:31:22 +02:00
Minsoo Cheong
7dda1b727e ci: exempt master branch workflows from getting cancelled (#6486)
* ci: exempt master branch workflows from getting cancelled

* apply to bench.yml
2024-04-04 18:30:53 +02:00
Ewout ter Hoeven
c666ba26c3 build CI: Name artifacts (#6482)
Name the artifacts in the build CI, so that they get uploaded with separate names, instead of all put into the same `artifact` ZIP.

It might be possible to further simplify the packing step (in future PRs).
2024-04-04 17:08:55 +02:00
Shakhar Dasgupta
2e66913e5f server: allow penalizing repetition of newlines on server webpage (#6431) 2024-04-04 17:03:00 +02:00
Pierrick Hymbert
8120efee1d ci: bench fix concurrency for workflow trigger dispatch with sha1 (#6478) 2024-04-04 16:59:04 +02:00
limitedAtonement
a74401f0e5 Correct README link (#6458)
README is called README.md.
2024-04-04 16:30:02 +02:00
Pierrick Hymbert
7a2c92637a ci: bench: add more ftype, fix triggers and bot comment (#6466)
* ci: bench: change trigger path to not spawn on each PR

* ci: bench: add more file type for phi-2: q8_0 and f16.
- do not show the comment by default

* ci: bench: add seed parameter in k6 script

* ci: bench: artefact name perf job

* Add iteration in the commit status, reduce again the autocomment

* ci: bench: add per slot metric in the commit status

* Fix trailing spaces
2024-04-04 12:57:58 +03:00
Daniel Bevenius
4bcd6b959c common: remove duplicate check for curl (#6471)
This commit removes one of the two identical checks for curl being NULL
in llama_load_model_from_url.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-04-04 09:49:21 +02:00
Clint Herron
9b84ae1806 examples : add GBNF validator program (#5948)
* Revising GBNF validator program to be much simpler.

* Changing from streams to using cstdio

* Adding final newline character.
2024-04-04 10:44:28 +03:00
Georgi Gerganov
4399f13fb9 server : remove obsolete --memory-f32 option 2024-04-04 09:34:58 +03:00
Xiao-Yong Jin
1a43c7254e server : add option to disable KV offload (#6468) 2024-04-04 09:33:48 +03:00
Clint Herron
72d73af651 convert : fix for lint error complaining of bare except (#6470) 2024-04-04 09:32:53 +03:00
Fattire
5fb1574c81 A few small fixes to server's README docs (#6428)
* Typo fix to server's README.md

Fix minor typo ("tonen") in server README.

* server readme grammar/style fixes.

Quickly went through this file to look for inconsistencies in
presentation of defaults, flag options, and looked for typos
and grammar issues.

Not perfect, but hopefully improved.

* Update README.md

Remove an extra space before newline.
2024-04-03 22:22:57 +02:00
JH23X
60cdf40cc3 server : handle exception on wrong type in request (#6452)
Co-authored-by: Jonas Holzner <jonas.holzner.external@hensoldt.net>
2024-04-03 21:09:52 +03:00
bryanSwk
bb43cf7e9d llama : add SEA-LION support (#6448)
* initial commit for sealion support

* add sealion support

* minor fix

* q/k ln and pos_embd only if required

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* minor : clear whitespaces

---------

Co-authored-by: bryan <bryansiow@aisingapore.org>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 21:05:10 +03:00
Ewout ter Hoeven
9f62c0173d ci : update checkout, setup-python and upload-artifact to latest (#6456)
* CI: Update actions/checkout to v4

* CI: Update actions/setup-python to v5

* CI: Update actions/upload-artifact to v4
2024-04-03 21:01:13 +03:00
Ed Lepedus
5d4f12e462 server: add cURL support to server.Dockerfile (#6461) 2024-04-03 19:56:37 +02:00
Francisco Melo
154d4ee39c readme : add feature-rich rust bindings (#6465) 2024-04-03 20:53:37 +03:00
Joyce
e69945d953 security : create policy (#6354)
* Create SECURITY.md

Signed-off-by: Joyce <joycebrum@google.com>

* Fix: link on SECURITY.md

Signed-off-by: Joyce <joycebrum@google.com>

* Fix: link on SECURITY.md

Signed-off-by: Joyce <joycebrum@google.com>

* minor

* fix

* fix

---------

Signed-off-by: Joyce <joycebrum@google.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 20:48:07 +03:00
Abhishek Gopinath K
db214fa578 Missing tokenizer.model error during gguf conversion (#6443)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-04-03 11:42:52 -04:00
kaizau
1ff4d9f3d6 Add OpenChat, Alpaca, Vicuna chat templates (#6397)
* Add openchat chat template

* Add chat template test for openchat

* Add chat template for vicuna

* Add chat template for orca-vicuna

* Add EOS for vicuna templates

* Combine vicuna chat templates

* Add tests for openchat and vicuna chat templates

* Add chat template for alpaca

* Add separate template name for vicuna-orca

* Remove alpaca, match deepseek with jinja output

* Regenerate chat template test with add_generation_prompt

* Separate deepseek bos from system message

* Match openchat template with jinja output

* Remove BOS token from templates, unprefix openchat
2024-04-03 17:24:31 +02:00
Georgi Gerganov
076b08649e readme : update hot topics 2024-04-03 16:11:15 +03:00
slaren
08a0c02060 ggml : mul_mat_id use the same tensor for all the experts (#6387)
* ggml : update mul_mat_id to use the same tensor for all the experts

* update cuda

* minor

* update metal

* update test-backend-ops

* fix cuda

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update convert.py

* update convert-hf-to-gguf.py

* update convert.py for mixtral hf models

* Update convert-hf-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* cuda : support non-pow-2 number of experts

* allow quantize to work for split and merged experts models in the same way

* cleanup + disable mmap automatically with split tensors models

* update imatrix

* test-backend-ops : test qwen argsort

* update grok model loading

* llama : add merged experts tensors to the grok tensor map

* minor

* gguf : bump version

* fix quantizing of merged experts

* convert-hf-to-gguf.py : update grok (untested)

* make linter happy

* cuda/argsort : use shared memory instead of pool memory

* convert : fix grok tensor names

* metal : add support for non-pow-2 argsort

* llama : more loader cleanup, better error checking

* cuda : fix warning

* llama : still use mmap for loading old models, but copy the data to a host buffer

* add review note

* llama : remove ffn tensor counting + add sanity check

ggml-ci

* convert : fix handling of n_experts == None

ggml-ci

* imatrix : fix ncall counters

* llama : produce error if imatrix size does not match

* quantize : terminate on errors + trace logs

ggml-ci

* metal : pad shared memory to 16 bytes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-04-03 16:07:05 +03:00
Meng, Hengyu
52604860f9 [SYCL] Disable iqx on windows as WA (#6435)
* disable iqx on windows as WA

* array instead of global_memory
2024-04-03 10:34:40 +08:00
Georgi Gerganov
f87f7b8986 flake.lock: Update (#6402)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/44d0940ea560dee511026a53f0e2e2cde489b4d4' (2024-03-23)
  → 'github:NixOS/nixpkgs/d8fe5e6c92d0d190646fb9f1056741a229980089' (2024-03-29)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-04-01 09:05:57 -07:00
Johannes Gäßler
33a5244806 compare-llama-bench.py: fix long hexsha args (#6424) 2024-04-01 13:30:43 +02:00
Pierrick Hymbert
226e819371 ci: server: verify deps are coherent with the commit (#6409)
* ci: server: verify deps are coherent with the commit

* ci: server: change the ref to build as now it's a pull event target
2024-04-01 12:36:40 +02:00
Georgi Gerganov
c50a82ce0f readme : update hot topics 2024-03-31 11:56:30 +03:00
Pierrick Hymbert
37e7854c10 ci: bench: fix Resource not accessible by integration on PR event (#6393) 2024-03-30 12:36:07 +02:00
Mohammadreza Hendiani
c342d070c6 Fedora build update (#6388)
* fixed deprecated address

* fixed deprecated address

* fixed deprecated address

* Added 'Apache-2.0' SPDX license identifier due to 'kompute.cc' submodule licensing. Explanation of licensing method: https://docs.fedoraproject.org/en-US/legal/spdx/#_and_expressions

* Added 'Apache-2.0' SPDX license identifier due to 'kompute.cc' submodule licensing. Explanation of licensing method: https://docs.fedoraproject.org/en-US/legal/spdx/#_and_expressions

* Added 'Apache-2.0' SPDX license identifier due to 'kompute.cc' submodule licensing. Explanation of licensing method: https://docs.fedoraproject.org/en-US/legal/spdx/#_and_expressions

* reverted back to only the MIT license
2024-03-29 22:59:56 +01:00
Xuan Son Nguyen
f7fc5f6c6f split: allow --split-max-size option (#6343)
* split by max size

* clean up arg parse

* split: ok

* add dry run option

* error on 0 tensors

* be positive

* remove next_metadata_size
2024-03-29 22:34:44 +01:00
0cc4m
ba0c7c70ab Vulkan k-quant mmq and ggml-backend offload functionality (#6155)
* Fix Vulkan no kv offload incoherence

* Add k-quant mul mat mat shaders

* Rework working buffer allocation, reduces vram use noticeably

Clean up cpu assist code, replaced with ggml-backend offload function

* Default to all dedicated GPUs

* Add fallback for integrated GPUs if no dedicated GPUs are found

* Add debug info which device is allocating memory

* Fix Intel dequant issue

Fix validation issue

* Fix Vulkan GGML_OP_GET_ROWS implementation

* Clean up merge artifacts

* Remove Vulkan warning
2024-03-29 17:29:21 +01:00
Georgi Gerganov
d48ccf3ad4 sync : ggml (#6351)
* sync : ggml

ggml-ci

* cuda : move GGML_CUDA_DMMV constants to dmmv.cuh

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-29 17:45:46 +02:00
hxer7963
069574775c [Model] Add support for xverse (#6301)
* Support xverse model convert to gguf format.

* 1. Convert xverse models to gguf;
2. Add LLM_ARCH_XVERSE inference in llama.cpp;
3. Add xverse item in Supported models in README.md;

* * gguf-py: remove redundant logs
* llama: remove the init_mapping_prefetch custom parameter

* llama.cpp: Include the changes from #6122 to exclude the unused outputs of the last layers.

* - Fix format issues
- Remove duplicate set kqv_out to llm_build_kv

* Update llama.cpp

---------

Co-authored-by: willhe <willhe@xverse.cn>
Co-authored-by: willhe <hexin@xverse.cn>
2024-03-29 14:37:03 +01:00
Georgi Gerganov
cfde806eb9 ci : fix BGE wget (#6383)
ggml-ci
2024-03-29 14:34:28 +02:00
zhouwg
b910287954 readme : add project (#6356)
* readme: add Android UI binding

* Update README.md
2024-03-29 09:33:46 +02:00
Matt Clayton
8093987090 cmake : add explicit metal version options (#6370)
* cmake: add explicit metal version options

* Update CMakeLists.txt

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-29 09:27:42 +02:00
Daniel Bevenius
057400a3fd llama : remove redundant reshape in build_kv_store (#6369)
* llama: remove redundant reshape in build_kv_store

This commit removes the reshape of the V matrix in the build_kv_store.

The motivation for this is that V matrix has the shape:
```console
(gdb) p *v_cur
$46 = {type = GGML_TYPE_F32, backend = GGML_BACKEND_TYPE_CPU,
       buffer = 0x0, ne = {4096, 512, 1, 1}, nb = {4, 16384, 8388608,
       8388608}, op = GGML_OP_MUL_MAT, op_params = {
       0 <repeats 16 times>}, flags = 0, grad = 0x0,
       src = {0xb496b0, 0x7ffef1c40950, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
       0x0, 0x0}, perf_runs = 0, perf_cycles = 0, perf_time_us = 0,
       view_src = 0x0, view_offs = 0, data = 0x0,
       name = "Vcur-0", '\000' <repeats 57 times>, extra = 0x0,
       padding = "\000\000\000\000\000\000\000"}
```
And after reshaping this tensor we get:
```console
gdb) p *ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens)
$44 = {type = GGML_TYPE_F32, backend = GGML_BACKEND_TYPE_CPU,
       buffer = 0x0, ne = {4096, 512, 1, 1}, nb = {4, 16384, 8388608,
       8388608}, op = GGML_OP_RESHAPE, op_params = {
       0 <repeats 16 times>}, flags = 0, grad = 0x0,
       src = {0x7ffef1c40e00, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
       0x0}, perf_runs = 0, perf_cycles = 0, perf_time_us = 0,
       view_src = 0x7ffef1c40e00, view_offs = 0, data = 0x0,
       name = "Vcur-0 (reshaped)", '\000' <repeats 46 times>, extra = 0x0,
       padding = "\000\000\000\000\000\000\000"}
```
I noticed that the `src` and `view_src` fields are different but that the
dimensions are the same. From the code comment it seems like the reshape
call is not needed and perhaps the above can motivate the removal of the
reshape call.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llama : add assert

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-29 09:23:22 +02:00
Pedro Cuenca
b75c38166c convert : allow conversion of Mistral HF models (#6144)
* Allow conversion of Mistral HF models

* Homogenize Llama, Mistral, Mixtral under the same entry.

* Fix tokenizer, permute tensors

* Use sentencepiece tokenizer, or fall back to hfft.

* convert-hf : small fix for mypy

* convert-hf : fix duplicated block_count

* convert-hf : add vocab size to metadata

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-03-29 09:15:00 +02:00
Georgi Gerganov
bfe7dafc9c readme : add notice for UI list 2024-03-28 22:56:03 +02:00
Ouadie EL FAROUKI
5106ef482c [SYCL] Revisited & updated SYCL build documentation (#6141)
* Revisited & updated SYCL build documentation

* removed outdated comment

* Addressed PR comments

* Trimed white spaces

* added new end line
2024-03-28 16:01:47 +00:00
Jared Van Bortel
be55134a53 convert : refactor vocab selection logic (#6355) 2024-03-28 11:44:36 -04:00
Ziang Wu
66ba560256 llava : fix MobileVLM (#6364)
* fix empty bug

* Update MobileVLM-README.md

added more results on devices

* Update MobileVLM-README.md

* Update MobileVLM-README.md

* Update MobileVLM-README.md

* Update MobileVLM-README.md

* Update MobileVLM-README.md

* Update MobileVLM-README.md

* Update examples/llava/MobileVLM-README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update MobileVLM-README.md

remove gguf links

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-28 16:33:10 +02:00
compilade
0308f5e3d7 llama : fix command-r inference when omitting outputs (#6367) 2024-03-28 14:05:54 +02:00
Pierrick Hymbert
28cb9a09c4 ci: bench: fix master not schedule, fix commit status failed on external repo (#6365) 2024-03-28 11:27:56 +01:00
Ting Sun
cfc4d75df6 doc: fix outdated default value of batch size (#6336)
* doc: fix outdated default value of batch size

* doc: add doc for ubatch-size
2024-03-28 09:51:06 +01:00
Eric Zhang
6902cb7f2e server : stop gracefully on SIGTERM (#6348) 2024-03-28 09:50:48 +01:00
hutli
d2d8f38996 nix: removed unnessesary indentation 2024-03-28 07:48:27 +00:00
hutli
d39b308eaf nix: moved blas availability check to package inputs so it is still overridable 2024-03-28 07:48:27 +00:00
hutli
c873976649 using blas.meta.available to check host platform 2024-03-28 07:48:27 +00:00
hutli
dbb03e2b9c only using explicit blas if hostPlatform is allowed 2024-03-28 07:48:27 +00:00
Someone Serge
e9f17dc3bf nix: .#windows: proper cross-compilation set-up
Take all dependencies from the cross stage, rather tha only stdenv
2024-03-28 07:48:27 +00:00
Someone Serge
22a462cc1f nix: package: don't introduce the dependency on python
- The generic /usr/bin/env shebangs are good enough
- Python deps are provisioned in the devShells
- We need to be able to leave python out at least on windows (currently breaks eval)
2024-03-28 07:48:27 +00:00
hutli
f6a0f5c642 nix: .#widnows: init
initial nix build for windows using zig

mingwW64 build

removes nix zig windows build

removes nix zig windows build

removed unnessesary glibc.static

removed unnessesary import of pkgs in nix

fixed missing trailing newline on non-windows nix builds

overriding stdenv when building for crosscompiling to windows in nix

better variables when crosscompiling windows in nix

cross compile windows on macos

removed trailing whitespace

remove unnessesary overwrite of "CMAKE_SYSTEM_NAME" in nix windows build

nix: keep file extension when copying result files during cross compile for windows

nix: better checking for file extensions when using MinGW

nix: using hostPlatform instead of targetPlatform when cross compiling for Windows

using hostPlatform.extensions.executable to extract executable format
2024-03-28 07:48:27 +00:00
Ziang Wu
d0e2f6416b doc: fix typo in MobileVLM-README.md (#6181) 2024-03-28 13:03:30 +09:00
Neo Zhang Jianyu
25f4a613c4 [SYCL] fix set main gpu crash (#6339) 2024-03-28 08:55:24 +08:00
Pierrick Hymbert
a016026a3a server: continuous performance monitoring and PR comment (#6283)
* server: bench: init

* server: bench: reduce list of GPU nodes

* server: bench: fix graph, fix output artifact

* ci: bench: add mermaid in case of image cannot be uploaded

* ci: bench: more resilient, more metrics

* ci: bench: trigger build

* ci: bench: fix duration

* ci: bench: fix typo

* ci: bench: fix mermaid values, markdown generated

* typo on the step name

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* ci: bench: trailing spaces

* ci: bench: move images in a details section

* ci: bench: reduce bullet point size

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-03-27 20:26:49 +01:00
Someone Serge
53c7ec53d5 nix: ci: dont test cuda and rocm (for now)
Until https://github.com/ggerganov/llama.cpp/issues/6346 is resolved
2024-03-27 19:18:55 +00:00
slaren
e5b89a441a ggml : fix bounds checking of zero size views (#6347) 2024-03-27 15:07:50 +01:00
Georgi Gerganov
3a0345970e make : whitespace 2024-03-27 15:02:49 +02:00
howlger
1e13987fba embedding : show full embedding for single prompt (#6342)
* embedding : show full embedding for single prompt

To support the use case of creating an embedding for a given prompt, the entire embedding and not just the first part needed to be printed.

Also, show cosine similarity matrix only if there is more than one prompt, as the cosine similarity matrix for a single prompt is always `1.00`.

* Update examples/embedding/embedding.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-27 13:15:44 +02:00
AidanBeltonS
e82f9e2b83 [SYCL] Fix batched impl for NVidia GPU (#6164)
* Fix batched impl

* Maintain previous behaviour for igpu

* retrigger CI

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-03-27 13:46:40 +05:30
Kawrakow
cbc8343619 Make IQ1_M work for QK_K = 64 (#6327)
* iq1_m: make it work for QK_K = 64 (WIP)

* iq1_m: make it work for QK_K = 64 (scalar and AVX2)

* iq1_m: QK_K = 64 seems to work on Metal and ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-27 08:44:27 +01:00
Sigbjørn Skjæret
e562b9714b common : change --no-penalize-nl to --penalize-nl (#6334)
* Change --no-penalize-nl to --penalize-nl

* Update documentation too
2024-03-27 09:23:10 +02:00
Georgi Gerganov
2ab4f00d25 llama2c : open file as binary (#6332) 2024-03-27 09:16:02 +02:00
Mateusz Charytoniuk
1740d6dd4e readme : add php api bindings (#6326)
* add php bindings to readme

* readme : add link to PR

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-27 09:08:59 +02:00
Eric Zhang
0642b22cd1 server: public: use relative routes for static files (#6325)
server: public: support custom `api_url`, default to relative base path
2024-03-27 06:55:29 +01:00
Neo Zhang Jianyu
a4f569e8a3 [SYCL] fix no file in win rel (#6314) 2024-03-27 09:47:06 +08:00
Jared Van Bortel
32c8486e1f wpm : portable unicode tolower (#6305)
Also use C locale for ispunct/isspace, and split unicode-data.cpp from unicode.cpp.
2024-03-26 17:46:21 -04:00
compilade
557410b8f0 llama : greatly reduce output buffer memory usage (#6122)
* llama : greatly reduce logits memory usage

* llama : more compact state saving and reloading

* llama : fix lctx.n_outputs not being set before building graph

* perplexity : adapt to the logits API changes

* perplexity : fix Winogrande, use correct logits for second choice start

The first logits used to evaluate the second choice were not from
the end of the common prefix; instead, they were the logits from the end
of the first choice. This has been corrected.

The previous implementation sometimes had outliers in the scores of
choices for some tasks, and the logic to skip choices words
in the log-likelihood evaluation probably was an attempt to reduce those,
but it was complex and didn't quite seem to be the right thing.

This is simpler now, and the outlier scores aren't there anymore.

* perplexity : normalize spaces and punctuation in Winogrande sentences

* llama : fix embedding conditions

* llama : fix llama_get_embeddings_ith when the resulting id is 0

* llama : fix wrong n_outputs in llama_set_inputs

A mismatch happened when using a smaller n_ubatch than n_batch and then using
llama_batch_get_one(). The decision of what n_outputs should be now almost
fully depends on how lctx.n_outputs is set in llama_decode_internal.
The conditions are simpler this way.

* llama : when saving the state, recalculate n_outputs

This ensures the correct number of outputs for the entire previous batch
is stored in the session file, even when n_ubatch is smaller than n_batch.

* llama : fix not-skipping outputs of non-causal models

* llama : fix running a batch with n_outputs == 0

It previously worked because lctx.inp_out_ids was not initialized,
so it pointed to some garbage address which was somehow still valid when I
ran my tests.

* llama : keep same graph topology even when n_outputs == 0

* ggml : saner ggml_can_repeat with empty tensors

*  ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1

* ggml : do not multi-thread ops returning empty tensors

* ggml : make ggml_is_empty public and work with views

* llama : use a vector for ctx->output_ids

* llama : rework reallocation logic for llama_output_reserve

Now comparing the actual size with the new total size of the output buffer
to allow more efficient enabling and disabling of the embeddings
and/or logits output in the future.

* ggml : skip empty tensors in all backends

* llama : fix llama_output_reserve nullptr deref when new_size is 0

* perplexity : make Winogrande work as it does on master

The problems with the Winogrande implementation will
need to be fixed in a separate PR to ease review.

* llama : clearer error messages for invalid logits or embeddings ids

* llama : assert all models that can have inp_out_ids

Since the graph topology is now constant, this presence check
can be done even when there are no outputs.

* llama : assert logits and embd buffers exist before writing to them

* llama : handle errors from llama_output_reserve at call sites

* perplexity : make hellaswag and multiple-choice outputs identical to master

Due to how the KV cache is updated, the logprobs for tokens in a batch
are very slightly affected by the other tokens present in the batch,
so to make hellaswag and multiple-choice return exactly the same results
as on master, the last token of each sequence needs to be evaluated
even though its output is not used at all.

This will probably be changed back in the future to make these benchmarks
a tiny bit faster.

* perplexity : fix division by zero when using less than 100 multiple-choice tasks

* llama : allow loading state saved with a different ctx size

When loading a session file, the context size is now only required to be
at least enough to load the KV cells contained in that session file,
instead of requiring to use exactly the same context size as when saving.

Doing this enables the use-case of extending or shrinking the context size
of a saved session.

This breaks existing session files because the meaning of kv_buf_size
is slightly changed (previously it was the size of the whole KV cache,
now it's only the size of the saved part of it). This allows for
finer-grained sanity checks when loading in an effort to keep kv_buf_size
useful even when the kv_size is changed.

* llama : minor

ggml-ci

* readme : update recent API changes, and warn about Vulkan

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 16:46:41 +02:00
Kawrakow
55c1b2a3bb IQ1_M: 1.75 bpw quantization (#6302)
* iq1_m: basics

* iq1_m: basics-2

* iq1_m: CUDA dequantize works

Very 1st shot I get PPL = 9.76 for LLaMA-v2-7B.

* iq1_m: separate shifts for each group of 8 in a block

We get
PPL(LLaMA-v2-7B ) = 9.2810
PPL(LLaMA-v2-13B) = 6.8105

Not bad, but slightly higher than
  sqrt(PPL(IQ1_S) * PPL(IQ2_XXS))
which is the expected outcome given that IQ1_M is
halfway between IQ1_S and IQ2_XXS in terms of bpw.
From this, we would expect
 PPL = 9.14 for LLaMA-v2-7B
 PPL = 6.63 for LLaMA-v2-13B

* iq1_m: go to 3-bit scales

There is slight increase in PPL, but the 0.0625 bpw reduction
in size is totally worth it.

We now have
PPL(LLaMA-v2-7B ) = 9.4469 at 1.96 bpw
PPL(LLaMA-v2-13B) = 6.8717 at 1.93 bpw
PPL(LLaMA-v2-70B) = 4.8568 at 1.85 bpw

* iq1_m: scalar dot product

* iq1_m: AVX2 dot product

* iq1_m: very slightly faster AVX2 dot product

* iq1_m: ARM_NEON dot product

Works, but very slow (10.5 t/s)

* iq1_m: Metal - dequantize works, dot product does not

* iq1_m: Metal now works

About the same performance as iq1_s.

* iq1_m: minor

* iq1_m: checking pure iq1_m quantization

It is pretty bad: PPL(LLaMA-v2-7B) = 34 if we quantize output.weight
with Q4_K.

* iiq1_m: slightly faster ARM_NEON dot product

10.5 t/s -> 11.65 t/s

* iq1_m: faster ARM_NEON dot product

11.65 t/s -> 14.9 t/s

* iq1_m: another minor ARM_NEON dot product improvement

14.9 -> 15.0 t/s

* iq1_m: small PPL improvement via super-block scale adjustment

After quantizing block scales redo the super-block scale fit.

PPL(LLaMA-v2-7B ) = 9.3346
PPL(LLaMA-v2-13B) = 6.8419
PPL(LLaMA-v2-70B) = 4.8294
PPL(Mistral-7B  ) = 8.1624

* iq1_m: adapt to CUDA refactoring

* iq1_m: remove unused variable

We have progressed to warnings being errors.

* iq1_m: add to backend-ops tests

* iq1_m: fix Windows ARM

* iq1_m: use common definition of iq1m_scale_t

* cuda: assert -> NO_DEVICE_CODE

* iq1_M: PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-26 15:21:27 +01:00
Pedro Cuenca
e097633f63 convert-hf : fix exception in sentencepiece with added tokens (#6320) 2024-03-26 14:32:19 +02:00
Kawrakow
d25b1c31b0 quantize : be able to override metadata by key (#6321)
* quantize: be able to override metadata by key

* minor : spacing

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 14:09:30 +02:00
Minsoo Cheong
deb7240100 embedding : adjust n_ubatch value (#6296)
* embedding: assign `n_ubatch` value, print error on `n_batch` overflow

* Update examples/embedding/embedding.cpp

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* use %ld instead of %lld

* Revert "use %ld instead of %lld"

This reverts commit ea753ede90.

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-03-26 11:11:46 +02:00
Jan Boon
3d032ece8e server : add n_discard parameter (#6300) 2024-03-26 10:47:43 +02:00
Joseph Stahl
e190f1fca6 nix: make xcrun visible in Nix sandbox for precompiling Metal shaders (#6118)
* Symlink to /usr/bin/xcrun so that `xcrun` binary
is usable during build (used for compiling Metal shaders)

Fixes https://github.com/ggerganov/llama.cpp/issues/6117

* cmake - copy default.metallib to install directory

When metal files are compiled to default.metallib, Cmake needs to add this to the install directory so that it's visible to llama-cpp

Also, update package.nix to use absolute path for default.metallib (it's not finding the bundle)

* add `precompileMetalShaders` flag (defaults to false) to disable precompilation of metal shader

Precompilation requires Xcode to be installed and requires disable sandbox on nix-darwin
2024-03-25 17:51:46 -07:00
slaren
280345968d cuda : rename build flag to LLAMA_CUDA (#6299) 2024-03-26 01:16:01 +01:00
Christian Kögler
b06c16ef9f nix: fix blas support (#6281)
Since no blas was provided to buildInputs, the executable is built without blas support.

This is a backport of NixOS/nixpkgs#298567
2024-03-25 10:52:45 -07:00
Kawrakow
1f2fd4e727 tests : include IQ2_XXS and IQ2_XS in test-quantize-fns (#6303)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-25 19:33:15 +02:00
Georgi Gerganov
43139cc528 flake.lock: Update (#6266)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/d691274a972b3165335d261cc4671335f5c67de9' (2024-03-14)
  → 'github:NixOS/nixpkgs/44d0940ea560dee511026a53f0e2e2cde489b4d4' (2024-03-23)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-03-25 08:22:27 -07:00
slaren
2f34b865b6 cuda : fix LLAMA_CUDA_F16 build (#6298) 2024-03-25 16:43:22 +02:00
slaren
ae1f211ce2 cuda : refactor into multiple files (#6269) 2024-03-25 13:50:23 +01:00
Xuan Son Nguyen
ad3a0505e3 Server: clean up OAI params parsing function (#6284)
* server: clean up oai parsing function

* fix response_format

* fix empty response_format

* minor fixes

* add TODO for logprobs

* update docs
2024-03-25 09:42:17 +01:00
Neo Zhang Jianyu
95ad616cdd [SYCL] fix SYCL backend build on windows is break by LOG() error (#6290)
* fix LOG() error for SYCL, enhance erro check by CI

* rollback to bash

* add newline at end of file
2024-03-25 15:52:41 +08:00
Minsoo Cheong
64e7b47c69 examples : add "retrieval" (#6193)
* add `retrieval` example

* add README

* minor fixes

* cast filepos on print

* remove use of variable sized array

* store similarities in separate vector

* print error on insufficient batch size

* fix error message printing

* assign n_batch value to n_ubatch

* fix param definitions

* define retrieval-only parameters in retrieval.cpp

* fix `--context-file` option to be provided multiple times for multiple files

* use vector for `query_emb`

* add usage description in README

* fix merge conflict

* fix usage printing

* remove seed setting

* fix lint

* increase file read buffer size

* retrieval : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-25 09:38:22 +02:00
Justine Tunney
7733f0c760 ggml : support AVX512VNNI (#6280)
This change causes some quants (e.g. Q4_0, Q8_0) to go faster on some
architectures (e.g. AMD Zen 4).
2024-03-25 07:39:56 +02:00
Rick G
a32b77c4b2 Fix heap corruption from wmode out-of-bound writes on windows (#6272)
* would throw error on VS2022 on GGML_FREE(wmode)
* wchar_t is usually 2 bytes, but malloc wants bytes
  * therefore `*wmode_p++ = (wchar_t)*mode;` could write off the end of the allocation
* Fixes error possibly introduced by https://github.com/ggerganov/llama.cpp/pull/6248
2024-03-24 22:45:56 +01:00
Georgi Gerganov
a0e584defd imatrix : fix wname for mul_mat_id ops (#6271)
* imatrix : fix wname for mul_mat_id ops

* also filter tensor names in mul_mat_id ops

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-24 16:18:45 +02:00
Johannes Gäßler
7aed0ffe68 Fixed lookup compilation issues on Windows (#6273) 2024-03-24 14:21:17 +01:00
Pierrick Hymbert
ea279d5609 ci : close inactive issue, increase operations per run (#6270) 2024-03-24 10:57:06 +02:00
Minsoo Cheong
586e7bc561 sampling : deduplicated code for probability distribution access (#6240)
* sampling: remove duplicated code for probability distribution access

* free original_logits

* fix original_logits allocation

* fixes based on review @cebtenzzre

* change function name to `llama_sampling_prepare`
2024-03-24 10:54:07 +02:00
Meng, Hengyu
ddf6568510 [SYCL] offload op (#6217)
* remove no USM methods

* leave the schedule to ggml_backend_sched entirely
2024-03-24 12:04:25 +08:00
Neo Zhang Jianyu
d03224ac98 Support build win release for SYCL (#6241)
* support release win

* fix value

* fix value

* fix value

* fix error

* fix error

* fix format
2024-03-24 09:44:01 +08:00
Jared Van Bortel
94d1b3b411 use _wfopen instead of fopen on Windows (#6248)
also fix missing #defines before windows.h, and BPE LF token on MSVC
2024-03-23 18:48:02 -04:00
Georgi Gerganov
95562175f8 gitignore : gguf-split 2024-03-23 21:35:23 +02:00
Pierrick Hymbert
f482bb2e49 common: llama_load_model_from_url split support (#6192)
* llama: llama_split_prefix fix strncpy does not include string termination
common: llama_load_model_from_url:
 - fix header name case sensitive
 - support downloading additional split in parallel
 - hide password in url

* common: EOL EOF

* common: remove redundant LLAMA_CURL_MAX_PATH_LENGTH definition

* common: change max url max length

* common: minor comment

* server: support HF URL options

* llama: llama_model_loader fix log

* common: use a constant for max url length

* common: clean up curl if file cannot be loaded in gguf

* server: tests: add split tests, and HF options params

* common: move llama_download_hide_password_in_url inside llama_download_file as a lambda

* server: tests: enable back Release test on PR

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* spacing

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-23 18:07:00 +01:00
Pierrick Hymbert
1997577d5e server: docs: --threads and --threads, --ubatch-size, --log-disable (#6254) 2024-03-23 18:00:38 +01:00
Julius Arkenberg
476b0251b2 llama : add grok-1 support (#6204)
* Add support for Grok model architecture

* Revert convert-hf-to-gguf to default options

* Fixed f_norm_rms_eps bug

* Fix whitespaces

* llama : fix grok rope type

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-23 18:41:53 +02:00
Pierrick Hymbert
21cad01b6e split: add gguf-split in the make build target (#6262) 2024-03-23 17:18:13 +01:00
Pierrick Hymbert
1b26aebe4d server: flush stdout after logging in both text and json layout (#6253) 2024-03-23 13:18:45 +01:00
Johannes Gäßler
50ccaf5eac lookup: complement data from context with general text statistics (#5479)
* lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens

* fixup! lookup: evaluation tools, use corpus/previous gens
2024-03-23 01:24:36 +01:00
Georgi Gerganov
56a00f0a2f common : default --hf-file to --model (#6234) 2024-03-22 21:10:39 +02:00
fraxy-v
92397d87a4 convert-llama2c-to-ggml : enable conversion of GQA models (#6237)
* convert-llama2c-to-ggml: enable conversion of multiqueries, #5608

* add test in build action

* Update build.yml

* Update build.yml

* Update build.yml

* gg patch
2024-03-22 20:49:06 +02:00
Kawrakow
1d0331c12a quantize: options for output and token embedding tensors qtype (#6239)
* quantize: be able to specify the output tensor type

* quantize: be able to specify the token embedding tensor type

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-22 20:47:14 +02:00
Pierrick Hymbert
dba1af6129 llama_model_loader: support multiple split/shard GGUFs (#6187)
* split: support in llama_model_loader

* avoid copying the entire vector

Co-authored-by: slaren <slarengh@gmail.com>

* split: move llama_tensor_offset to llama_model_loader

* llama_model_loader: PR feedbacks:
 - use only one gguf_context for metadata only
 - store all ggml_context in a vector as the files and mappings
 - store all weights in a vector along with the source tensor
 - rename ctx_gguf to meta
 - rename ctx_meta to contexts

* avoid copying the entire vector

* Simplify this by making these optional, switch some layer creation tensor optional

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Handle optional tensors

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama_model_loader: fail if backend cannot allocate buffer

* fix mmap buffer management

* llama_model_loader: map file to backend buffer if the allocation succeeds only

* llama_model_loader: only map tensors included in the context

* llama_model_loader: minor, use same variable name for consistency, fix spacing in types cast

* llama_model_loader: fail if any of backend buffer cannot be allocated

* spacing

Co-authored-by: slaren <slarengh@gmail.com>

* fix loop over pointer

Co-authored-by: slaren <slarengh@gmail.com>

* llama_model_loader: if n_tensors declared not equals to loaded tensors in split, throw an exception instead of asserting

* llama_model_loader: ensure mappings vector has the expected size

* llama_model_loader:  use at instead of operator[] if this should never add to the map.

* llama_model_loader: immediately add the backend buffer to the model buffers in order to free them if an error occurs in the next allocation. Reserve the expected size.

* llama_model_loader: be sure the model mappings has enough capacity before allocating backend buffer

* llama_model_loader: fix map -> unordered map

* llama_split_prefix: use a clearer version, not pass split path len but dest max len.

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* llama : minor

ggml-ci

* llama : introduce some typedef helpers

* docs: add model shard in hot topic

* llama_model_loader: put mapping in a unique_ptr from the moment it is allocated

Co-authored-by: slaren <slarengh@gmail.com>

* fix llama_split_prefix

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-03-22 19:00:01 +01:00
Minsoo Cheong
ee804f6223 ci: apply concurrency limit for github workflows (#6243) 2024-03-22 19:15:06 +02:00
Georgi Gerganov
80bd33bc2c common : add HF arg helpers (#6234)
* common : add HF arg helpers

* common : remove defaults
2024-03-22 15:33:38 +02:00
Nexesenex
e80f06d2a1 llama : correction of the attn.v.weight quantization for IQ3_XS (#6209)
IQ3_XS was not mentioned, IQ3_S and IQ3_M were present twice.

That PR corrects this in the manner which was probably intended initially.
2024-03-22 15:32:02 +02:00
Olivier Chafik
f77a8ffd3b tests : conditional python & node json schema tests (#6207)
* json: only attempt python & node schema conversion tests if their bins are present

Tests introduced in https://github.com/ggerganov/llama.cpp/pull/5978
disabled in https://github.com/ggerganov/llama.cpp/pull/6198

* json: orange warnings when tests skipped

* json: ensure py/js schema conv tested on ubuntu-focal-make

* json: print env vars in test
2024-03-22 15:09:07 +02:00
Olivier Chafik
72114edf06 json-schema-to-grammar : fix order of props + non-str const/enum (#6232)
* json: ordered json in server/schema converter to respect orig order

* json: ws nits

* json: support non-string const / enums
2024-03-22 15:07:44 +02:00
slaren
2f0e81e053 cuda : add LLAMA_CUDA_NO_PEER_COPY to workaround broken ROCm p2p copy (#6208)
* cuda : add LLAMA_CUDA_NO_PEER_COPY to workaround broken ROCm p2p copy

* add LLAMA_CUDA_NO_PEER_COPY to HIP build
2024-03-22 14:05:31 +01:00
Xiaoyi Chen
29ab270e65 readme : add RecurseChat to the list of UIs (#6219) 2024-03-22 13:29:49 +02:00
Jan Boon
6b8bb3a31d server : fix n_keep always showing as 0 in response (#6211) 2024-03-22 13:12:05 +02:00
Georgi Gerganov
68e210b354 server : enable continuous batching by default (#6231) 2024-03-22 13:08:28 +02:00
Georgi Gerganov
b3e94f26ba metal : proper assert for mat-mat memory alignment (#6225)
* metal : proper assert for mat-mat memory alignment

ggml-ci

* readme : add notice about the bug fix

* metal : fix the fix

ggml-ci
2024-03-22 11:35:53 +02:00
Vaibhav Srivastav
b2075fd6a5 ci : add CURL flag for the mac builds (#6214) 2024-03-22 09:53:43 +02:00
Georgi Gerganov
95d576b48e metal : pad n_ctx by 32 (#6177)
* metal : require ne00 >= 128 for mat-mat kernels

ggml-ci

* llama : pad n_ctx by 32

ggml-ci
2024-03-22 09:36:03 +02:00
Neo Zhang Jianyu
59c17f02de add blog link (#6222) 2024-03-22 15:19:37 +08:00
DAN™
fa046eafbc Fix params underscore convert to dash. (#6203)
* Fix params underscore convert to dash.

* Update common/common.cpp

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-22 02:32:42 +01:00
Jan Boon
be07a03217 server : update readme doc from slot_id to id_slot (#6213) 2024-03-21 23:41:24 +01:00
slaren
d0a71233fb cuda : disable host register by default (#6206) 2024-03-21 20:54:28 +02:00
semidark
f372c49ccd Corrected typo to wrong file (#6199)
The stated file `./devops/main-server.Dockerfile` does not exist. I figure that `.devops/server-intel.Dockerfile` was meant.
2024-03-21 18:52:35 +01:00
Georgi Gerganov
924ce1dce7 tests : disable system() calls (#6198)
ggml-ci
2024-03-21 16:20:05 +02:00
slaren
03a8f8fafe cuda : fix LLAMA_CUDA_F16 build (#6197) 2024-03-21 14:59:53 +02:00
Kawrakow
cfd3be76e3 ggml : same IQ4_NL quantization for CPU/CUDA/Metal (#6196)
* Make quantize_row_iq4_nl do the same thing is quantization on CUDA

* Make quantize_row_iq4_nl do the same thing is quantization on CUDA

This time for real. backend-ops tests pass.

* Now fix test-quantize-fns

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-21 14:59:38 +02:00
Olivier Chafik
5b7b0ac8df json-schema-to-grammar improvements (+ added to server) (#5978)
* json: fix arrays (disallow `[,1]`)

* json: support tuple types (`[number, string]`)

* json: support additionalProperties (`{[k: string]: [string,number][]}`)

* json: support required / optional properties

* json: add support for pattern

* json: resolve $ref (and support https schema urls)

* json: fix $ref resolution

* join: support union types (mostly for nullable types I think)

* json: support allOf + nested anyOf

* json: support any (`{}` or `{type: object}`)

* json: fix merge

* json: temp fix for escapes

* json: spaces in output and unrestricted output spaces

* json: add typings

* json:fix typo

* Create ts-type-to-grammar.sh

* json: fix _format_literal (json.dumps already escapes quotes)

* json: merge lit sequences and handle negatives

{"type": "string", "pattern": "^({\"question\": \"[^\"]+\", \"response\": \"[^\"]+\"}\\n)+$"}

* json: handle pattern repetitions

* Update json-schema-to-grammar.mjs

* Create regex-to-grammar.py

* json: extract repeated regexp patterns to subrule

* Update json-schema-to-grammar.py

* Update json-schema-to-grammar.py

* Update json-schema-to-grammar.py

* json: handle schema from pydantic Optional fields

* Update json-schema-to-grammar.py

* Update json-schema-to-grammar.py

* Update ts-type-to-grammar.sh

* Update ts-type-to-grammar.sh

* json: simplify nullable fields handling

* json: accept duplicate identical rules

* json: revert space to 1 at most

* json: reuse regexp pattern subrules

* json: handle uuid string format

* json: fix literal escapes

* json: add --allow-fetch

* json: simplify range escapes

* json: support negative ranges in patterns

* Delete commit.txt

* json: custom regex parser, adds dot support & JS-portable

* json: rm trailing spaces

* Update json-schema-to-grammar.mjs

* json: updated server & chat `( cd examples/server && ./deps.sh )`

* json: port fixes from mjs to python

* Update ts-type-to-grammar.sh

* json: support prefixItems alongside array items

* json: add date format + fix uuid

* json: add date, time, date-time formats

* json: preserve order of props from TS defs

* json: port schema converter to C++, wire in ./server

* json: nits

* Update json-schema-to-grammar.cpp

* Update json-schema-to-grammar.cpp

* Update json-schema-to-grammar.cpp

* json: fix mjs implementation + align outputs

* Update json-schema-to-grammar.mjs.hpp

* json: test C++, JS & Python versions

* json: nits + regen deps

* json: cleanup test

* json: revert from c++17 to 11

* json: nit fixes

* json: dirty include for test

* json: fix zig build

* json: pass static command to std::system in tests (fixed temp files)

* json: fix top-level $refs

* json: don't use c++20 designated initializers

* nit

* json: basic support for reserved names `{number:{number:{root:number}}}`

* Revamp test cmake to allow args (WORKING_DIRECTORY needed for JSON test)

* json: re-ran server deps.sh

* json: simplify test

* json: support mix of additional props & required/optional

* json: add tests for some expected failures

* json: fix type=const in c++, add failure expectations for non-str const&enum

* json: test (& simplify output of) empty schema

* json: check parsing in test + fix value & string refs

* json: add server tests for OAI JSON response_format

* json: test/fix top-level anyOf

* json: improve grammar parsing failures

* json: test/fix additional props corner cases

* json: fix string patterns (was missing quotes)

* json: ws nit

* json: fix json handling in server when there's no response_format

* json: catch schema conversion errors in server

* json: don't complain about unknown format type in server if unset

* json: cleaner build of test

* json: create examples/json-schema-pydantic-example.py

* json: fix date pattern

* json: move json.hpp & json-schema-to-grammar.{cpp,h} to common

* json: indent 4 spaces

* json: fix naming of top-level c++ function (+ drop unused one)

* json: avoid using namespace std

* json: fix zig build

* Update server.feature

* json: iostream -> fprintf

* json: space before & refs for consistency

* json: nits
2024-03-21 11:50:43 +00:00
Vaibhav Srivastav
1943c01981 ci : fix indentation error (#6195) 2024-03-21 11:30:40 +02:00
Vaibhav Srivastav
5e43ba8742 build : add mac pre-build binaries (#6182)
* Initial commit - add mac prebuilds.

* forward contribution credits for building the workflow.

* minor : remove trailing whitespaces

---------

Co-authored-by: Nicolas Patry <Narsil@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-21 11:13:12 +02:00
Kawrakow
76aa30a263 Add ability to use Q5_0, Q5_1, and IQ4_NL for quantized K cache (#6183)
* k_cache: be able to use Q5_0

* k_cache: be able to use Q5_1 on CODA

* k_cache: be able to use Q5_0 on Metal

* k_cache: be able to use Q5_1 on Metal

* k_cache: be able to use IQ4_NL - just CUDA for now

* k_cache: be able to use IQ4_NL on Metal

* k_cache: add newly added supported types to llama-bench and CUDA supports_op

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-21 08:27:57 +01:00
AidanBeltonS
c5b8595e3f Add nvidia and amd backends (#6157) 2024-03-21 11:40:52 +05:30
slaren
42e21c6882 cuda : fix conflict with std::swap (#6186) 2024-03-21 01:47:46 +01:00
slaren
1c51f98adc cuda : print the returned error when CUDA initialization fails (#6185) 2024-03-20 21:03:26 +01:00
Ziang Wu
f9c7ba3447 llava : update MobileVLM-README.md (#6180) 2024-03-20 17:29:51 +02:00
Ziang Wu
272935b281 llava : add MobileVLM_V2 backup (#6175)
* Add MobileVLM_V2 backup

* Update MobileVLM-README.md

* Update examples/llava/MobileVLM-README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/llava/convert-image-encoder-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* clip :  fix whitespace

* fix deifinition mistake in clip.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-20 17:02:32 +02:00
slaren
ccf58aa3ec cuda : refactor to remove global resources (#6170)
* cuda : refactor to remove global resources
2024-03-20 14:42:59 +01:00
Xuan Son Nguyen
91f8ad167d Server: version bump for httplib and json (#6169)
* server: version bump for httplib and json

* fix build

* bring back content_length
2024-03-20 13:30:36 +01:00
Georgi Gerganov
6b7e76d28c gitignore : ignore curl-related files 2024-03-20 14:17:34 +02:00
Georgi Gerganov
bc0baab2ea server : allow to override -ngl in tests (#6170) 2024-03-20 14:14:32 +02:00
Georgi Gerganov
d795988d9e Revert "llava : add a MobileVLM_V2-1.7B backup (#6152)"
This reverts commit f8c4e745e1.
2024-03-20 13:29:49 +02:00
Ziang Wu
f8c4e745e1 llava : add a MobileVLM_V2-1.7B backup (#6152)
* Add MobileVLM_V2 backup

* Update MobileVLM-README.md

* Update examples/llava/MobileVLM-README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/llava/convert-image-encoder-to-gguf.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* clip :  fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-20 13:20:37 +02:00
Karthick
47cc7a7bf9 Server: Handle n_keep parameter in the request (#6174) 2024-03-20 12:02:34 +01:00
Jared Van Bortel
bd60d82d0c server tests : more pythonic process management; fix bare except: (#6146)
* server tests : remove seemingly redundant newlines in print()

* server tests : use built-in subprocess features, not os.kill and psutil

* server tests : do not catch e.g. SystemExit; use print_exc

* server tests: handle TimeoutExpired exception

* server tests: fix connect on dual-stack systems

* server: tests: add new tokens regex on windows generated following new repeat penalties default changed in (#6127)

* server: tests: remove the hack on windows since now we get the good socket family

* server: tests: add new tokens regex following new repeat penalties default changed in (#6127)

* server: tests: add new tokens regex following new repeat penalties default changed in (#6127)

---------

Co-authored-by: Pierrick HYMBERT <pierrick.hymbert@gmail.com>
2024-03-20 06:33:49 +01:00
Neo Zhang Jianyu
6c0b287748 update readme sycl for new update (#6151)
* update readme sycl for new update

* Update README-sycl.md

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* Update README-sycl.md

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* Update README-sycl.md

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* Update README-sycl.md

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* Update README-sycl.md

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>

* Update README-sycl.md

Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>

* update by review comments

* update w64devkit link

* update for verify device id part

* Update README-sycl.md

Co-authored-by: Meng, Hengyu <airdldl@163.com>

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Co-authored-by: AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Co-authored-by: Meng, Hengyu <airdldl@163.com>
2024-03-20 11:21:41 +08:00
Abhilash Majumder
d26e8b669d increase igpu cluster limit (#6159) 2024-03-20 08:28:49 +05:30
DAN™
d8b009a945 Remove undeed header file. (#6158) 2024-03-19 17:16:09 +01:00
Pierrick Hymbert
d0d5de42e5 gguf-split: split and merge gguf per batch of tensors (#6135)
* gguf-split: split and merge gguf files per tensor

* gguf-split: build with make toolchain

* gguf-split: rename `--split-tensors-size` to `--split-max-tensors`. Set general.split_count KV to all split

* split : minor style + fix compile warnings

* gguf-split: remove --upload not implemented

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-19 12:05:44 +01:00
Georgi Gerganov
b80cf3b2d1 common : disable repeat penalties by default (#6127) 2024-03-19 10:21:54 +02:00
slaren
970a48060a ci : exempt some labels from being tagged as stale (#6140) 2024-03-19 10:06:54 +02:00
DAN™
4c28b82529 common : print usage on '-h' and '--help' (#6145) 2024-03-19 07:59:36 +02:00
github-actions[bot]
2d15886bb0 flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/9df3e30ce24fd28c7b3e2de0d986769db5d6225d' (2024-03-06)
  → 'github:NixOS/nixpkgs/d691274a972b3165335d261cc4671335f5c67de9' (2024-03-14)
2024-03-18 18:51:30 +00:00
Jared Van Bortel
d199ca79f2 mpt : implement backwards compatiblity with duped output tensor (#6139) 2024-03-18 12:49:02 -04:00
Felix
104f5e0fc1 clip : fix memory leak (#6138) 2024-03-18 17:40:22 +02:00
slaren
5e1b7f94a0 backend : set max split inputs to GGML_MAX_SRC (#6137) 2024-03-18 16:33:44 +01:00
Georgi Gerganov
ac9ee6a4ad ci : disable stale issue messages (#6126) 2024-03-18 13:45:38 +02:00
Georgi Gerganov
4f6d1337ca ci : temporary disable sanitizer builds (#6128) 2024-03-18 13:45:27 +02:00
slaren
2bf8d0f7c4 backend : offload large batches to GPU (#6083)
* backend : offload large batches to GPU

* fix hip

* code cleanup

* fix CUDA split buffers

* Update ggml-backend-impl.h

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix memset without set_device

* imatrix : remove sched affix from weight names

* sched : add a new split if the current one has too many inputs
reduce max inputs per split
more cleanup

* update backends

ggml-ci

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-03-18 11:03:04 +01:00
DAN™
496bc79bc2 common : tidy-up argument parsing (#6105)
* Tidy-up argument parsing.

* Missing ref.

* common : minor

* common : add static classifier

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-18 10:27:44 +02:00
Thérence
9b03719ad7 convert : add support for CamembertModel architecture (#6119)
Adding support for CamembertModel architecture used by :
https://huggingface.co/dangvantuan/sentence-camembert-large
2024-03-18 10:17:00 +02:00
Romain D
3a6efdd03c convert : use f32 outtype for bf16 tensors (#6106)
The old behaviour is to use f16, but bf16 to f16 is not a lossless conversion.
Change the outtype to f32 to default to a lossless conversion.
2024-03-18 10:04:41 +02:00
Pierrick Hymbert
d01b3c4c32 common: llama_load_model_from_url using --model-url (#6098)
* common: llama_load_model_from_url with libcurl dependency

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-17 19:12:37 +01:00
Georgi Gerganov
cd776c37c9 ci : close all stale issues at once (#6115) 2024-03-17 18:51:57 +01:00
GainLee
dc0f612548 ggml:fix finding transfer queue family index error (#6094)
Co-authored-by: GainLee <ligen@meizu.com>
2024-03-17 18:12:22 +01:00
AmirAli Mirian
c47cf414ef ggml : add AVX512F SIMD (#6088) 2024-03-16 17:52:02 +02:00
Daniel Bevenius
b5f4ae09c3 gritlm : add initial README.md (#6086)
* gritlm: add initial README.md to examples/gritlm

This commit adds a suggestion for an initial README.md for the gritlm
example.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! gritlm: add initial README.md to examples/gritlm

Use the `scripts/hf.sh` script to download the model file.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! gritlm: add initial README.md to examples/gritlm

Fix editorconfig-checker error in examples/gritlm/README.md.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-03-16 17:46:29 +02:00
Xuan Son Nguyen
dfbfdd60f9 readme : add wllama as a wasm binding (#6100) 2024-03-16 17:42:08 +02:00
DAN™
15961ec04d common : refactor nested if causing error C1061 on MSVC (#6101)
* Refactor nested if causing error C1061 on MSVC.

* Revert back and remove else's.

* Add flag to track found arguments.
2024-03-16 17:39:15 +02:00
Pierrick Hymbert
a56d09a440 ci : close inactive issue with workflow (#6053)
* issues: ci - close inactive issue with workflow

* ci: close issue, change workflow schedule time
2024-03-16 14:20:53 +02:00
slaren
d84c48505f llama : fix Baichuan2 13B (#6092) 2024-03-15 23:14:16 +02:00
Theia Vogel
877b4d0c62 llama : add support for control vectors (#5970)
* control vector api and implementation

* control-vectors : minor code style updates

* disable control vector when data == nullptr

use -1 for disabled range (also on init) in case we ever support controlling layer 0 (embeddings)

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-15 22:43:02 +02:00
Andrew Canis
12247f4c69 llama : add Command-R support (#6033)
Information about the Command-R 35B model (128k context) can be found at:
	https://huggingface.co/CohereForAI/c4ai-command-r-v01

Based on the llama2 model with a few changes:

1) New hyper parameter to scale output logits (logit_scale)
2) Uses LayerNorm instead of RMSNorm
3) Transfomer layers have a single shared LayerNorm that feeds into both the
   self-attention and FFN layers in parallel. There is no post-attention LayerNorm.
4) No support for Rotary Position Embeddings (RoPE) scaling
5) No biases used

Find GGUF files here:
	https://huggingface.co/andrewcanis/c4ai-command-r-v01-GGUF

To convert model to GGUF format yourself:

1) Download Command-R Hugging Face safetensors:
	git lfs install
	git clone https://huggingface.co/CohereForAI/c4ai-command-r-v01

2) Run:
	python3 convert-hf-to-gguf.py --outtype f16 ./c4ai-command-r-v01
2024-03-15 22:41:22 +02:00
Ting Lou
4e9a7f7f7f llava : change API to pure C style for Rust FFI bindgen (#6079)
Co-authored-by: Lou Ting <louting.t@alibaba-inc.com>
2024-03-15 16:31:05 +02:00
slaren
3020327f6c cuda : disable unused cudaLaunchHostFunc code (#6078) 2024-03-15 14:24:03 +02:00
Neo Zhang Jianyu
46acb36767 fix set main gpu error (#6073) 2024-03-15 18:53:53 +08:00
Georgi Gerganov
131b058409 make : ggml-metal.o depends on ggml.h 2024-03-15 11:38:40 +02:00
AidanBeltonS
753e36f650 [SYCL] Fix non-intel device selection (#6042)
* Fix non-intel device selection

* Update ggml-sycl.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Update ggml-sycl.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2024-03-15 14:56:20 +05:30
Ondřej Čertík
7ce2c77f88 gguf : add support for I64 and F64 arrays (#6062)
* gguf : add support for I64 and F64 arrays

GGML currently does not support I64 or F64 arrays and they are not often
used in machine learning, however if in the future the need arises, it
would be nice to add them now, so that the types are next to the other
types I8, I16, I32 in the enums, and it also reserves their type number.

Furthermore, with this addition the GGUF format becomes very usable for
most computational applications of NumPy (being compatible with the most
common NumPy dtypes: i8, i16, i32, i64, f32, f64), providing a faster,
and more versatile alternative to the `npz` format, and a simpler
alternative to the `hdf5` format.

The change in this PR seems small, not significantly increasing the
maintenance burden. I tested this from Python using GGUFWriter/Reader
and `gguf-dump`, as well as from C, everything seems to work.

* Fix compiler warnings
2024-03-15 10:46:51 +02:00
Xuan Son Nguyen
aab606a11f llama : add Orion chat template (#6066) 2024-03-15 10:44:57 +02:00
slaren
b0bc9f4a9d llama-bench : use random tokens to improve accuracy with mixtral (#6069) 2024-03-15 10:22:24 +02:00
Georgi Gerganov
4755afd1cb llama : fix integer overflow during quantization (#6063) 2024-03-14 22:58:41 +02:00
Steve Grubb
6e0438da3c gguf : fix resource leaks (#6061)
There several places where a gguf context is allocated. A call to gguf_free
is missing in some error paths. Also on linux, llama-bench was missing a
fclose.
2024-03-14 20:29:32 +02:00
Ondřej Čertík
727107707a gguf-py : bump version to 0.8.0 (#6060) 2024-03-14 19:57:31 +02:00
Michael Podvitskiy
69ff61397d llama : support models without vocabulary (#5798)
* additional methods to read model and ctx parameters

* vocab size as a part of a model metadata

* models without vocabulary, convert.py part

* models without vocabulary, llama.cpp part

* PR clean up

* converter scrypt fixes

* llama_vocab_type update (renamed the new key)

* pr review fixes

* revert function renaming

* one more NoVocab assert
2024-03-14 18:21:56 +02:00
Georgi Gerganov
044ec4b2a5 embedding : add EOS token if not present (#899) 2024-03-14 15:14:14 +02:00
Georgi Gerganov
77178eedc8 gguf-py : fix dtype check (#6045) 2024-03-14 13:32:14 +02:00
Jian Liao
15a333260a readme : improve readme for Llava-1.6 example (#6044)
Co-authored-by: Jian Liao <jianliao@adobe.com>
2024-03-14 13:18:23 +02:00
Pierrick Hymbert
43241adf22 server: disable debug release type sanitizer, simplify trigger (#6047)
- increase time out for server
 - do not fail fast
2024-03-14 13:15:39 +02:00
Georgi Gerganov
a44bc969e4 llama : fix typo 2024-03-14 13:13:06 +02:00
Michael Podvitskiy
2c4fb69246 llama : optimize defrag moves + fix fragmentation calculation (#6037)
* attempt to reduce the impact of a worst-case scenario

* fragmentation calculation fix

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-14 12:56:48 +02:00
Ondřej Čertík
3ca23481dd gguf-py : add support for I8, I16 and I32 (#6045)
* Refactor dtype handling to be extensible

This code is equivalent as before, but now it is prepared to easily add
more NumPy dtypes.

* Add support for I8, I16 and I32

These types are allowed in the GGUF specification.

* Add support for I8, I16 and I32 to gguf_writer

* Add support for I8, I16, I32 to gguf_reader
2024-03-14 12:40:14 +02:00
Georgi Gerganov
3fe8d7a17f ggml : designate enum vals for integer types (#6050) 2024-03-14 12:38:37 +02:00
Georgi Gerganov
68265ebfc6 embedding : print all resulting embeddings (#899) 2024-03-14 12:37:20 +02:00
Georgi Gerganov
381da2d9f0 metal : build metallib + fix embed path (#6015)
* metal : build metallib + fix embed path

ggml-ci

* metal : fix embed build + update library load logic

ggml-ci

* metal : fix embeded library build

ggml-ci

* ci : fix iOS builds to use embedded library
2024-03-14 11:55:23 +02:00
Georgi Gerganov
0fd6c1f015 embedding : print cosine similarity (#899) 2024-03-14 10:12:29 +02:00
Linwei Wang
19885d205e readme : update details about running llama in Termux on Android (#6039) 2024-03-13 20:34:40 +02:00
Georgi Gerganov
76a936c893 readme : update API changes and hot topics 2024-03-13 20:33:56 +02:00
Clint Herron
463628372d grammar : handle missing "root" node (#6004) 2024-03-13 20:10:40 +02:00
slaren
f30ea47a87 llama : add pipeline parallelism support (#6017)
* llama : add pipeline parallelism support for batch processing with multiple CUDA GPUs

ggml-ci

* server : add -ub, --ubatch-size parameter

* fix server embedding test

* llama : fix Mamba inference for pipeline parallelism

Tested to work correctly with both `main` and `parallel` examples.

* llama : limit max batch size to n_batch

* add LLAMA_SCHED_MAX_COPIES to configure the number of input copies for pipeline parallelism
default increase to 4 (from 2)

changing this value may improve performance for some systems, but increases memory usage

* fix hip build

* fix sycl build (disable cpy_tensor_async)

* fix hip build

* llama : limit n_batch and n_ubatch to n_ctx during context creation

* llama : fix norm backend

* batched-bench : sync after decode

* swiftui : sync after decode

* ggml : allow ggml_get_rows to use multiple threads if they are available

* check n_ubatch >= n_tokens with non-casual attention

* llama : do not limit n_batch to n_ctx with non-casual attn

* server : construct batch with size of llama_n_batch

* ggml_backend_cpu_graph_compute : fix return value when alloc fails

* llama : better n_batch and n_ubatch comment

* fix merge

* small fix

* reduce default n_batch to 2048

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-13 18:54:21 +01:00
slaren
d8fd0ccf6a test-backend-ops : skip CPU backend by default (#6028) 2024-03-13 15:58:30 +02:00
AidanBeltonS
b3d978600f Update get version (#6025) 2024-03-13 18:47:54 +05:30
Xuan Son Nguyen
99b71c068f Server: Use multi-task for embeddings endpoint (#6001)
* use multitask for embd endpoint

* specify types

* remove redundant {"n_predict", 0}
2024-03-13 11:39:11 +01:00
slaren
306d34be7a ci : remove tidy-review (#6021) 2024-03-12 17:55:19 +02:00
Georgi Gerganov
8030da7afe ggml : reuse quantum structs across backends (#5943)
* ggml : reuse quant blocks across backends

ggml-ci

* ggml : define helper constants only for CUDA and SYCL

ggml-ci

* ggml : define helper quantum constants for SYCL

ggml-ci
2024-03-12 14:27:20 +02:00
Georgi Gerganov
184215e783 ggml : fix UB in IQ2_S and IQ3_S (#6012) 2024-03-12 13:49:55 +02:00
Georgi Gerganov
48358b2e5b sycl : update IQ1_S kernels (WIP - not working!) (#5995)
* sycl : try to fix after IQ1_S changes

* sycl : iq1s_grid -> iq1s_grid_gpu

* sycl : fix grid type
2024-03-12 11:15:05 +02:00
gliptic
5cdb371731 grammar : fix unnecessarily retained pointer to rules (#6003) 2024-03-11 21:59:03 +02:00
Kawrakow
44ca159faf 1.5 bit: we can do even better (#5999)
* iq1_s: we can do even better

Spent one of the 4 scale bits on a signs of a 0.125 shift.
I.e., quants are now -1 + delta, delta, 1 + delta, where delta
is +/- 0.125.

CUDA works, same performance as before.
PPL(LLaMA-v2-7B) is now 11.85!

* iq1_s: make scalar and AVX2 work with the new version

* iq1_s: make Neon work with new version.

~10% drop in performance, so will need some more work.

* iq1_s: make Metal work with new version

* iq1_s: very slightly faster dequantize on Metal

* iq1_s: fix dequantize on the CPU

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 17:53:15 +02:00
Georgi Gerganov
05b06210c9 llama : more consistent names of count variables (#5994)
* llama : more consistent names of count variables

ggml-ci

* llama : n_parallel -> n_seq_max

* common : fix param name

* examples : fix param name
2024-03-11 17:49:47 +02:00
Georgi Gerganov
83796e62bc llama : refactor unicode stuff (#5992)
* llama : refactor unicode stuff

ggml-ci

* unicode : names

* make : fix c++ compiler

* unicode : names

* unicode : straighten tables

* zig : fix build

* unicode : put nfd normalization behind API

ggml-ci

* swift : fix build

* unicode : add BOM

* unicode : add <cstdint>

ggml-ci

* unicode : pass as cpts as const ref
2024-03-11 17:47:47 +02:00
Jakub N
828defefb6 Update server docker image URLs (#5997) 2024-03-11 14:40:42 +01:00
Xuan Son Nguyen
caa106d4e0 Server: format error to json (#5961)
* server: format error to json

* server: do not crash on grammar error

* fix api key test case

* revert limit max n_predict

* small fix

* correct coding style

* update completion.js

* launch_slot_with_task

* update docs

* update_slots

* update webui

* update readme
2024-03-11 10:56:41 +01:00
Michael Podvitskiy
3202361c5b ggml, ci : Windows ARM runner and build fixes (#5979)
* windows arm ci

* fix `error C2078: too many initializers` with ggml_vld1q_u32 macro for MSVC ARM64

* fix `warning C4146: unary minus operator applied to unsigned type, result still unsigned`

* fix `error C2065: '__fp16': undeclared identifier`
2024-03-11 11:28:51 +02:00
Minsoo Cheong
332bdfd798 server : maintain chat completion id for streaming responses (#5988)
* server: maintain chat completion id for streaming responses

* Update examples/server/utils.hpp

* Update examples/server/utils.hpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-11 10:09:32 +02:00
Gilad S
ecab1c75de cmake : fix subdir for LLAMA_METAL_EMBED_LIBRARY (#5985) 2024-03-11 10:00:08 +02:00
Georgi Gerganov
ee35600b90 llama : fix F16/F32 downcast + improve names (#5980) 2024-03-11 09:56:47 +02:00
Kawrakow
be858f6205 Better 1.5 bit quantization (#5971)
* Trying blocvks of 16 for IQ1_S - seems slightly better

* iq1s_blocks16: Adjust scale fudge factor to 1.125

* iq1s_blocks16: going to blocks of 32

with 2048 lattice points, so same bpw.
This is even better than blocks of 16.
Should I try blocks of 64? But to keep the same
bpw, when I go to 4096 lattice points, I need to
remove blocks alltogether and just have superblocks of
256 weights.

* iq1s_blocks16: Use 2*<x^2> as sigma2 in weight adjustment

* iq1s_blocks16: scalar and AVX2 dot products

* iq1s_blocks16: CUDA dot product

* iq1s_blocks16: Metal works, Neon does not

Metal works but TG is dog slow (35 t/s). PP is OKish (493 t/s).
Not seeing the bug in the Neon implementation for now.

* iq1s_blocks16: fixed Neon

* iq1s_blocks16: very slightly faster TG on Metal

Still pathetic at 37 t/s

* iq1s_blocks16: speedup Metal by packing codebook into uint32_t's

* Formatting

* iq1s_blocks16: uint32_t codebook is also better in CUDA

TG-128 is now 204 t/s up from 194 t/s.
PP-512 is 5890 t/s, so significantly better than other quants

* iq1s_blocks16: slightly faster Neon dot product

* iq1s_blocks16: faster AVX2 dot product

* iq1s_blocks16: adjust to ggml-common.h

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-11 07:51:49 +01:00
Abhilash Majumder
ef3ced26a3 [SYCL] Add q3_s and q1_s (#5886)
* Add q3_s and q1_s

* fix compilation

* fix build

* fix build

* fix build

* enable ops

* rm macro

* increase grid space
2024-03-11 10:27:56 +05:30
AidanBeltonS
3814a07392 [SYCL] Add support for SYCL Nvidia target (#5738)
* Add support for nvidia target in CMake

* Update sycl read-me for Nvidia target

* Fix errors
2024-03-11 09:13:57 +08:00
Georgi Gerganov
bb6d00bbf9 metal : move mm_id indices to shared mem (#5982) 2024-03-10 23:12:48 +02:00
Dean
7ab7b733bb android : fix utf8 decoding error (#5935)
* examples: fix utf8 decoding error

some models have a tokenizer that decodes an id into an incomplete utf8 sequence, need to validate and wait for next token
one example would be: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q4_0.gguf and and an example of the token is 18137

* android : minor

---------

Co-authored-by: zhangfuwen <zhangfuwen@foxmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-10 22:03:17 +02:00
Georgi Gerganov
d9f65c97c3 readme : update hot topics 2024-03-10 20:58:26 +02:00
Georgi Gerganov
b838b53ad6 sync : ggml 2024-03-10 20:10:46 +02:00
Georgi Gerganov
df4dc3e7cb ggml : try fix 32-bit arm compat (whisper/1938)
* ggml : try fix 32-bit arm compat

* ggml : fix cont
2024-03-10 20:10:39 +02:00
Georgi Gerganov
bf47a5eefc ggml : remove __constant__ specifier for CUDA tables (#5940) 2024-03-10 20:09:24 +02:00
Pierrick Hymbert
fa8a809a91 server: ci: windows build and tests (#5968)
* server: ci: windows build and tests

* server: ci: remove tmp push branch

* server: ci: EOF EOL

* Use builti

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* server: tests: server graceful shutdown, then kill, then hard kill

* server: tests: remove python2 unicode string

* server: tests: remove wrong comment on server starting,  close_fds is always true

* server: tests: server kill, if pid exists

* server: tests: remove dependency to killall

* server: tests: ci windows: pid exists better handling

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-03-10 18:17:47 +01:00
DAN™
bcebd7dbf6 llama : add support for GritLM (#5959)
* add gritlm example

* gritlm results match

* tabs to spaces

* comment out debug printing

* rebase to new embed

* gritlm embeddings are back babeee

* add to gitignore

* allow to toggle embedding mode

* Clean-up GritLM sample code.

* Fix types.

* Flush stdout and output ending newline if streaming.

* mostly style fixes; correct KQ_mask comment

* add causal_attn flag to llama_cparams

* gritml : minor

* llama : minor

---------

Co-authored-by: Douglas Hanley <thesecretaryofwar@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-10 17:56:30 +02:00
Clint Herron
2960eae847 grammar : verify parsed state (#5950) 2024-03-10 17:17:43 +02:00
Georgi Gerganov
c78541479c nix: update flake.lock (#5969)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8' (2024-02-29)
  → 'github:NixOS/nixpkgs/9df3e30ce24fd28c7b3e2de0d986769db5d6225d' (2024-03-06)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-03-10 16:43:08 +02:00
Pierrick Hymbert
621e86b331 server: benchmark: chat/completions scenario and other llm servers comparison (#5941)
* server: bench: Init a bench scenario with K6
See #5827

* server: bench: EOL EOF

* server: bench: PR feedback and improved k6 script configuration

* server: bench: remove llamacpp_completions_tokens_seconds as it include prompt processing time and it's misleading

server: bench: add max_tokens from SERVER_BENCH_MAX_TOKENS

server: bench: increase truncated rate to 80% before failing

* server: bench: fix doc

* server: bench: change gauge custom metrics to trend

* server: bench: change gauge custom metrics to trend
server: bench: add trend custom metrics for total tokens per second average

* server: bench: doc add an option to debug http request

* server: bench: filter dataset too short and too long sequences

* server: bench: allow to filter out conversation in the dataset based on env variable

* server: bench: fix assistant message sent instead of user message

* server: bench: fix assistant message sent instead of user message

* server : add defrag thold parameter

* server: bench: select prompts based on the current iteration id not randomly to make the bench more reproducible

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-09 23:41:49 +01:00
Georgi Gerganov
77d1ac7e00 server : print chat template info 2024-03-09 22:04:00 +02:00
slaren
d894f352bf perplexity : support using multiple sequences to allow larger batch sizes (#5946)
* perplexity : support using multiple sequences to allow larger batch sizes

ggml-ci

* set cparams.n_parallel to the number of sequences

* print tested n_ctx, add assert
2024-03-09 19:55:54 +01:00
Georgi Gerganov
098dbaab44 readme : update hot topics 2024-03-09 18:14:13 +02:00
Georgi Gerganov
8380ecfb21 ggml : fix unnecessary f32 -> f16 -> f32 casts (mmla) (#5951) 2024-03-09 17:36:20 +02:00
Georgi Gerganov
58308a0ecc server : fix metrics init (#5964) 2024-03-09 17:34:15 +02:00
Georgi Gerganov
5b09797321 ggml : remove old quantization functions (#5942)
* ggml : remove old quantization functions

ggml-ci

* ggml : simplify ggml_quantize_chunk

ggml-ci

* ggml : restrict correctness

ggml-ci

* ggml : remove hist data from the quantization API

ggml-ci

* tests : remove hist usage in test-backend-ops

ggml-ci

* vulkan : remove hist and fix typo
2024-03-09 15:53:59 +02:00
Georgi Gerganov
97c09585d6 server : clarify some items in the readme (#5957)
* server : clarify some items in the readme

* server : fix typo
2024-03-09 15:47:47 +02:00
SeungWon Jeong
fb215c3832 server : normalize embeddings (#5956)
* output normalize embedding in '/v1/embeddings'

* common : reuse llama_embd_normalize

* common : better normalize impl

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-09 14:27:58 +02:00
Georgi Gerganov
2c4f566c88 tests : gitignore ggml-common.h 2024-03-09 14:17:11 +02:00
Alexey Parfenov
0db32beaf0 server : fix passing prompt as tokens (#5955)
* server: fix passing prompt as tokens

* Update examples/server/server.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-09 13:16:53 +02:00
Georgi Gerganov
8a3012a4ad ggml : add ggml-common.h to deduplicate shared code (#5940)
* ggml : add ggml-common.h to shared code

ggml-ci

* scripts : update sync scripts

* sycl : reuse quantum tables

ggml-ci

* ggml : minor

* ggml : minor

* sycl : try to fix build
2024-03-09 12:47:57 +02:00
Georgi Gerganov
9674aaf35c server : simplify logic for empty prompts (#5953) 2024-03-09 12:34:18 +02:00
Xuan Son Nguyen
950ba1ab84 Server: reorganize some http logic (#5939)
* refactor static file handler

* use set_pre_routing_handler for validate_api_key

* merge embedding handlers

* correct http verb for endpoints

* fix embedding response

* fix test case CORS Options

* fix code style
2024-03-09 11:27:53 +01:00
Gabe Goodhart
e1fa9569ba server : add SSL support (#5926)
* add cmake build toggle to enable ssl support in server

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add flags for ssl key/cert files and use SSLServer if set

All SSL setup is hidden behind CPPHTTPLIB_OPENSSL_SUPPORT in the same
way that the base httlib hides the SSL support

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Update readme for SSL support in server

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Add LLAMA_SERVER_SSL variable setup to top-level Makefile

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2024-03-09 11:57:09 +02:00
Pierrick Hymbert
fd72d2d2a5 server: tests: add truncated prompt tests, better kv cache size (#5933)
* server: tests: add truncated prompt tests, better size

* server, tests : update regex

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-09 11:30:04 +02:00
compilade
c2101a2e90 llama : support Mamba Selective State Space Models (#5328)
* mamba : begin working on support for Mamba SSM

* mamba : begin figuring out how to (ab)use the kv cache for Mamba

* mamba : recurrent inference almost works, but incoherent

* mamba : recurrent inference WORKS!!!

* convert : optionally use d_conv and d_state from config.json for Mamba

* mamba : refactor recurrent conv, resulting in 20% perf increase

It's still slower than I'd like, but I did not really optimize `ggml_exp` yet.

I also refactored `ggml_exp` to work with tensors with more than 2 dimensions.

* ggml : parallelize ggml_exp

This results in 8% faster token generation for Mamba-130M.

* mamba : simplify the conv step with a self-overlapping view

Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.

* mamba : fix self-overlapping view depth stride

* mamba : handle batches of more than 1 token

This means running Mamba no longer crashes when using the default settings!
And probably also slightly faster prompt processing.
Both batched and non-batched processing yield the same output.

Previously, the state was not cleared when starting a sequence.
Next step is to make the KV cache API work as expected for Mamba models.

* ggml: add ggml_ssm_scan to help with parallel selective scan

If the selective scan was implemented without a custom operator,
there would be waaay too many nodes in the graph. For example,
for Mamba-130M, with a batch size of 512 (the default),
a naive selective scan could add at least 24*512=12288 nodes,
which is more than LLAMA_MAX_NODES (8192),
and that's only for the smallest Mamba model.
So it's much cleaner with a custom operator.
Not sure about the name, though.

* ggml : in ggml_ssm_scan, merge multiple rows in the same vec operation

This will help with performance on CPU if ggml_vec_mul_f32
and ggml_vec_add_f32 are ever optimized with SIMD.

* mamba : very basic quantization support

Mostly works, but there is currently no difference
between the variants of a k-quant (e.g. Q4_K_S and Q4_K_M are the same).
Most of the SSM-specific weights can be kept in f32 without affecting
the size that much, since they are relatively small.
(the linear projection weights are responsible for most of Mamba's size)

Too much quantization seems to make the state degrade quite fast, and
the model begins to output gibberish.
It seems to affect bigger models to a lesser extent than small models,
but I'm not sure by how much.

Experimentation will be needed to figure out which weights are more important
for the _M (and _L?) variants of k-quants for Mamba.

* convert : fix wrong name for layer norm weight of offical Mamba models

I was using Q-bert/Mamba-* models before, which have a slighlty different
naming scheme for the weights.
(they start with "model.layers" instead of "backbone.layers")

* mamba : fuse more steps of the SSM scan in the ggml_ssm_scan operator

This increases performance on CPU by around 30% for prompt processing,
and by around 20% for text generation.

However, it also makes the ggml_exp and ggml_soft_plus operators unused.
Whether or not they should be kept will be decided later.

* convert : for Mamba, also consider the "MambaLMHeadModel" arch name

It's the name of the class of the official implementation,
though they don't use it (yet) in the "architectures" field of config.json

* mamba : fix vocab size problems with official models

The perplexity was waaaay to high for models with a non-round vocab size.
Not sure why, but it needed to be fixed in the metadata.

Note that this breaks existing GGUF-converted Mamba models,
but **only if** the vocab size was not already rounded.

* ggml : remove ggml_exp and ggml_soft_plus

They did not exist anyway outside of this branch,
and since ggml_ssm_scan fused operations together, they are unused.
It's always possible to bring them back if needed.

* mamba : remove some useless comments

No code change.

* convert : fix flake8 linter errors

* mamba : apply suggestions from code review

* mamba : remove unecessary branch for row-wise ssm_state and C multiplication

It was previously done to avoid permuting when only one token is processed
at a time (like when generating text), but permuting is cheap,
and dynamically changing the compute graph is not future-proof.

* ggml : in ggml_ssm_scan, use more appropriate asserts

* ggml : rename the destination pointer in ggml_compute_forward_ssm_scan_f32

* mamba : multiple sequences, but one at a time

This is a step towards making this Mamba implementation usable
with the server example (the way the system prompt is kept when clearing
the client slots will need to be changed before this can work, though).

The KV cache size for this kind of model is tied to the maximum number
of sequences kept at any single time.
For now, this number is obtained from n_parallel (plus one,
to have an extra sequence to dedicate to the system prompt),
but there might be a better way to do this which won't also
make the main example use 2 cells even if only 1 is really used.
(for this specific case, --parallel 0 helps)

Simultaneous sequence processing will probably require changes to
ggml_ssm_scan, and possibly a new operator for the conv step.

* mamba : support llama_kv_cache_seq_cp

This (mis)uses the logic around K shifts, because tokens in a state
can't be shifted anyway, and because inp_K_shift has the right shape and type.
Using ggml_get_rows is a nice way to do copies, but copy chains can't work.
Fortunately, copy chains don't really seem to be used in the examples.

Each KV cell is dedicated to the sequence ID corresponding to its own index.

* mamba : use a state mask

It's cleaner than the previous heuristic of
checking for the pos of the first token in the batch.

inp_KQ_mask could not be re-used for this, because it has the wrong shape
and because it seems more suited to the next step of
simultaneous sequence processing (helping with the problem of
remembering which token belongs to which sequence(s)/state(s)).

* llama : replace the usage of n_ctx with kv_self.size in many places

* mamba : use n_tokens directly instead of n_tok

* mamba : in comments, properly refer to KV cells instead of slots

* mamba : reduce memory usage of ggml_ssm_scan

From 290.37 MiB to 140.68 MiB of CPU compute buffer size
with Mamba 3B with a batch size of 512.

The result tensor of ggml_ssm_scan was previously a big part
of the CPU compute buffer size. To make it smaller,
it does not contain the intermediate ssm states anymore.
Both y and the last ssm state are combined in the result tensor,
because it seems only a single tensor can be returned by an operator
with the way the graph is built.

* mamba : simultaneous sequence processing

A batch can now contain tokens from multiple sequences.

This is necessary for at least the parallel example, the server example,
and the HellaSwag test in the perplexity example.

However, for this to be useful, uses of llama_kv_cache_seq_rm/cp
will need to be changed to work on whole sequences.

* ggml : add ggml_ssm_conv as a new operator for the conv step of Mamba

This operator makes it possible to use and update the correct states
for each token of the batch in the same way as ggml_ssm_scan.
Other solutions which use existing operators would need loops which would
add too many nodes to the graph (at least the ones I thought of).

Using this operator further reduces the size of the CPU compute buffer
from 140.68 MiB to 103.20 MiB with Mamba 3B with a batch size of 512.
And (at least on CPU), it's a bit faster than before.

Note that "ggml_ssm_conv" is probably not the most appropriate name,
and it could be changed if a better one is found.

* llama : add inp_s_seq as a new input tensor

The most convenient implementation to select the correct state (for Mamba)
for each token is to directly get the correct index from a tensor.
This is why inp_s_seq is storing int32_t and not floats.

The other, less convenient way to select the correct state would be
to have inp_KQ_mask contain 1.0f for each state used by a token
and 0.0f otherwise. This complicates quickly fetching the first used
state of a token, and is also less efficient because a whole row
of the mask would always need to be read for each token.

Using indexes makes it easy to stop searching when there are
no more sequences for a token, and the first sequence assigned
is always very quickly available (it's the first element of each row).

* mamba : support llama_kv_cache_seq_cp copy chains

* mamba : support shifting and dividing the kv cache pos

* mamba : make the server and parallel examples work with whole sequences

A seq_id is dedicated to the system prompt in both cases.

* llama : make llama_kv_cache_seq_rm return whether it succeeded or not

* mamba : dedicate an input tensor for state copy indices

This is cleaner and makes it easier to adapt when/if token positions
(and by extension, inp_K_shift) are no longer integers.

* mamba : adapt perplexity, batched, and batched-bench examples

* perplexity : limit the max number of sequences

This adapts to what the loaded model can provide.

* llama : add llama_n_max_seq to get the upper limit for seq_ids

Used by the perplexity example.

* batched : pass n_parallel to the model's context params

This should have been there already, but it wasn't.

* batched-bench : reserve sequences to support Mamba

* batched-bench : fix tokens being put in wrong sequences

Generation quality isn't what's measured in there anyway,
but at least using the correct sequences avoids using non-consecutive
token positions.

* mamba : stop abusing attention metadata

This breaks existing converted-to-GGUF Mamba models,
but will allow supporting mixed architectures like MambaFormer
without needing to break Mamba models.

This will also allow changing the size of Mamba's states
without having to reconvert models in the future.
(e.g. using something else than d_conv - 1 columns for the conv_states
 will not require breaking existing converted Mamba models again)

* gguf-py : add new KV metadata key-value pairs for Mamba

* llama : add new metadata key-value pairs for Mamba

* llama : guard against divisions by zero when n_head is 0

* mamba : rename "unlimited" KV cache property to "recurrent"

* mamba : more correctly update the "used" field of the KV cache

* ggml : in ggml_ssm_scan, use a threshold for soft_plus

This is how the official Mamba implementation does it,
and it's also what torch.nn.Softplus does.

* convert : for Mamba, fallback to internal NeoX tokenizer

The resulting models are exactly the same
as if the tokenizer.json and tokenizer_config.json of GPT-NeoX were there.

* mamba : support state saving and restoring

* ggml : implicitly pass src tensors through dst for Mamba-related ops

* mamba : clarify some comments

* server : fix cache_tokens not getting correctly resized

Otherwise, when the "we have to evaluate at least 1 token" special case
was triggered, an extra token was kept in cache_tokens even if it was
removed from the KV cache.

For Mamba, this caused useless prompt reprocessing when the previous
request triggered the above case.

* convert-hf : support new metadata keys for Mamba

For the models available at
https://huggingface.co/collections/state-spaces/transformers-compatible-mamba-65e7b40ab87e5297e45ae406

* mamba : rename metadata to be more similar to transformers library

This breaks existing converted-to-GGUF models,
but the metadata names are more "standard".

* mamba : support mamba-*-hf models

These models share their token_embd.weight with their output.weight

* mamba : add missing spaces

This is purely a formatting change.

* convert-hf : omit output.weight when identical with token_embd.weight

Only for Mamba for now, but it might be relevant for other models eventually.
Most Mamba models actually share these two tensors, albeit implicitly.

* readme : add Mamba to supported models, and add recent API changes

* mamba : move state_seq and state_mask views outside layer loop

A few tensors were also missing `struct` in front of `ggml_tensor`.
2024-03-08 17:31:00 -05:00
compilade
515f7d0d4f llama : fix quantization of shared token_embd (#5944) 2024-03-08 17:53:37 +02:00
Pierrick Hymbert
76e868821a server: metrics: add llamacpp:prompt_seconds_total and llamacpp:tokens_predicted_seconds_total, reset bucket only on /metrics. Fix values cast to int. Add Process-Start-Time-Unix header. (#5937)
Closes #5850
2024-03-08 12:25:04 +01:00
Don Mahurin
e457fb3540 llama : assume tied weights if lm_head/output weights is missing (#5824)
This is to support model configurations with "tie_word_embeddings" set to true.

Co-authored-by: Don Mahurin <2797413+dmahurin@users.noreply.github.com>
2024-03-08 12:41:50 +02:00
Georgi Gerganov
af37fd8b30 server : fix EOS token detection with disabled cache (#5938) 2024-03-08 12:40:02 +02:00
UEXTM.com
581ed5c4fe log : fix MSVC compile errors (#5643)
MSVC gives the following error with the existing macros:
`Error C2059 : syntax error: ','`

This patch adds `##` as a prefix to `__VA_ARGS__` to address this error.
2024-03-08 11:35:04 +02:00
Georgi Gerganov
6cdabe6526 llama-bench : add embeddings option (#5924)
* llama-bench : add embeddings option

* llama-bench : do not hard code embd default value

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-07 16:32:38 +02:00
Neo Zhang Jianyu
89fb735fcf Revert "[SYCL] fix error when set main gpu to non-zero (#5901)" (#5918)
This reverts commit ceca1aef07.
2024-03-07 12:14:49 +01:00
Minsoo Cheong
55a2a900ff server : add /v1/completions endpoint (#5914)
* add-`/v1/completions`-endpoint

* add legacy comment to `/completion` endpoint
2024-03-07 12:42:39 +02:00
Georgi Gerganov
2002bc96bf server : refactor (#5882)
* server : refactoring (wip)

* server : remove llava/clip objects from build

* server : fix empty prompt handling + all slots idle logic

* server : normalize id vars

* server : code style

* server : simplify model chat template validation

* server : code style

* server : minor

* llama : llama_chat_apply_template support null buf

* server : do not process embedding requests when disabled

* server : reorganize structs and enums + naming fixes

* server : merge oai.hpp in utils.hpp

* server : refactor system prompt update at start

* server : disable cached prompts with self-extend

* server : do not process more than n_batch tokens per iter

* server: tests: embeddings use a real embeddings model (#5908)

* server, tests : bump batch to fit 1 embedding prompt

* server: tests: embeddings fix build type Debug is randomly failing (#5911)

* server: tests: embeddings, use different KV Cache size

* server: tests: embeddings, fixed prompt do not exceed n_batch, increase embedding timeout, reduce number of concurrent embeddings

* server: tests: embeddings, no need to wait for server idle as it can timout

* server: refactor: clean up http code (#5912)

* server : avoid n_available var

ggml-ci

* server: refactor: better http codes

* server : simplify json parsing + add comment about t_last

* server : rename server structs

* server : allow to override FQDN in tests

ggml-ci

* server : add comments

---------

Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
2024-03-07 11:41:53 +02:00
Neo Zhang Jianyu
ceca1aef07 [SYCL] fix error when set main gpu to non-zero (#5901)
* fix error when set main gpu to non-zero

* fix delete condition
2024-03-07 16:34:31 +08:00
Jared Van Bortel
e04e04f8fa ggml : use SYS_get_cpu if SYS_getcpu is not defined (#5906)
Fixes #5694
Fixes ggerganov/whisper.cpp#1894
2024-03-06 15:42:23 -05:00
bobqianic
e25fb4b18f ggml : use uint8x16_t return type for ggml_vqtbl1q_u8 (#5894)
* use uint8x16_t

* Update ggml-quants.c
2024-03-06 09:35:07 +02:00
Georgi Gerganov
1e35d619a6 convert : remove AWQ remnants (#5768) 2024-03-06 09:13:42 +02:00
Neo Zhang Jianyu
8ced9f7e32 add wait() to make code stable (#5895) 2024-03-06 12:08:32 +08:00
slaren
652ca2bded compare-llama-bench.py : remove mul_mat_q (#5892) 2024-03-05 22:27:29 +01:00
Jared Van Bortel
bd836944f8 quants : use MM256_SET_M128I consistently to fix gcc 7 build (#5889) 2024-03-05 11:56:37 -05:00
ExtReMLapin
3de31677d3 grammars : blacklists character control set (#5888)
* Prevent control characters from being served in json string

* Prevent control characters from being served in json string (array)
2024-03-05 18:33:08 +02:00
Georgi Gerganov
82cb31eb93 Revert "grammars : don't allow to output unescaped new line in string (#5885)"
This reverts commit b1a4e994fd.
2024-03-05 15:56:24 +02:00
ExtReMLapin
b1a4e994fd grammars : don't allow to output unescaped new line in string (#5885)
* Don't allow grammar json array to output unescaped new line in string

* Don't allow new line in json object string
2024-03-05 15:44:29 +02:00
0cc4m
61d1c88e15 Vulkan Improvements (#5835)
* Improve dequant shaders, add fast q4_0 dequant

* Optimize dmmv non-kquants for GCN

Remove unnecessary SPIR-V shader duplication

* Fix q4_0 dequant dispatch sizes

Fix backend free bug

* Optimize dequant shaders for q4_1, q5_0, q5_1 and q8_0

* Add unary and binary op shader templates

* Fix Vulkan check results

* Enable non-contiguous support for simple ops

* Add argsort

Basic q4_0 mmq shader and unit test

* Speed up q4_0 dequant code, enable mmq for q4_0

* Rework matmul pipeline selection

* Add soft_max alibi support

* Add q4_1, q5_0, q5_1 and q8_0 dequant mat mat mul shaders

* Add environment variable GGML_VK_FORCE_MAX_ALLOCATION_SIZE to limit max buffer size

Rename GGML_VULKAN_DISABLE_F16 to GGML_VK_DISABLE_F16 for consistency
2024-03-05 13:33:42 +01:00
Neo Zhang Jianyu
21b0867433 [SYCL] fix mul_mat fault in CI/unit-test (#5862)
* fix mul_mat fault in cpy_f32_f16

* rm unused function

* add wait() for memcpy

* restore ci/run.sh, rename struct defination, fix bug in ggml_sycl_op_mul_mat_sycl

* fix format issue

* llama : fix segfault from unknown model arch name (#5820)

* llama : fix segfault from unknown model arch name

* llama : make all LLM maps const

This also requires using `std::map::at` instead of its `operator[]`
which does not exist for const maps.

* llama : name LLM_ARCH_UNKNOWN to "(unknown)"

This avoids errors from `std::map::at` when
getting the general name of the model architecture.
Using "(unknown)" instead of an empty string as per suggestion
https://github.com/ggerganov/llama.cpp/pull/5820#issuecomment-1973735284

* llama : remove redundant inner const for LLM_TENSOR_NAMES

The extra const won't do anything here as const maps
return const references to values.

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* llama : remove redundant nullptr check in llm_arch_from_string

Since LLM_ARCH_NAMES is a const map, no spurious elements
with a NULL name are inserted anymore, so this check is dead code.

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* llama : refactor internal quantization functions (#5830)

* scripts : add pod-llama.sh

* ggml : IQ3_S improvements (#5829)

* iq3_s: somewhat faster AVX2 dot product

On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.

* iq3_s: somewhat faster ARM_NEON dot product

Still dog slow - 10.7 t/s up from 9.9 t/s.

* iq3_s: another small ARM_NEON improvement

10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.

* iq3_s: minor improvement on Metal

49.4 t/s -> 50.3 t/s

* iq3_s: PPL improvement

E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.

* iq3_s: use new grid everywhere

* Fix ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>

* convert-hf : make model class definitions self-contained (#5825)

* convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821)

* ggml : fix IQ3_S AVX implementation (#5834)

ggml-ci

* llama : add abort_callback to interrupt computation (#5409)

* using abort_callback from ggml to stop llama computation

* format fix

* a brief explaining comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: tests: passkey challenge /  self-extend with context shift demo (#5832)

* server: tests: add models endpoint scenario

* server: /v1/models add some metadata

* server: tests: add debug field in context before scenario

* server: tests: download model from HF, add batch size

* server: tests: add passkey test

* server: tests: add group attention params

* server: do not truncate prompt tokens if self-extend through group attention is enabled

* server: logs: do not truncate log values

* server: tests - passkey - first good working value of nga

* server: tests: fix server timeout

* server: tests: fix passkey, add doc, fix regex content matching, fix timeout

* server: tests: fix regex content matching

* server: tests: schedule slow tests on master

* server: metrics: fix when no prompt processed

* server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1

* server: tests: increase timeout for completion

* server: tests: keep only the PHI-2 test

* server: tests: passkey add a negative test

* flake.lock: Update (#5842)

Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
  → 'github:hercules-ci/flake-parts/f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2' (2024-03-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8?dir=lib' (2024-02-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/cbc4211f0afffe6dfd2478a62615dd5175a13f9a' (2024-02-23)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8' (2024-02-29)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* server : init http requests thread pool with --parallel if set (#5836)

* ci : schedule slow server tests only on Release or on demand (#5839)

* llama : fix llama_copy_state_data with fragmented KV cache (#5840)

The row size of the saved states was based on kv_self.head while
it should be based on llama_kv_cache_cell_max.

Existing session files should still work.

* llama : fix llama_kv_cache_cell_max inability to return 1

I've also changed its return type to uint32_t,
because this function is always used to set the value of uint32_t variables,
and because the index already has this type.

* llama : fix state size calculation

Some bytes in the state were unaccounted for in llama_get_state_size.
Since the logits reserve so much space, it did not cause problems.

* gguf-dump : support i-quants (#5841)

Co-authored-by: Black_Fox <radekliska@gmail.com>

* llama : allow for user specified embedding pooling type (#5849)

* allow for user specified pooling type

* llama : use enum types over int

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* readme : add API changes section

* cuda : fix data race in soft max (#5853)

* main : support special tokens as reverse/anti prompt (#5847)

* Support special tokens as reverse/anti prompt.

* Tokenize antiprompts only once.

* main : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* common : use LLAMA_DEFAULT_SEED (#5855)

* add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)

* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>

* sync : ggml

* add alias for chat template (#5858)

* speculative : implement stochastic speculative sampling (#5625)

* (WIP) Implement stochastic speculative decoding

* sample from residual distribution on draft accept failure

* fix #5657: force greedy sampling with probs when temp is 0

* remove p_accept parameter

* fix style

* remove unused variables

* add srand() in speculative.cpp

* replace use of rand() with mt19937 sampling

* fixes based on review (@JohannesGaessler)

* fix r random generation

* randomly select next sequence to verify + fix bug in memory freeing

* fix bug in active_seqs sync

* fix uniform int distribution initialization

* remove warnings from comparison between int and size_t

* check grammar in `llama_sample_probability_distribution_impl`

* remove malloc code by utilizing vectors

* add PR link to README

* cmake : handle cases where git index is not found in .git (#5844)

* Update CMakeLists.txt

* Update CMakeLists.txt

* ggml : introduce ggml_status (ggml/750)

* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* sync : ggml

ggml-ci

* ggml : fix unknown status (#0)

* flake : fix

* llama : fix embeddings (#5796)

* llama : fix embeddings

ggml-ci

* llama : do not use KV cache for non-causal models

ggml-ci

* embeddings : fix llama_batch_init arg

* llama : add pooling switch

* llama : distinguish token vs sequence embeddings

ggml-ci

* llama : assert pooling tensor

* llama : simplify causal mask condition

ggml-ci

* llama : assert input batch with pooling enabled

* readme : update API changes list

* nix: static build (#5814)

* fix speculative decoding build on windows (#5874)

* rebase and rm tailing space

---------

Co-authored-by: LiangtaoJin <liang-tao.jin@intel.com>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Michael Podvitskiy <podvitskiymichael@gmail.com>
Co-authored-by: Pierrick Hymbert <pierrick.hymbert@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Nindaleth <Nindaleth@users.noreply.github.com>
Co-authored-by: Black_Fox <radekliska@gmail.com>
Co-authored-by: Douglas Hanley <thesecretaryofwar@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: DAN™ <dranger003@gmail.com>
Co-authored-by: leejet <leejet714@gmail.com>
Co-authored-by: Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Co-authored-by: Dane Madsen <dane_madsen@hotmail.com>
Co-authored-by: hutli <6594598+hutli@users.noreply.github.com>
Co-authored-by: Jeffrey Quesnelle <emozilla@nousresearch.com>
2024-03-05 13:38:35 +05:30
Minsoo Cheong
6a87ac3a52 fix editorconfig check break (#5879) 2024-03-05 11:42:23 +05:30
Jeffrey Quesnelle
29eee40474 fix speculative decoding build on windows (#5874) 2024-03-04 22:23:06 -05:00
hutli
1d41d6f7c2 nix: static build (#5814) 2024-03-04 17:33:08 -08:00
Georgi Gerganov
29ae62d2ae llama : fix embeddings (#5796)
* llama : fix embeddings

ggml-ci

* llama : do not use KV cache for non-causal models

ggml-ci

* embeddings : fix llama_batch_init arg

* llama : add pooling switch

* llama : distinguish token vs sequence embeddings

ggml-ci

* llama : assert pooling tensor

* llama : simplify causal mask condition

ggml-ci

* llama : assert input batch with pooling enabled

* readme : update API changes list
2024-03-04 22:31:20 +02:00
Georgi Gerganov
e0843afe1b flake : fix 2024-03-04 21:50:50 +02:00
Georgi Gerganov
a1c6d96ed8 ggml : fix unknown status (#0) 2024-03-04 20:54:23 +02:00
Georgi Gerganov
efd8533ef8 sync : ggml
ggml-ci
2024-03-04 20:54:23 +02:00
Michael Podvitskiy
9fa2627347 ggml : introduce ggml_status (ggml/750)
* using enum as an exit code instead of macros

* update return type from enum to unsigned int

* indentation fix

* compound update
ggml_compute_exit_code -> ggml_status
changed ggml_status from a bit-field type to simple codes
ggml_status to string cast

* ggml_status to string cast

* GGML_CALL was removed

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-04 20:54:23 +02:00
Dane Madsen
fe52be11e3 cmake : handle cases where git index is not found in .git (#5844)
* Update CMakeLists.txt

* Update CMakeLists.txt
2024-03-04 20:26:55 +02:00
Minsoo Cheong
6d341ab6c5 speculative : implement stochastic speculative sampling (#5625)
* (WIP) Implement stochastic speculative decoding

* sample from residual distribution on draft accept failure

* fix #5657: force greedy sampling with probs when temp is 0

* remove p_accept parameter

* fix style

* remove unused variables

* add srand() in speculative.cpp

* replace use of rand() with mt19937 sampling

* fixes based on review (@JohannesGaessler)

* fix r random generation

* randomly select next sequence to verify + fix bug in memory freeing

* fix bug in active_seqs sync

* fix uniform int distribution initialization

* remove warnings from comparison between int and size_t

* check grammar in `llama_sample_probability_distribution_impl`

* remove malloc code by utilizing vectors

* add PR link to README
2024-03-04 20:24:00 +02:00
Xuan Son Nguyen
4ffcdce2ff add alias for chat template (#5858) 2024-03-04 12:22:08 +01:00
Georgi Gerganov
a0fc62661f sync : ggml 2024-03-04 10:40:04 +02:00
leejet
7d43c585dc add some new ops, fix some operators and add batch operations to certain operators. (ggml/747)
* cuda: fix group_norm

* cuda: add batch inference support for ggml_pad/ggml_upscale

* add ggml_arrange

* add ggml_timestep_embedding

* update ggml_arange/ggml_timestep_embedding tests

* cuda: fix im2col

* add ggml_arange/ggml_timestep_embbeding support for metal backend

* fix some bugs

* fix some bugs

* Update ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.m

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* modify according to the review comments

* ggml : fix compile warnings + code style

* ggml : normalize compute_forward calls + fix seg fault in debug

* minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-03-04 10:39:10 +02:00
DAN™
82f3e668ad common : use LLAMA_DEFAULT_SEED (#5855) 2024-03-04 10:08:19 +02:00
DAN™
5a51cc1bb4 main : support special tokens as reverse/anti prompt (#5847)
* Support special tokens as reverse/anti prompt.

* Tokenize antiprompts only once.

* main : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-04 09:57:20 +02:00
slaren
67be2ce101 cuda : fix data race in soft max (#5853) 2024-03-03 14:26:18 +01:00
Georgi Gerganov
231ae28f07 readme : add API changes section 2024-03-03 12:44:03 +02:00
Douglas Hanley
475df1d6cf llama : allow for user specified embedding pooling type (#5849)
* allow for user specified pooling type

* llama : use enum types over int

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-03 12:40:27 +02:00
Nindaleth
87c2e8b279 gguf-dump : support i-quants (#5841)
Co-authored-by: Black_Fox <radekliska@gmail.com>
2024-03-03 10:43:42 +02:00
compilade
de9692a7d2 llama : fix llama_copy_state_data with fragmented KV cache (#5840)
The row size of the saved states was based on kv_self.head while
it should be based on llama_kv_cache_cell_max.

Existing session files should still work.

* llama : fix llama_kv_cache_cell_max inability to return 1

I've also changed its return type to uint32_t,
because this function is always used to set the value of uint32_t variables,
and because the index already has this type.

* llama : fix state size calculation

Some bytes in the state were unaccounted for in llama_get_state_size.
Since the logits reserve so much space, it did not cause problems.
2024-03-03 10:41:55 +02:00
Pierrick Hymbert
e6029348e8 ci : schedule slow server tests only on Release or on demand (#5839) 2024-03-03 10:35:23 +02:00
Pierrick Hymbert
8ef969afce server : init http requests thread pool with --parallel if set (#5836) 2024-03-03 09:48:36 +02:00
Georgi Gerganov
fa974646e1 flake.lock: Update (#5842)
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
  → 'github:hercules-ci/flake-parts/f7b3c975cf067e56e7cda6cb098ebe3fb4d74ca2' (2024-03-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8?dir=lib' (2024-02-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/cbc4211f0afffe6dfd2478a62615dd5175a13f9a' (2024-02-23)
  → 'github:NixOS/nixpkgs/1536926ef5621b09bba54035ae2bb6d806d72ac8' (2024-02-29)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-03-02 20:11:31 -08:00
Pierrick Hymbert
9731134296 server: tests: passkey challenge / self-extend with context shift demo (#5832)
* server: tests: add models endpoint scenario

* server: /v1/models add some metadata

* server: tests: add debug field in context before scenario

* server: tests: download model from HF, add batch size

* server: tests: add passkey test

* server: tests: add group attention params

* server: do not truncate prompt tokens if self-extend through group attention is enabled

* server: logs: do not truncate log values

* server: tests - passkey - first good working value of nga

* server: tests: fix server timeout

* server: tests: fix passkey, add doc, fix regex content matching, fix timeout

* server: tests: fix regex content matching

* server: tests: schedule slow tests on master

* server: metrics: fix when no prompt processed

* server: tests: self-extend add llama-2-7B and Mixtral-8x7B-v0.1

* server: tests: increase timeout for completion

* server: tests: keep only the PHI-2 test

* server: tests: passkey add a negative test
2024-03-02 22:00:14 +01:00
Michael Podvitskiy
4a6e2d6142 llama : add abort_callback to interrupt computation (#5409)
* using abort_callback from ggml to stop llama computation

* format fix

* a brief explaining comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-02 21:52:25 +02:00
Georgi Gerganov
494c870326 ggml : fix IQ3_S AVX implementation (#5834)
ggml-ci
2024-03-02 20:00:49 +02:00
Jared Van Bortel
4d4d2366fc convert : automatically fall back to HfVocab if tokenizer.model doesn't exist (#5821) 2024-03-02 12:27:26 -05:00
Jared Van Bortel
c7a0ad8ec9 convert-hf : make model class definitions self-contained (#5825) 2024-03-02 12:21:47 -05:00
Kawrakow
bbde6eb256 ggml : IQ3_S improvements (#5829)
* iq3_s: somewhat faster AVX2 dot product

On Ryzen a 7950X TG-128 increases to 16 t/s from 15.5 t/s using
16 threads. For 8 threads it is 13.85 t/s vs 11.75 t/s.
PP-512 increases to 28.5 t/s from 23.8 t/s.

* iq3_s: somewhat faster ARM_NEON dot product

Still dog slow - 10.7 t/s up from 9.9 t/s.

* iq3_s: another small ARM_NEON improvement

10.7 -> 11.0 t/s. Using vmulq_s8 is faster than the xor - sub trick
that works best on AVX2.

* iq3_s: minor improvement on Metal

49.4 t/s -> 50.3 t/s

* iq3_s: PPL improvement

E.g., for a context of 4096 LLaMA-v2-7B goes to 5.1340 from 5.1653.

* iq3_s: use new grid everywhere

* Fix ARM_NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-03-02 17:00:51 +02:00
Georgi Gerganov
ef2cd694c4 scripts : add pod-llama.sh 2024-03-02 16:54:20 +02:00
Xuan Son Nguyen
6c32d8c7ad llama : refactor internal quantization functions (#5830) 2024-03-02 16:19:09 +02:00
compilade
802da0091b llama : fix segfault from unknown model arch name (#5820)
* llama : fix segfault from unknown model arch name

* llama : make all LLM maps const

This also requires using `std::map::at` instead of its `operator[]`
which does not exist for const maps.

* llama : name LLM_ARCH_UNKNOWN to "(unknown)"

This avoids errors from `std::map::at` when
getting the general name of the model architecture.
Using "(unknown)" instead of an empty string as per suggestion
https://github.com/ggerganov/llama.cpp/pull/5820#issuecomment-1973735284

* llama : remove redundant inner const for LLM_TENSOR_NAMES

The extra const won't do anything here as const maps
return const references to values.

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* llama : remove redundant nullptr check in llm_arch_from_string

Since LLM_ARCH_NAMES is a const map, no spurious elements
with a NULL name are inserted anymore, so this check is dead code.

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-03-02 15:42:56 +02:00
Neo Zhang Jianyu
715641391d Support multiple GPUs (split mode) on SYCL backend (#5806)
* suport multiple cards: split-mode - layer|row

* rm warning

* rebase with master, support tow new OPs, close feature for -sm=row, fix for unit test

* update news

* fix merge error

* update according to review comments
2024-03-02 19:49:30 +08:00
crasm
9bf297a02b workflows : remove nocleanup arg for check-requirements.sh (#5826)
Reduces peak tmpfs usage and should prevent the check from failing from
running out of space.

Fixes the 'No space left on device' issue mentioned in #5703.
2024-03-02 00:11:06 -05:00
Tushar
cb5e8f7fc4 build(nix): Introduce flake.formatter for nix fmt (#5687)
* build(nix): Introduce flake.formatter for `nix fmt`
* chore: Switch to pkgs.nixfmt-rfc-style
2024-03-01 15:18:26 -08:00
nold
da3b9ba2b7 convert-hf-to-gguf : require einops for InternLM2ForCausalLM (#5792) 2024-03-01 16:51:12 -05:00
Sourab Mangrulkar
c29af7e225 llama : add StarCoder2 support (#5795)
* Add support for starcoder2

* handle rope type

* skip rope freq and rotary embeddings from being serialized

* resolve comments

* Update llama.cpp

* remove redundant changes

* handle `rope-theta`

* llama : change starcoder2 rope type

* address comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-01 21:30:46 +02:00
Georgi Gerganov
38d16b1426 server : remove api_like_OAI.py proxy script (#5808) 2024-03-01 20:00:58 +02:00
ddpasa
c2224f003b ggml-vulkan: fix VULKAN_CHECK_RESULTS flag, which was previously broken (#5813) 2024-03-01 18:00:00 +01:00
kunal-vaishnavi
e743386728 gemma : fix bfloat16 -> float16 conversion issue (#5810) 2024-03-01 16:08:08 +02:00
Miwa / Ensan
f49a535686 common : fix flag --logits-all to --all-logits (#5805) 2024-03-01 15:48:56 +02:00
Pierrick Hymbert
3ab8b3a92e llama : cleanup unused mmq flags (#5772)
* cleanup unused --no-mul-mat-q,-nommq, -mmq, --mul-mat-q, mul_mat_q

* remove: mul_mat_q in compare llama bench and usage

* update llama-bench

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-03-01 13:39:06 +02:00
Douglas Hanley
9600d59e01 unicode : switch to multimap based nfd_map (#5799)
* switch to multimap based nfd_map due to compile time issues

* simplify multimap keys

* dont construct new locale every time
2024-03-01 11:15:36 +02:00
Pierrick Hymbert
5cb02b4a01 server: allow to override threads server pool with --threads-http (#5794) 2024-03-01 10:08:08 +01:00
Eve
6ea0f010ff ci : add Ubuntu 22 Vulkan CI run (#5789) 2024-03-01 10:54:53 +02:00
Georgi Gerganov
f105471ef6 server : fix newlines in help (#5785) 2024-03-01 09:59:43 +02:00
AidanBeltonS
38d1521608 [SYCL] Use batched mul_mat pathway (#5591)
* Use batched mul_mat pathway

* rm extra line

* Explicitly state scaled data type

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-03-01 13:06:47 +05:30
Xuan Son Nguyen
052051d8ae Server: normalize naming (#5779)
* server: normalize naming

* fix spacing
2024-02-29 21:42:11 +01:00
Marcus Dunn
d5ab29757e llama : constified llama_set_state_data's src (#5774) 2024-02-29 10:17:23 +02:00
Georgi Gerganov
87c91c0766 ci : reduce 3b ppl chunks to 1 to avoid timeout (#5771)
ggml-ci
2024-02-28 21:44:21 +02:00
Eve
317709b2a8 make portability_enumeration_ext apple only (#5757) 2024-02-28 20:33:37 +01:00
Georgi Gerganov
08c5ee87e4 llama : remove deprecated API (#5770)
ggml-ci
2024-02-28 18:43:38 +02:00
Georgi Gerganov
78aacf3634 awq-py : remove (#5768) 2024-02-28 17:36:53 +02:00
Georgi Gerganov
8c0e8f4e73 sync : ggml 2024-02-28 11:17:32 +02:00
slaren
2774b0c974 add google magika inference example (ggml/748)
* add magika inference example

* ggml : fix unaligned accesses in custom ops

* ggml : fix FP32 GELU for values that exceed the FP16 range

* use ggml_pool_1d

* add README

* Update README.md

* pad inputs if the files are too small

* cleanup

ggml-ci
2024-02-28 11:17:06 +02:00
UEXTM.com
5f70671856 Introduce backend GUIDs (ggml/743)
* Introduce backend GUIDs

Initial proposed implementation of backend GUIDs
(Discussed in https://github.com/ggerganov/ggml/pull/741)

Hardcoded CPU backend GUID (for now)
Change ggml_backend_is_cpu logic to use GUID

* Remove redundant functions

Remove redundant functions `ggml_backend_i::get_name` and `ggml_backend_guid` which are not desired for future expansion

* Add spaces to match style

Co-authored-by: slaren <slarengh@gmail.com>

* Fix brace style to match

Co-authored-by: slaren <slarengh@gmail.com>

* Add void to () in function signature

Co-authored-by: slaren <slarengh@gmail.com>

* Add back ggml_backend_guid and make CPU_GUID a local static in ggml_backend_cpu_guid

* add guids to all backends

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-28 11:17:05 +02:00
Xuan Son Nguyen
a693bea1e6 server : hit Ctrl+C twice to exit (#5734)
* server: twice ctrl+C to exit

* std::atomic_flag

* sigint: message

* sigint: stderr

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-28 10:55:37 +02:00
compilade
adcb12a9ba llama : fix non-quantization of expert gating tensors (#5754)
This reverts a single line from #5475
2024-02-28 10:52:56 +02:00
Douglas Hanley
177628bfd8 llama : improve BERT tokenization (#5740)
* implement nfd for stripping accents in wpm tokenizer

* sort nfd map; reuse iterator

* use builtin tolower

* add locale include

* Simplify to_lower cases

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-28 10:51:11 +02:00
Daniel Bevenius
6c4416868d readme : add link to LLaVA 1.6 models (#5758)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-28 10:39:39 +02:00
Jorge A
efc72253f7 server : add "/chat/completions" alias for "/v1/...` (#5722)
* Add "/chat/completions" as alias for "/v1/chat/completions"

* merge to upstream master

* minor : fix trailing whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-28 10:39:15 +02:00
Kawrakow
7c4263d426 ggml : make i-quants work with super-blocks of 64 (CPU,Metal) (#5760)
* WIP: make i-quants work for QK_K = 64

* iq2_xs: attempt to fix AVX dot product for QK_K = 64

Tests pass, but I get gibberish.

* QK_K = 64 tests pass on ARM_NEON and Metal

Sadly, that does not mean it actually works.

* Make CUDA compile with QK_K = 64

Tests don't pass, plus we get misaligned access

* Q2_K: fixed bug in imatrix quantization for QK_K = 64

* iq1_s: turn off SIMD implementation for QK_K = 64 (it does not work)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-28 10:37:02 +02:00
Kawrakow
cb49e0f8c9 Attempt to fix android build (#5752)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-27 19:16:49 +02:00
Kawrakow
0becb22ac0 IQ4_XS: a 4.25 bpw quantization (#5747)
* Try IQ4_NL with blocks of 64 - does not look good

* iq4_xs: go to super-blocks of 256 and 6-bit scales for blocks of 32

* iq4_xs: CUDA works - 133.2 t/s

* iq4_xs: AVX2 dot product

* iq4_xs: ARM_NEON dot product

* iq4_nl: Metal implementation

As usual, Metal / Apple Silicon don't like my quants.

* iq3_xs: minor fix

* iq4_xs: shrink by using IQ3_S for attn_k and attn_q

* iq4_xs: revert using IQ3_S for attn_k and attn_v

PPL vs size is good, but CPU performance suffers: on M2 Max
TG-128 drops to 21.7 t/s from 28.8, and on a Ryzen-7950X
to 14.5 t/s from 15.8 t/s. On CUDA we have 135 t/s when
using IQ3_S vs 133 t/s with pure IQ4_XS.

* Fix CI

* iq4_xs: Added forgotten check for 256 divisibility

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-27 16:34:24 +02:00
Engininja2
c24a2a6e60 cuda : replace remaining shfl_xor with calls to warp_reduce functions (#5744) 2024-02-27 14:22:45 +01:00
Engininja2
1f30b7a9f1 ggml-quants : fix avx2 iq1_s vec_dot when compiled with gcc (#5742) 2024-02-27 14:50:18 +02:00
Georgi Gerganov
9d533a77d0 llama : fix defrag bugs + add parameter (#5735)
* llama : fix defrag bugs + enable by default

ggml-ci

* llama : add defrag_thold parameter

ggml-ci

* llama : cont

* llama : disable log message

ggml-ci

* llama : fix graph size check during defrag
2024-02-27 14:35:51 +02:00
le.chang
cbbd1efa06 Makefile: use variables for cublas (#5689)
* make: use arch variable for cublas

* fix UNAME_M

* check opt first

---------

Co-authored-by: lindeer <le.chang118@gmail.com>
2024-02-27 03:03:06 +01:00
Xuan Son Nguyen
b11a93df41 fix server hangs on empty prompt (#5733) 2024-02-26 23:15:48 +01:00
Kawrakow
a33e6a0d2a Adding IQ2_S and IQ2_M to complete coverage of the 2-3 bit quantization range (#5721)
* Adding IQ2_S and IQ2_M as a single cumulative commit

* Update examples/quantize/quantize.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-26 18:28:38 +02:00
Johannes Gäßler
47bb7b48c7 CUDA: fix DEBUG_CUDA_MALLOC (#5729) 2024-02-26 15:36:38 +01:00
Artem
c4d7f81786 readme : update ui list (#5731)
* Add LLMFarm (ui for iOS) to list
2024-02-26 16:15:28 +02:00
AidanBeltonS
e849078c6e [SYCL] Add support for soft_max ALiBi (#5639)
* Add support for bias

* Update pre-processor

* rm commented code

* fix format

* fix CI

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-26 19:32:11 +05:30
Georgi Gerganov
67fd33132f unicode : reuse iterator (#5726) 2024-02-26 14:02:12 +02:00
Pierrick Hymbert
4804215cb8 server: CI fix trailing space (#5728) 2024-02-26 12:41:34 +02:00
Pierrick Hymbert
8a533f0d90 server: CI tests reduce build matrix (#5725) 2024-02-26 09:56:10 +01:00
Georgi Gerganov
269de86ba0 llama : fix Gemma rope type (#5691) 2024-02-26 08:30:17 +02:00
github-actions[bot]
c393733988 flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/5863c27340ba4de8f83e7e3c023b9599c3cb3c80' (2024-02-16)
  → 'github:NixOS/nixpkgs/cbc4211f0afffe6dfd2478a62615dd5175a13f9a' (2024-02-23)
2024-02-25 22:24:22 +00:00
Pierrick Hymbert
e3965cf35a server: tests - slow inference causes timeout on the CI (#5715)
* server: tests - longer inference timeout for CI
2024-02-25 22:48:33 +01:00
Pierrick Hymbert
8b350356b2 server: docs - refresh and tease a little bit more the http server (#5718)
* server: docs - refresh and tease a little bit more the http server

* Rephrase README.md server doc

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-25 21:46:29 +01:00
Georgi Gerganov
bf08e00643 llama : refactor k-shift implementation + KV defragmentation (#5691)
* llama : refactor k-shift implementation

ggml-ci

* llama : rename llama_kv_cache_seq_shift to llama_kv_cache_seq_add

* llama : cont k-shift refactoring + normalize type names

ggml-ci

* minor : fix MPI builds

* llama : reuse n_rot from the build context

ggml-ci

* llama : revert enum name changes from this PR

ggml-ci

* llama : update llama_rope_type

* llama : add comment about rope values

* llama : fix build

* passkey : apply kv cache updates explicitly

ggml-ci

* llama : change name to llama_kv_cache_update()

* llama : add llama_kv_cache_seq_pos_max()

* passkey : fix llama_kv_cache_seq_pos_max() usage

* llama : some llama_kv_cell simplifications

* llama : add llama_kv_cache_compress (EXPERIMENTAL)

* llama : add alternative KV cache merging (EXPERIMENTAL)

* llama : add llama_kv_cache_defrag

* llama : comments

* llama : remove llama_kv_cache_compress

will add in a separate PR

ggml-ci

* llama : defragment via non-overlapping moves

* llama : ggml_graph based defrag implementation

ggml-ci

* llama : switch the loop order in build_defrag

* llama : add comments
2024-02-25 22:12:24 +02:00
compilade
f7625019c5 server : fix crash when system prompt is bigger than batch size (#5714)
The system prompt is now decoded in batches.

* server : fix off-by-one n_past when start of prompt matches whole cache

The tokens right after the matching part would otherwise skip a pos value.
2024-02-25 20:43:50 +02:00
Radosław Gryta
abbabc5e51 ggml-quants : provide ggml_vqtbl1q_u8 for 64bit compatibility (#5711)
* [ggml-quants] Provide ggml_vqtbl1q_u8 for 64bit compatibility

vqtbl1q_u8 is not part of arm v7 neon library

* [android-example] Remove abi filter after arm v7a fix

* [github-workflows] Do not skip Android armeabi-v7a build
2024-02-25 20:43:00 +02:00
kwin1412
f1a98c5254 make : fix nvcc version is empty (#5713)
fix nvcc version is empty
2024-02-25 18:46:49 +02:00
Ashok Gelal
7d548a1827 readme : add Msty to UI list (#5618) 2024-02-25 17:57:34 +02:00
Pierrick Hymbert
930b178026 server: logs - unified format and --log-format option (#5700)
* server: logs - always use JSON logger, add add thread_id in message, log task_id and slot_id

* server : skip GH copilot requests from logging

* server : change message format of server_log()

* server : no need to repeat log in comment

* server : log style consistency

* server : fix compile warning

* server : fix tests regex patterns on M2 Ultra

* server: logs: PR feedback on log level

* server: logs: allow to choose log format in json or plain text

* server: tests: output server logs in text

* server: logs switch init logs to server logs macro

* server: logs ensure value json value does not raised error

* server: logs reduce level VERBOSE to VERB to max 4 chars

* server: logs lower case as other log messages

* server: logs avoid static in general

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: logs PR feedback: change text log format to: LEVEL [function_name] message | additional=data

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-25 13:50:32 +01:00
Pierrick Hymbert
d52d7819b8 server: concurrency fix + monitoring - add /metrics prometheus compatible endpoint (#5708)
* server: monitoring - add /metrics prometheus compatible endpoint

* server: concurrency issue, when 2 task are waiting for results, only one call thread is notified

* server: metrics - move to a dedicated struct
2024-02-25 13:49:43 +01:00
Radosław Gryta
1289408817 cmake : fix compilation for Android armeabi-v7a (#5702) 2024-02-25 12:53:11 +02:00
Georgi Gerganov
ab336a9d5e code : normalize enum names (#5697)
* coda : normalize enum names

ggml-ci

* code : cont

* code : cont
2024-02-25 12:09:09 +02:00
Anas Ahouzi
69917dfa55 py : fix StableLM conversion after config.json changes (#5703)
* Fix issues during StableLM models conversion

* Fix hard coded layer_norm_eps

* Support layer_norm_eps for LlavaStableLM

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Add missing parenthesis

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Support rotary_factor for LlavaStableLM

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* fix typo

* Add StableLMEpochForCausalLM for safety

Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>

* Add StableLMEpochForCausalLM for safety 2

Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: compilade <113953597+compilade@users.noreply.github.com>
2024-02-25 11:54:04 +02:00
Pierrick Hymbert
9e359a4f47 server: continue to update other slots on embedding concurrent request (#5699)
* server: #5655 - continue to update other slots on embedding concurrent request.

* server: tests: add multi users embeddings as fixed

* server: tests: adding OAI compatible embedding concurrent endpoint

* server: tests: adding OAI compatible embedding with multiple inputs
2024-02-24 19:16:04 +01:00
Kawrakow
4c4cb30736 IQ3_S: a much better alternative to Q3_K (#5676)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* Resurrecting iq3_xs

After all the experimentation, nothing was better than this.

* Minor PPL improvement via a block scale fudge factor

* Minor improvement via 3 neighbours

* iq3_xs: working scalar and AVX2 dot products

* iq3_xs: ARM_NEON dot product - works but extremely slow (10 t/s)

* iq3_xs: working Metal implementation

* Adding IQ3_M - IQ3_XS mix with mostly Q4_K

* iiq3_xs: a 3.4375 bpw variant

* iq3_xs: make CUDA work for new version

* iq3_xs: make scalar and AVX2 work for new version

* iq3_s: make ARM_NEON work with new version

* iq3_xs: make new version work on metal

Performance is very similar to Q3_K_S

* iq3_xs: tiny Metal speed improvement

* iq3_xs: tiny Metal speed improvement

* Fix stupid warning

* Q3_K_XS now uses a mix of IQ3_XS and IQ3_XXS

* iq3_xs: rename to iq3_s

* iq3_s: make tests pass

* Move Q3_K_XS mix to 3.25 bpw

* Attempt to fix failing tests

* Another attempt to fix the Windows builds

* Attempt to fix ROCm

* ROCm again

* iq3_s: partial fix for QK_K = 64

* iq3_s: make it work on metal for QK_K = 64

Pleasent surprise: the coding was super-block size independent,
so all it took was to delete some QK_K == 256 guards.

* Will this fix ROCm?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-24 16:23:52 +02:00
Pierrick Hymbert
525213d2f5 server: init functional tests (#5566)
* server: tests: init scenarios
 - health and slots endpoints
 - completion endpoint
 - OAI compatible chat completion requests w/ and without streaming
 - completion multi users scenario
 - multi users scenario on OAI compatible endpoint with streaming
 - multi users with total number of tokens to predict exceeds the KV Cache size
 - server wrong usage scenario, like in Infinite loop of "context shift" #3969
 - slots shifting
 - continuous batching
 - embeddings endpoint
 - multi users embedding endpoint: Segmentation fault #5655
 - OpenAI-compatible embeddings API
 - tokenize endpoint
 - CORS and api key scenario

* server: CI GitHub workflow


---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-24 12:28:55 +01:00
AlpinDale
fd43d66f46 server : add KV cache quantization options (#5684) 2024-02-23 21:31:54 +02:00
Jared Van Bortel
54fbcd2ce6 convert : fix missing ftype for gemma (#5690) 2024-02-23 20:39:14 +02:00
Jared Van Bortel
15499eb942 mpt : do not duplicate token_embd.weight on disk (#5670) 2024-02-22 17:05:23 -05:00
Georgi Gerganov
96633eeca1 gemma : use more bits for the token_embd.weight tensor (#5650)
* gemma : use Q8_0 for the token_embd.weight tensor

* llama : quantize token_embd.weight using output type
2024-02-22 23:23:46 +02:00
Georgi Gerganov
847eedbdb2 py : add Gemma conversion from HF models (#5647)
* py : add gemma conversion from HF models

* Update convert-hf-to-gguf.py

Co-authored-by: Aarni Koskela <akx@iki.fi>

* Update convert-hf-to-gguf.py

Co-authored-by: Aarni Koskela <akx@iki.fi>

* Update convert-hf-to-gguf.py

Co-authored-by: Jared Van Bortel <jared@nomic.ai>

---------

Co-authored-by: Aarni Koskela <akx@iki.fi>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-22 23:22:48 +02:00
Georgi Gerganov
7e4f339c40 ggml : always define ggml_fp16_t as uint16_t (#5666)
* ggml : always define ggml_fp16_t as uint16_t

ggml-ci

* ggml : cont

ggml-ci

* ggml : cont

* ggml : cont

ggml-ci

* ggml : cont

ggml-ci

* cuda : no longer ggml headers last

ggml-ci

* ggml : fix q6_K FP16 -> FP32 conversion

ggml-ci

* ggml : more FP16 -> FP32 conversion fixes

ggml-ci
2024-02-22 23:21:39 +02:00
Georgi Gerganov
334f76fa38 sync : ggml 2024-02-22 23:21:05 +02:00
Georgi Gerganov
efd56b1c21 ggml : 32-bit arm compat (whisper/1891)
* ggml : 32-bit arm compat

* ggml : add ggml_vqtbl1q_s8 impl

* ggml : cont
2024-02-22 23:20:50 +02:00
Someone
201294ae17 nix: init singularity and docker images (#5056)
Exposes a few attributes demonstrating how to build [singularity](https://docs.sylabs.io/guides/latest/user-guide/)/[apptainer](https://apptainer.org/) and Docker images re-using llama.cpp's Nix expression.

Built locally on `x86_64-linux` with `nix build github:someoneserge/llama.cpp/feat/nix/images#llamaPackages.{docker,docker-min,sif,llama-cpp}` and it's fast and effective.
2024-02-22 11:44:10 -08:00
Georgi Gerganov
5a9e2f60ba py : minor fixes (#5668) 2024-02-22 20:13:25 +02:00
Xuan Son Nguyen
373ee3fbba Add Gemma chat template (#5665)
* add gemma chat template

* gemma: only apply system_prompt on non-model message
2024-02-22 19:10:21 +01:00
Someone
4cb4d8b22d workflows: nix: hardcode cachix ids, build unconditionally (#5663)
GitHub does not expose environment and repository variables to PRs coming from forks implies that we've been disabling the Nix CI actions for most PRs. 

The `if:` also didn't make much sense, because we can always pull from cachix, and there's no point (albeit no risk either) in pushing cache for the untrusted code.
2024-02-22 08:32:09 -08:00
Georgi Gerganov
3a03541ced minor : fix trailing whitespace (#5638) 2024-02-22 13:54:03 +02:00
Georgi Gerganov
56d03d92be readme : update hot topics 2024-02-22 10:35:54 +02:00
Xuan Son Nguyen
a46f50747b server : fallback to chatml, add AlphaMonarch chat template (#5628)
* server: fallback to chatml

* add new chat template

* server: add AlphaMonarch to test chat template

* server: only check model template if there is no custom tmpl

* remove TODO
2024-02-22 10:33:24 +02:00
Alexey Parfenov
c5688c6250 server : clarify some params in the docs (#5640) 2024-02-22 10:27:32 +02:00
Dat Quoc Nguyen
4ef245a92a mpt : add optional bias tensors (#5638)
Update for MPT with optional bias parameters: to work with PhoGPT and SEA-LION models that were pre-trained with 'bias'.
2024-02-22 10:15:13 +02:00
slaren
973053d8b0 llama : fix loading models with shared tok_embd and output (#5651)
ggml-ci
2024-02-22 00:42:09 +01:00
Xuan Son Nguyen
7c8bcc11dc Add docs for llama_chat_apply_template (#5645)
* add docs for llama_chat_apply_template

* fix typo
2024-02-22 00:31:00 +01:00
slaren
7fe4678b02 llama : fix session save/load with quantized KV (#5649) 2024-02-21 22:52:39 +01:00
slaren
ba2135ccae gemma : allow offloading the output tensor (#5646) 2024-02-21 22:18:23 +01:00
Jared Van Bortel
89febfed93 examples : do not assume BOS when shifting context (#5622) 2024-02-21 10:33:54 -05:00
Georgi Gerganov
5022cf242d sync : ggml 2024-02-21 16:52:52 +02:00
Pierrick Hymbert
1ecea255eb server: health: fix race condition on slots data using tasks queue (#5634)
* server: health: fix race condition on slots data using tasks queue

* server: health:
    * include_slots only if slots_endpoint
    * fix compile warning task.target_id not initialized.
2024-02-21 15:47:48 +01:00
Ettore Di Giacinto
a00a35cef9 readme : add LocalAI to the availables UI (#5629) 2024-02-21 16:39:10 +02:00
Georgi Gerganov
eccd7a26dd sync : ggml (#5633)
* ggml : fix conv_2d batch mode (ggml/737)

Co-authored-by: bssrdf <bssrdf@gmail.com>

* ggml : compute forward no longer pass src tensors (ggml/729)

* sync : ggml

ggml-ci

---------

Co-authored-by: bssrdf <merlintiger@hotmail.com>
Co-authored-by: bssrdf <bssrdf@gmail.com>
2024-02-21 16:17:10 +02:00
Georgi Gerganov
c14f72db9c readme : update hot topics 2024-02-21 15:39:54 +02:00
Daniel Bevenius
cc6cac08e3 llava : add --skip-unknown to 1.6 convert.py (#5632)
This commit adds the `--skip-unknown` option to the convert.py script
and removes the saving of the updated checkpoints to avoid updating
possibly checked out files.

The motivation for this change is that this was done for 1.5
in Commit fc0c8d286a ("llava :
update surgery script to not remove tensors") and makes the examples
more consistent.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-21 15:36:57 +02:00
postmasters
580111d42b llama : add gemma model (#5631)
There are couple things in this architecture:

1. Shared input and output embedding parameters.
2. Key length and value length are not derived from `n_embd`.

More information about the models can be found at
https://ai.google.dev/gemma. GGUFs can be downloaded from
https://huggingface.co/google.
2024-02-21 15:08:22 +02:00
Meng, Hengyu
88c46cbdac [SYCL] conext add name (#5624)
* [SYCL] conext add name

* name should start with SYCL*
2024-02-21 17:52:06 +08:00
Kawrakow
a14679cc30 IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* iq4_nl: Fix after merging with master

* iq4_nl: another fix after merging with master

* Use IQ4_NL instead of Q4_K when using k-quants is not possible

* Fix typo that makes several tests fail

* It was the ggml_vdotq thing missed inside the brackets

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-21 11:39:52 +02:00
CJ Pais
6560bed3f0 server : support llava 1.6 (#5553)
* server: init working 1.6

* move clip_image to header

* remove commented code

* remove c++ style from header

* remove todo

* expose llava_image_embed_make_with_clip_img

* fix zig build
2024-02-20 21:07:22 +02:00
slaren
06bf2cf8c4 make : fix debug build with CUDA (#5616) 2024-02-20 20:06:17 +01:00
Daniel Bevenius
4ed8e4fbef llava : add explicit instructions for llava-1.6 (#5611)
This commit contains a suggestion for the README.md in the llava
example. The suggestion adds explicit instructions for how to convert
a llava-1.6 model and run it using llava-cli.

The motivation for this is that having explicit instructions similar to
the 1.5 instructions will make it easier for users to try this out.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-20 19:30:27 +02:00
Xuan Son Nguyen
9c405c9f9a Server: use llama_chat_apply_template (#5593)
* server: use llama_chat_apply_template

* server: remove trailing space

* server: fix format_chat

* server: fix help message

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: fix formatted_chat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-20 15:58:27 +01:00
Dane Madsen
5207b3fbc5 readme : update UI list (#5605)
* Add maid to ui list

* Specify licence
2024-02-20 12:00:23 +02:00
Haoxiang Fei
8dbbd75754 metal : add build system support for embedded metal library (#5604)
* add build support for embedded metal library

* Update Makefile

---------

Co-authored-by: Haoxiang Fei <feihaoxiang@idea.edu.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-20 11:58:36 +02:00
Pierrick Hymbert
c0a8c6db37 server : health endpoint configurable failure on no slot (#5594) 2024-02-20 09:48:19 +02:00
AidanBeltonS
b9111bd209 Update ggml_sycl_op_mul_mat_vec_q (#5502)
* Update ggml_sycl_op_mul_mat_vec_q

* Apply suggestions from code review

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>

* revert suggestion on macro

* fix bug

* Add quant type GGML_TYPE_IQ1_S to unsupported

* fix format

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-20 12:31:25 +05:30
Mathijs de Bruin
633782b8d9 nix: now that we can do so, allow MacOS to build Vulkan binaries
Author:    Philip Taron <philip.taron@gmail.com>
Date:      Tue Feb 13 20:28:02 2024 +0000
2024-02-19 14:49:49 -08:00
0cc4m
22f83f0c38 Enable Vulkan MacOS CI 2024-02-19 14:49:49 -08:00
0cc4m
bb9dcd560a Refactor validation and enumeration platform checks into functions to clean up ggml_vk_instance_init() 2024-02-19 14:49:49 -08:00
0cc4m
f50db6ae0b Add check for VK_KHR_portability_enumeration for MoltenVK support 2024-02-19 14:49:49 -08:00
Mathijs de Bruin
d8c054517d Add preprocessor checks for Apple devices.
Based on work by @rbourgeat in https://github.com/ggerganov/llama.cpp/pull/5322/files
2024-02-19 14:49:49 -08:00
Mathijs de Bruin
42f664a382 Resolve ErrorIncompatibleDriver with Vulkan on MacOS.
Refs:
- https://chat.openai.com/share/7020ce72-65fc-45ec-b7be-9d9d798a5f3f
- https://github.com/SaschaWillems/Vulkan/issues/954
- https://github.com/haasn/libplacebo/issues/128
- https://github.com/KhronosGroup/Vulkan-Samples/issues/476
2024-02-19 14:49:49 -08:00
Mathijs de Bruin
5dde540897 Allow for Vulkan build with Accelerate.
Closes #5304
2024-02-19 14:49:49 -08:00
slaren
40c3a6c1e1 cuda : ignore peer access already enabled errors (#5597)
* cuda : ignore peer access already enabled errors

* fix hip
2024-02-19 23:40:26 +01:00
Jared Van Bortel
f24ed14ee0 make : pass CPPFLAGS directly to nvcc, not via -Xcompiler (#5598) 2024-02-19 15:54:12 -05:00
nopperl
9d679f0fcc examples : support minItems/maxItems in JSON grammar converter (#5039)
* support minLength and maxLength in JSON schema grammar converter

* Update examples/json-schema-to-grammar.py

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 16:14:07 +02:00
Georgi Gerganov
1387cf60f7 llava : remove extra cont (#5587) 2024-02-19 15:23:17 +02:00
slaren
6fd413791a llava : replace ggml_cpy with ggml_cont 2024-02-19 15:09:43 +02:00
Georgi Gerganov
337c9cbd52 sync : ggml
ggml-ci
2024-02-19 15:09:43 +02:00
Georgi Gerganov
a3145bdc30 ggml-alloc : apply ggml/731 2024-02-19 15:09:43 +02:00
Didzis Gosko
890559ab28 metal : option to embed MSL source into compiled binary (whisper/1842)
* ggml : embed Metal library source (ggml-metal.metal) into binary

enable by setting WHISPER_EMBED_METAL_LIBRARY

* rename the build option

* rename the preprocessor directive

* generate Metal library embedding assembly on-fly during build process
2024-02-19 15:09:43 +02:00
Georgi Gerganov
d0e3ce51f4 ci : enable -Werror for CUDA builds (#5579)
* cmake : pass -Werror through -Xcompiler

ggml-ci

* make, cmake : enable CUDA errors on warnings

ggml-ci
2024-02-19 14:45:41 +02:00
Georgi Gerganov
68a6b98b3c make : fix CUDA build (#5580) 2024-02-19 13:41:51 +02:00
valiray
70d45af0ef readme : fix typo in README-sycl.md (#5353) 2024-02-19 12:37:10 +02:00
Abhilash Majumder
13e2c771aa cmake : remove obsolete sycl compile flags (#5581)
* rm unwanted sycl compile options

* fix bug

* fix bug

* format fix
2024-02-19 11:15:18 +02:00
Georgi Gerganov
f53119cec4 minor : fix trailing whitespace (#5538) 2024-02-19 10:34:10 +02:00
Daniel Bevenius
7084755396 llava : avoid changing the original BakLLaVA model (#5577)
This is a follup of Commit fc0c8d286a
("llava : update surgery script to not remove tensors") but this time
the change is to the BakLLaVA specific part of the surgery script.

I've been able to test this using SkunkworksAI/BakLLaVA-1 and it works
as expected using the instructions in README.md.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-19 10:31:59 +02:00
NawafAlansari
4480542b22 baby-llama : allocate graphs in ggml_context (#5573)
* Fixed the baby-llama issue (see issue #4830)

* minor : fix whitespaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 10:25:38 +02:00
Xuan Son Nguyen
11b12de39b llama : add llama_chat_apply_template() (#5538)
* llama: add llama_chat_apply_template

* test-chat-template: remove dedundant vector

* chat_template: do not use std::string for buffer

* add clarification for llama_chat_apply_template

* llama_chat_apply_template: add zephyr template

* llama_chat_apply_template: correct docs

* llama_chat_apply_template: use term "chat" everywhere

* llama_chat_apply_template: change variable name to "tmpl"
2024-02-19 10:23:37 +02:00
slaren
3a9cb4ca64 cuda, metal : fix nans in soft_max (#5574)
* cuda : fix nans in soft_max

* metal : fix nans in soft_max

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-19 10:04:45 +02:00
Mirko185
769a716e30 readme : update (#5572)
Added 1.5-bit on README.md
2024-02-19 09:39:31 +02:00
bmwl
f0d1fafc02 ggml : android and old glibc NUMA incompatibility bugfixes (#5557)
* #ifdef out some code NUMA blocks for Android due to lack of support

* added in some __ANDROID__ if def gates around numa code and forced GLIBC prior to 2.29 to use a syscall for getcpu instead of the wrapper

* Changed gates on numa platform specific stuff to __gnu_linux__ to skip any platforms without glibc

* harmonizing #if defined blocks for numa code to __gnu_linux__ since that's the only model that's being followed anyways

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
2024-02-19 09:38:32 +02:00
Jared Van Bortel
a0c2dad9d4 build : pass all warning flags to nvcc via -Xcompiler (#5570)
* build : pass all warning flags to nvcc via -Xcompiler
* make : fix apparent mis-merge from #3952
* make : fix incorrect GF_CC_VER for CUDA host compiler
2024-02-18 16:21:52 -05:00
Georgi Gerganov
14278f55d2 ggml : restore vec dot stride arg names (#5453) 2024-02-18 22:58:57 +02:00
Georgi Gerganov
b1de96824b ci : fix wikitext url + compile warnings (#5569)
ggml-ci
2024-02-18 22:39:30 +02:00
Georgi Gerganov
7ad554f90e metal : fix unused warnings (#0) 2024-02-18 21:39:58 +02:00
Robey Holderith
5ee99c32f5 common, server : surface min_keep as its own parameter (#5567)
* Feature - surface min_keep as its own parameter

* Updated README with min_keep param
2024-02-18 21:11:16 +02:00
Pierrick Hymbert
c145f8a132 server : slots monitoring endpoint (#5550) 2024-02-18 19:39:57 +02:00
Georgi Gerganov
689a091bbe sampling : do not set min_keep to n_probs (#5564) 2024-02-18 19:38:06 +02:00
Georgi Gerganov
f3f28c5395 cmake : fix GGML_USE_SYCL typo (#5555) 2024-02-18 19:17:00 +02:00
Pierrick Hymbert
e75c6279d1 server : enhanced health endpoint (#5548)
* server: enrich health endpoint with available slots, return 503 if not slots are available

* server: document new status no slot available in the README.md
2024-02-18 18:31:28 +02:00
Pierrick Hymbert
36376abe05 server : --n-predict option document and cap to max value (#5549)
* server: document --n-predict

* server: ensure client request cannot override n_predict if set

* server: fix print usage LF in new --n-predict option
2024-02-18 18:30:09 +02:00
Daniel Hiltgen
66c1968f7a server : graceful server shutdown (#5244)
This updates the server queue to support graceful shutdown of the server on signals.
2024-02-18 18:23:16 +02:00
Georgi Gerganov
1dcc3fde00 common : fix ub (#5530) 2024-02-18 18:21:52 +02:00
Herman Semenov
5d3de51f97 ggml, common, examples, tests : fixed type arguments in printf (#5528) 2024-02-18 18:20:12 +02:00
Daniel Bevenius
fc0c8d286a llava : update surgery script to not remove tensors (#5536)
This commit updates the surgery script to not remove the tensors from the
model file. For this to work the `--skip-unknown` flag is added as an
argument to the convert.py script in README.md.

The motivation for this change is that the surgery script currently
removes the projector tensors from the model file. If the model was
checked out from a repository, the model file will have been updated
and have to be checked out again to reset this effect. If this can be
avoided I think it would be preferable.

I did not perform this change for BakLLaVA models as I am not sure
how that part works.
2024-02-18 18:19:23 +02:00
Kawrakow
bd2d4e393b 1.5 bit quantization (#5453)
* iq1_s: WIP basics

* iq1_s: CUDA is working

* iq1_s: scalar CPU dot product

* iq1_s: WIP AVX2 dot product - something is not right

* Fix tests

* Fix shadow warnings

* Fix after merge with latest master

* iq1_s: AVX2 finally works

* iq1_s: ARM_NEON dot product. Works, but not very fast

* iq1_s: better grid

* iq1_s: use IQ2_XXS for attn_output

At a cost of 0.04 extra bpw this gives a big improvement in PPL.

* iq1_s: Metal basics

Dequantize works, but not dot product

* iq1_s: Metal works, but quite slow

As usual, Apple Silicon does not like the code I write.

* iq1_s: Tests

* iq1_s: slightly faster dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-18 18:16:55 +02:00
github-actions[bot]
c8e0d7efeb flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/f8e2ebd66d097614d51a56a755450d4ae1632df1' (2024-02-07)
  → 'github:NixOS/nixpkgs/5863c27340ba4de8f83e7e3c023b9599c3cb3c80' (2024-02-16)
2024-02-18 06:39:58 -08:00
Georgi Gerganov
8f1be0d42f ggml : add ALiBi support for ggml_soft_max_ext (#5488)
* ggml : avoid recomputing alibi slopes (CPU)

* llama : reuse hparams.f_max_alibi_bias in all cases

ggml-ci

* ggml : support alibi bias in ggml_soft_max_ext (CPU + Metal)

ggml-ci

* ggml : handle all SRCs (do not break on first null)

ggml-ci

* tests : do not use slope for large soft_max

accumulates too much error

ggml-ci

* ggml : alternative ALiBi without extra tensor

We compute the slopes in the kernel

ggml-ci

* cuda : add ALiBi support in ggml_soft_max_ext

ggml-ci

* ggml : deprecate ggml_alibi

* ggml : support multi-sequence ALiBi (Metal)

ggml-ci

* cuda : add multi-seq ALiBi + remote F16 soft_max

ggml-ci

* ggml : update deprecation message

* ggml : fix pos ptr when no ALiBi

ggml-ci

* cuda : fix performance (pow -> powf)

* cuda : precompute ALiBi constants

* metal : pre-compute ALiBi slopes

ggml-ci

* llama : init kq_pos only if needed

ggml-ci

* test-backend-ops : add null pos test to soft_max

test-backend-ops : replace soft_max tests

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-17 23:04:16 +02:00
Ananta Bastola
6e4e973b26 ci : add an option to fail on compile warning (#3952)
* feat(ci): add an option to fail on compile warning

* Update CMakeLists.txt

* minor : fix compile warnings

ggml-ci

* ggml : fix unreachable code warnings

ggml-ci

* ci : disable fatal warnings for windows, ios and tvos

* ggml : fix strncpy warning

* ci : disable fatal warnings for MPI build

* ci : add fatal warnings to ggml-ci

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-17 23:03:14 +02:00
clibdev
d250c9d61d gitignore : update for CLion IDE (#5544) 2024-02-17 18:28:37 +02:00
Georgi Gerganov
5bf2b94dd4 cmake : fix VULKAN and ROCm builds (#5525)
* cmake : fix VULKAN and ROCm builds

* cmake : fix (cont)

* vulkan : fix compile warnings

ggml-ci

* cmake : fix

ggml-ci

* cmake : minor

ggml-ci
2024-02-16 19:05:56 +02:00
Georgi Gerganov
d2819d5577 scripts : add helpers script for bench comparing commits (#5521)
* scripts : add helpers script for bench comparing commits

* scripts : detect CUDA

* set flags after checking the command line

* fix make flags

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-16 15:14:40 +02:00
Herman Semenov
4cb0727698 llava : removed excess free(NULL) operation (#5531) 2024-02-16 14:43:23 +02:00
Herman Semenov
65085c713e llama : minor fixed return int value (#5529) 2024-02-16 13:45:48 +02:00
Alexey Parfenov
6dcc02d244 server : add "samplers" param to control the samplers order (#5494) 2024-02-16 13:33:25 +02:00
Rőczey Barnabás
5f5808ca7b server : fix system prompt cli (#5516) 2024-02-16 12:00:56 +02:00
bmwl
f486f6e1e5 ggml : add numa options (#5377)
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverted Makefile

* Fixed include

* Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables

* removed trailing whitespace

* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h

* Reverting Makefile

* Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet

* Removing MIRROR_MODE code for this PR

* Removing last bit of MIRROR_MODE code for this PR

* Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static

* Fixed lingering init_llama_backend() bool calls in tests and examples

* Remote enum llama_numa_strategies

* Revert bad merge with dynatemp flags

* add missing enum ggml_numa_strategies declaration and revert sync problem with master

* add missing enum ggml_numa_strategies declaration

* fixed ggml_init_numa variable

* Update ggml.h

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges

* split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples

* Fix up some boolean vs enum comparisons

* Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype

* Update ggml.h

Align enum values

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

Remove whitespace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml.c

align paremeters

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Remove whitespace and align brace

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* unified ggml_numa_strategy enum and fixed text alignment in server.cpp example

* Update ggml.c

simplified return for platforms without NUMA support

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* removed redundant else from cli argument processing of --numa

* whitespace

---------

Co-authored-by: root <root@nenya.lothlorien.ca>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-16 11:31:07 +02:00
Daniel Bevenius
60ed04cf82 llava : fix clip-model-is-vision flag in README.md (#5509)
* llava: fix clip-model-is-vision flag in README.md

This commit fixes the flag `--clip_model_is_vision` in README.md which
is does not match the actual flag:
```console
$ python convert-image-encoder-to-gguf.py --help
...
  --clip-model-is-vision
                        The clip model is a pure vision model
                        (ShareGPT4V vision extract for example)
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llava: update link to vit config in README.md

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-16 11:24:39 +02:00
Georgi Gerganov
594845aab1 ci : fix BERT model download and convert 2024-02-16 09:57:55 +02:00
Douglas Hanley
4524290e87 Use correct type of pooling for embedding models (#5500)
Use correct type of pooling for embedding models
2024-02-15 12:21:49 -05:00
Georgi Gerganov
c06e45d729 clip : fix wrong loop condition 2024-02-15 18:49:08 +02:00
slaren
9060a1e9df cuda : print message when initialization fails (#5512)
* cuda : print message when initialization fails

* use CUDA_NAME both times
2024-02-15 16:49:01 +01:00
Georgi Gerganov
9350a1cf21 scripts : add hf.sh helper script (#5501)
* scripts : add hf.sh helper scripts

* hf : add error logs

* hf : add support for --repo and --file
2024-02-15 15:41:15 +02:00
Michaël de Vries
73122473ff fix(gguf-py): special tokens are no longer skipped when add_<token>_token is set to false (#5487)
* fix(gguf-py): special tokens are no longer skipped when add_<token>_token is set to false

* fix(gguf-py): added missing cls and mask token ids to the gguf metadata
2024-02-15 14:14:37 +01:00
Elbios
0d4177126b llava : fix memory management bug (#5491)
* Fix memory management in llava and server code

Fixes this error:

llama_new_context_with_model: graph splits (measure): 3
Available slots:
 -> Slot 0 - max context: 6000
{"timestamp":1707926446,"level":"INFO","function":"main","line":2623,"message":"model loaded"}
all slots are idle and system prompt is empty, clear the KV cache
slot 0 - loaded image
slot 0 is processing [task id: 0]
slot 0 : kv cache rm - [0, end)
slot 0 - encoding image [id: 1]
munmap_chunk(): invalid pointer
Aborted

* Make it cleaner by checking size in batch free wrapper
2024-02-15 10:01:57 +02:00
John
7930a8a6e8 llaba : hotfix for llava-1.6 image number (#5495)
Co-authored-by: John <cmt-nct@users.noreply.github.com>
2024-02-15 09:59:18 +02:00
Neuman Vong
704359e299 vulkan: Find optimal memory type but with fallback (#5381)
* @0cc4m feedback

* More feedback @0cc4m
2024-02-15 07:11:15 +01:00
Rune
594fca3fef readme : fix typo (#5490)
executabhle -> executable
2024-02-14 17:15:49 +02:00
John
ccbb277f46 llava : update README.md (#5489)
* Update README.md

* Update README.md

* Update examples/llava/README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 16:49:42 +02:00
Michael Podvitskiy
8084d55440 cmake : ARM intrinsics detection for MSVC (#5401) 2024-02-14 10:49:01 +02:00
John
aa23412989 llava : support v1.6 (#5267)
* Create llava-survery-v2.py

* Update convert-image-encoder-to-gguf.py

* Update convert-image-encoder-to-gguf.py

* Rename llava-survery-v2.py to llava-surgery-v2.py

* Update convert-image-encoder-to-gguf.py

will now search for projector

* Update convert-image-encoder-to-gguf.py

whoops

* Update llava-surgery-v2.py

* Clip: Bugfix for normalization (it did not loat the 3 std and mean values)
Clip: bicubic resize function
Clip: added save-to-bmp/pil for debugging and conversion from/to 32/8 images
Clip: added normalization with FP16 precision simulation (image tensors match HF implementation, can be switched off, only used for llava-1.6)
Clip: added newline tensor, mergetype kv, image-grid kv, new resize-pad function with resolution from gridpoints
Clip: clip_image_preprocess now returns a float * vector instead of float, this way llava 1.5 and 1.6 is supported
llava: added ggml cpu graph for embedding patching, added spatial_unpad preliminary support, added a lot of comments that need to be cleaned when all is final
convert-image-encoder: fixed image-grid flattening

* whitespace corrections

* ws

* Tensors are now properly permuted.
Before the embeddings were inserted 1:1, now they are split into the 24x24 patches as in reference.

* ws

* added verbose_prompt support into cli
added stopwords for llava-1.6 into cli

* moved llava functions to llava.cpp, made clip.h C compatible API, replaced vector style functions with pointers, added a debug define to remove functions from compilation while not needed

* ws

* convert : skip unknown tensors (need for LLaVA)

* llava : update readme

* llava : fix compile warnings

* llava : style

* convert : add --skip-unknown CLI arg

* server : remove clip structs

* bugfix for non llava-1.6

It should now work with llava-1.5 as well

* clip : minor code rearrange

* llava : update readme a bit

---------

Co-authored-by: John <cmt-nct@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-14 09:38:35 +02:00
AT
f5ca054855 Early return for zero size calls to get_tensor. (#5482)
* Early return for zero size calls to get_tensor.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Update ggml-kompute.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml-kompute.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add an early return to the get/set tensor when the size is null.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Early return after the assertions.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

* Since we do the early return in the generic backend now no reason to do so here as well.

Signed-off-by: Adam Treat <treat.adam@gmail.com>

---------

Signed-off-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-13 22:44:25 +01:00
John
6c00a06692 gguf : add python reader example (#5216)
* Update CMakeLists.txt

* Create reader.py

* Update reader.py

* Update reader.py

another whitespace :|

* Update reader.py

* lintlintlint
2024-02-13 19:56:38 +02:00
Jared Van Bortel
ea9c8e1143 llama : add support for Nomic Embed (#5468) 2024-02-13 12:03:53 -05:00
Aarni Koskela
c4e6dd59e4 llama : allow raw byte in SPM vocabs; don't crash on nl 404 (#5478)
* common : don't crash if newline token is not found

* common : llama_byte_to_token: allow falling back to finding just the token byte in SPM vocabs
2024-02-13 18:18:16 +02:00
Aarni Koskela
037259be68 llama : make load error reporting more granular (#5477)
Makes it easier to pinpoint where e.g. `unordered_map::at: key not found` comes from.
2024-02-13 15:24:50 +02:00
Daniel Bevenius
263978904c finetune : rename feed-forward tensors (w1/w2/w3) (#4839)
* finetune: rename feed-forward tensors (w1/w2/w3)

This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate,
ffn_down and ffn_up respectively.

The motivation for this change is to make it easier to understand the
purpose of the tensors. This also seems to be inline with the names
used in the llama_layer struct in llama.cpp.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* train-text-from-scratch: rename ff tensors

This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate,
ffn_down and ffn_up respectively.

The motivation for this change is to make it easier to understand the
purpose of the tensors. This also seems to be inline with the names
used in the llama_layer struct in llama.cpp

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-13 15:15:42 +02:00
Georgi Gerganov
cf45252a7c tests : multi-thread the tokenizer tests (#5474)
* tests : multi-thread the tokenizer tests

ggml-ci

* unicode : fix data race for unidentified codepoints

ggml-ci

* unicode : minor style fixes

ggml-ci
2024-02-13 15:14:22 +02:00
Douglas Hanley
03bf161eb6 llama : support batched embeddings (#5466)
* batched embedding: pool outputs by sequence id. updated embedding example

* bring back non-causal attention

* embd : minor improvements

* llama : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-13 14:06:58 +02:00
Johannes Gäßler
ad014bba97 make: add error message for bad CUDA version (#5444)
* make: add error message for bad CUDA version

* Update Makefile

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-13 12:38:37 +01:00
Georgi Gerganov
49cc1f7d67 bert : add tests + fix quantization (#5475)
* llama : do not quantize pos embd and token type tensors

* ci : add BERT tests

ggml-ci

* ci : do not do BERT tests on low-perf nodes

ggml-ci
2024-02-13 13:01:29 +02:00
Georgi Gerganov
99b8b43d7b tests : disable moe test (#5473) 2024-02-13 11:20:24 +02:00
Kawrakow
895407f31b ggml-quants : fix compiler warnings (shadow variable) (#5472)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-13 09:07:57 +02:00
Georgi Gerganov
099afc6274 llama : fix quantization when tensors are missing (#5423) 2024-02-12 20:14:39 +02:00
Georgi Gerganov
df334a1125 swift : package no longer use ggml dependency (#5465)
* Revert "swift : update Package.swift to use ggml as dependency (#4691)"

This reverts commit ece9a45e8f.

* spm : add ggml headers
2024-02-12 19:54:29 +02:00
Lee
dbd8828eb0 py : fix persimmon n_rot conversion (#5460)
* convert : fix persimmon offical weight conversion to write correct n_rot.

* Update convert-persimmon-to-gguf.py

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-12 19:29:57 +02:00
Abhilash Majumder
43fe07c1a4 ggml-sycl: Replace 3d ops with macro (#5458)
* use macro

* use macro

* fix format
2024-02-12 20:22:05 +05:30
Daniel Bevenius
4a46d2b792 llava : remove prog parameter from ArgumentParser (#5457)
* llava: remove prog parameter from ArgumentParser

This commit removes the `prog` parameter from `ArgumentParser`
so that it uses the default value which is the name of the script.

The motivation for this change is that currently the usage output looks
like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert_hf_to_gguf.py [-h] ...
```
And with this change it will look like this:
```console
$ python examples/llava/convert-image-encoder-to-gguf.py --help
usage: convert-image-encoder-to-gguf.py [-h] ...
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* ci: add W503 to flake8 ignore list

This commit adds W503 to the ignore list for flake8. This is done to
avoid the following error:
W503 line break before binary operator

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-12 10:38:44 +02:00
Georgi Gerganov
3b169441df sync : ggml (#5452)
* ggml-alloc : v3 (ggml/727)

* ggml-alloc v3

ggml-ci

* fix ci

ggml-ci

* whisper : check for backend buffer allocation failures

* whisper : avoid leaks when initialization fails

* cleanup

ggml-ci

* style fixes

ggml-ci

* sync : ggml

* update llama.cpp, clip.cpp, export-lora.cpp

* update finetune.cpp, train-text-from-scratch.cpp

ggml-ci

* ggml-backend : reduce alignment to 32 to match gguf and fix mmap

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-12 09:16:06 +02:00
Johannes Gäßler
3bdc4cd0f5 CUDA: mul_mat_vec_q tiling, refactor mul mat logic (#5434)
* CUDA: mul_mat_vec_q tiling, refactor mul mat logic

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-11 19:08:39 +01:00
Douglas Hanley
2891c8aa9a Add support for BERT embedding models (#5423)
* BERT model graph construction (build_bert)
* WordPiece tokenizer (llm_tokenize_wpm)
* Add flag for non-causal attention models
* Allow for models that only output embeddings
* Support conversion of BERT models to GGUF
* Based on prior work by @xyzhang626 and @skeskinen

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 11:21:38 -05:00
github-actions[bot]
97a336507e flake.lock: Update
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/b8b232ae7b8b144397fdb12d20f592e5e7c1a64d' (2024-01-31)
  → 'github:NixOS/nixpkgs/f8e2ebd66d097614d51a56a755450d4ae1632df1' (2024-02-07)
2024-02-11 07:50:41 -08:00
Sergio López
c88c74f967 vulkan: only use M-sized matmul on Apple GPUs (#5412)
* vulkan: refactor guess_matmul_pipeline for vendor

Refactor ggml_vk_guess_matmul_pipeline to simplify adding per-vendor
conditionals.

Signed-off-by: Sergio Lopez <slp@redhat.com>

* vulkan: only use M-sized matmul on Apple GPUs

L-sized and S-sized matmuls are broken on Apple GPUs, force using
M-size with this vendor.

Signed-off-by: Sergio Lopez <slp@redhat.com>

---------

Signed-off-by: Sergio Lopez <slp@redhat.com>
2024-02-11 15:12:00 +01:00
Alexey Parfenov
a803333a4e common : use enums for sampler types (#5418)
* common: use enums for sampler types

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* minor : spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 15:43:31 +02:00
Alexey Parfenov
684780141a server : allow to specify tokens as strings in logit_bias (#5003)
* server: allow to specify tokens as strings in logit_bias

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-11 15:38:14 +02:00
Georgi Gerganov
85910c5b30 main : ctrl+C print timing in non-interactive mode (#3873) 2024-02-11 15:35:50 +02:00
Georgi Gerganov
139b62a839 common : fix compile warning 2024-02-11 15:33:43 +02:00
Georgi Gerganov
0f2411f154 ggml : fix compile warnings (unused vars) (#4966) 2024-02-11 15:33:01 +02:00
snadampal
a07d0fee1f ggml : add mmla kernels for quantized GEMM (#4966)
* ggml: aarch64: implement smmla kernel for q8_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q8_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_0_q8_0 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_0_q8_0 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: aarch64: implement smmla kernel for q4_1_q8_1 quantized gemm

armv8.2-a and above supports MMLA instructions that have higher
throughput than DOT. this commit adds mmla kernel for
q4_1_q8_1 gemm. The feature is enabled if the platform supports
"__ARM_FEATURE_MATMUL_INT8"

On AWS Graviton3 processors this kernel resulted up to 1.5x
improvement for prompt evaluation throughput compared to the
default sdot kernel.

* ggml: update unit tests for the new vec_dot interface

* llama.cpp: add MATMUL_INT8 capability to system_info
2024-02-11 15:22:33 +02:00
Johannes Gäßler
e4640d8fdf lookup: add print for drafting performance (#5450) 2024-02-11 12:44:51 +01:00
Xuan Son Nguyen
907e08c110 server : add llama2 chat template (#5425)
* server: add mistral chat template

* server: fix typo

* server: rename template mistral to llama2

* server: format_llama2: remove BOS

* server: validate "--chat-template" argument

* server: clean up using_chatml variable

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-02-11 12:16:22 +02:00
Ian Bull
f026f8120f metal : use autoreleasepool to avoid memory leaks (#5437)
There appears to be a known memory leak when using the
`MLTCommandBuffer`. It is suggested to use `@autoreleasepool` in
[1,2]

[1] https://developer.apple.com/forums/thread/662721
[2] https://forums.developer.apple.com/forums/thread/120931

This change-set wraps the `ggml_metal_graph_compute` in a
`@autoreleasepool`.

This commit addresses https://github.com/ggerganov/llama.cpp/issues/5436
2024-02-10 12:53:28 +02:00
Georgi Gerganov
cd9aea63b5 scripts : update sync scripts with new backends 2024-02-10 09:53:05 +02:00
Georgi Gerganov
43b65f5eb8 sync : ggml 2024-02-10 09:30:36 +02:00
Michael Podvitskiy
4633d93af0 ggml : add abort_callback for cpu backend (ggml/725)
* a way to use abort_callback with the cpu backend

* whisper update
2024-02-10 09:29:21 +02:00
Neuman Vong
4b7b38bef5 vulkan: Set limit for task concurrency (#5427)
A common default for the maximum number of open files is 256, which can
lead to `asyncio.gather(*tasks)` failing with Too many open files.

    $ python ggml_vk_generate_shaders.py --glslc=$ANDROID_NDK_PATH/shader-tools/darwin-x86_64/glslc
    ggml_vulkan: Generating and compiling shaders to SPIR-V
    Traceback (most recent call last):
      File "/Users/neuman/Code.noindex/github/llama.cpp/ggml_vk_generate_shaders.py", line 2326, in <module>
        asyncio.run(main())
      File "/Users/neuman/Code.noindex/miniforge3/lib/python3.10/asyncio/runners.py", line 44, in run
        return loop.run_until_complete(main)
      File "/Users/neuman/Code.noindex/miniforge3/lib/python3.10/asyncio/base_events.py", line 649, in run_until_complete
        return future.result()
      File "/Users/neuman/Code.noindex/github/llama.cpp/ggml_vk_generate_shaders.py", line 2294, in main
        await asyncio.gather(*tasks)
    [...snip...]
    OSError: [Errno 24] Too many open files

This change sets a reasonable concurrency limit for tasks (and therefore
open files), without significant impact on run time.
2024-02-09 19:30:19 +01:00
Daniel Bevenius
e00d2a62dd llava : add requirements.txt and update README.md (#5428)
* llava: add requirements.txt and update README.md

This commit adds a `requirements.txt` file to the `examples/llava`
directory. This file contains the required Python packages to run the
scripts in the `examples/llava` directory.

The motivation of this to make it easier for users to run the scripts in
`examples/llava`. This will avoid users from having to possibly run into
missing package issues if the packages are not installed on their system.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llava: fix typo in llava-surgery.py output

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-09 15:00:59 +02:00
Riley Stewart
7c777fcd5d server : fix prompt caching for repeated prompts (#5420) 2024-02-09 12:49:49 +02:00
Paul Tsochantaris
e5ca3937c6 llama : do not cap thread count when MoE on CPU (#5419)
* Not capping thread count when MoE inference is running on CPU

* Whitespace
2024-02-09 12:48:06 +02:00
Marko Tasic
e4124c2477 readme : add JavaScript/Wasm repo (#5415) 2024-02-09 12:17:00 +02:00
Michael Podvitskiy
b2f87cb64d ggml : fix error C2078: too many initializers for MSVC ARM64 (#5404) 2024-02-09 11:56:43 +02:00
0cc4m
44fbe34360 Fix Vulkan crash on APUs with very little device memory (#5424)
* Fix Vulkan crash on APUs with very little device memory

* Fix debug output function names
2024-02-09 06:52:33 +01:00
Johannes Gäßler
8e6a9d2de0 CUDA: more warps for mmvq on NVIDIA (#5394) 2024-02-08 21:56:40 +01:00
slaren
41f308f58e llama : do not print "offloading layers" message in CPU-only builds (#5416) 2024-02-08 21:33:03 +01:00
Abhilash Majumder
6e99f2a04f Fix f16_sycl cpy call from Arc (#5411)
* fix f16_sycl cpy call

* rm old logic

* add fp16 build CI

* use macro

* format fix
2024-02-08 22:39:10 +05:30
Daniel Bevenius
ff4ff05c5f llava : add missing .py, and fix paths in README.md (#5414)
This commit adds the missing .py extension to the convert-image-encoder-to-gguf
script. It also fixes the paths for the `model` and `mmproj` options in the
example llava-cli command.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-08 16:20:03 +02:00
Johannes Gäßler
b7b74cef36 fix trailing whitespace (#5407) 2024-02-08 11:36:54 +01:00
runfuture
4aa43fab56 llama : fix MiniCPM (#5392)
* fix bug for norm_rms_eps missing

* to align with the same order as convert.py for model write

* fix: undo HF models permute tensor

* update for flake8 lint
2024-02-08 12:36:19 +02:00
Daniel Bevenius
a6e514a85f llava: fix typo/formatting in README.md (#5405)
This commit fixes a typo in the README.md file for the llava example
which is causing the formatting to look a little off:

Clone llava-v15-7b`` and clip-vit-large-patch14-336`` locally

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-02-08 09:58:19 +01:00
Johannes Gäßler
26d4efd11e sampling: fix top_k <= 0 (#5388)
* sampling: fix top_k <= 0

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-08 09:46:30 +01:00
Georgi Gerganov
8504d2d0da tests : .gitignore obj files 2024-02-08 09:46:47 +02:00
Michael Podvitskiy
c4fbb6717c CMAKE_OSX_ARCHITECTURES for MacOS cross compilation (#5393)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-02-07 16:39:23 -05:00
Ebey Abraham
8c933b70c2 fix typo in readme (#5399)
Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
2024-02-07 22:11:30 +01:00
Kamil Tomšík
b906596bb7 Add Ava in the list of llama.cpp UIs (#4362) 2024-02-07 13:44:52 -05:00
Johannes Gäßler
aa7ab99be2 CUDA: fixed mmvq kernel for bs 2,3,4 and -sm row (#5386) 2024-02-07 12:40:26 +01:00
Neo Zhang Jianyu
10afa6f1d1 [SYCL] update install make by w64devkit (#5297) 2024-02-07 18:16:55 +08:00
Xiao-Yong Jin
0ef46da632 llava-cli : always tokenize special tokens (#5382)
* llava-cli: tokenize special tokens in prompt

* llava-cli: use the escape CLI argument, remove incomplete separate escaping process
2024-02-07 10:17:25 +02:00
0cc4m
ee1628bdfe Basic Vulkan Multi-GPU implementation (#5321)
* Initial Vulkan multi-gpu implementation

Move most global variables into backend context

* Add names to backend device functions

* Add further missing cleanup code

* Reduce code duplication in tensor split layer assignment

* generalize LLAMA_SPLIT_LAYER for all backends, do not expose device count and memory in llama.h

* Only do device info print in the beginning and initialize one backend for cpu assist

Add missing cleanup code

* Rework backend memory management to make sure devices and buffers get properly allocated and freed

* Rename cpu assist free function

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-02-07 07:54:50 +01:00
Eve
ed0bf32290 readme : modernize (#5379)
* first cleanup, update everything to Llama 2 and remove outdated content

* Delete SHA256SUMS

* make build instructions generic

* recommend Q4_K_M quantization method

* Update README.md
2024-02-07 08:21:30 +02:00
Ben Williams
9a697d842b readme : update ui list (#5354) 2024-02-07 08:16:48 +02:00
runfuture
316c7faf77 llama : add MiniCPM support (#5346)
* support minicpm arch.

* fix tab/space typo.

* convert minicpm model via convert-hf-gguf.py

* try to make tokenizer work

* fix bug for quantize minicpm

* fix for flake8 lint

* remove convert-minicpm.py

* fix for editorconfig

* correct minicpm model type (size)

* constants expanded for minicpm

* Minor change of the constant names for minicpm
2024-02-07 08:15:56 +02:00
Justin Parker
f3e2b4fa3f server : update /props with "total_slots" value (#5373)
* include total "num_slots" in default_generation_settings_for_props

* cleanup total_slots return value in /props endpoint

* update /props endpoint docs with total_slots

* remove num_slots from default_generation_settings_for_props

* update /props endpoint section
2024-02-07 08:15:19 +02:00
Sang-Kil Park
f68664ac24 convert : fix TypeError on GPT-2 vocab.json (#5288) 2024-02-06 23:28:00 -05:00
Alexey Parfenov
213d1439fa server : remove model.json endpoint (#5371) 2024-02-06 20:08:38 +02:00
Johannes Gäßler
17c97fb062 CUDA: mul_mat_vec_q max. batch size 8 -> 4 (#5370) 2024-02-06 19:43:06 +02:00
Kawrakow
b08f22c882 Update README.md (#5366)
Add some links to quantization related PRs
2024-02-06 19:00:16 +02:00
Kawrakow
f57fadc009 Slight quantization improvement for Q4_K and Q5_K (#5361)
* Q4_K: slightly better quantization

* Q5_K: slightly better quantization

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-06 17:28:02 +02:00
BarfingLemurs
2e9c0bd6b3 readme : add phi, orion 14b, internlm2, and yi-VL to readme (#5362) 2024-02-06 16:06:48 +02:00
Johannes Gäßler
2c516611f1 CUDA: mul_mat_vec_q for batch sizes > 1 (#5351) 2024-02-06 14:44:06 +01:00
Justin Parker
8a79c591de server : include total "num_slots" in props endpoint (#5349) 2024-02-06 11:20:59 +02:00
Michael Coppola
31e7903221 server : add dynatemp_range and dynatemp_exponent (#5352)
* server: added `dynatemp_range` and `dynatemp_exponent`

* Update README.md

---------

Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2024-02-06 11:20:00 +02:00
Niall Coates
4ffc7a17d4 server : various fixes for the prompt field in /completion (#5300)
server : fix deadlock when prompt array contains strings and numbers

server : removed an unnecessary generation when generating multi-prompts

server : removed an unnecessary assert
2024-02-06 10:16:23 +02:00
Georgi Gerganov
906cff55c2 py : handle byte tokens in get_token_type (#5341)
* py : handle byte tokens in `get_token_type`

* py : fix empty bytes arg
2024-02-06 07:47:22 +02:00
Johannes Gäßler
098f6d737b make: Use ccache for faster compilation (#5318)
* make: Use ccache for faster compilation
2024-02-05 19:33:00 +01:00
Johannes Gäßler
78b00dda6c README: updated introduction (#5343)
* README: updated introduction

* readme : update

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 15:55:10 +01:00
Kawrakow
c6b395535a ggml : make use of ggml-quants.h possible in C++ code (#5338)
* Make use of ggml-quants.h possible in C++ code

* One cannot possibly be defining static_assert in a C++ compilation

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 14:09:47 +02:00
Dr. Tom Murphy VII Ph.D
abb61944a5 ggml : avoid duplicating function calls using MIN/MAX macros (#5325)
* Avoid duplicating function calls when using MIN/MAX macros.

Since these copy "a" and "b" they ask the compiler to evaluate one of them twice. The compiler doesn't have a problem with removing the duplication in something like MAX(0, x + 2), but in some cases we're calling functions, and those calls just happen twice.
By explicitly evaluating at the expression we get smaller and faster code without duplicate calls. See ggml_rope_yarn_corr_dims in Compiler Explorer:

https://godbolt.org/z/Ee4KMrvKh

Code behaves exactly the same.

* Update ggml.c

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 13:13:57 +02:00
Kawrakow
89503dcb5f iq3_xxs: quards for the no-imatrix situation (#5334)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 12:32:27 +02:00
Guoteng
7e1ae372f3 py : fix internlm2-hf convert to gguf (#5305)
* py : fix internlm2-hf convert to gguf

* ggml-ci
2024-02-05 11:04:06 +02:00
Kawrakow
6fdfa2ecc6 iq2_xxs: tune quantization (#5320)
We get slightly better PPL, and we cut quantization time in
nearly half.

The trick is to 1st quantize without forcing points onto the E8-lattice.
We can then use a narrower search range around the block scale that we
got that way.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-05 10:46:06 +02:00
Alexey Parfenov
a2d60c9158 server : allow to get default generation settings for completion (#5307) 2024-02-05 10:10:22 +02:00
l3utterfly
e6f8177532 common : add dynamic temperature parameters to main example cli (#5295)
* added dynamic temp params in main

* added help text
2024-02-05 10:00:47 +02:00
Georgi Gerganov
30679d438d scripts : fix typos, cleanup (#5303) 2024-02-05 09:48:03 +02:00
Нияз Гарифзянов
4be04c8965 scripts : add non-interactive server-llm.sh (#5303)
* Update server-llm.sh

Add flag --non-interactive that allows run script without asking a permission

* Update scripts/server-llm.sh

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-02-05 09:43:57 +02:00
chiranko
5d55b0cd82 readme : add CodeShell models to the supported models list (#5330) 2024-02-05 09:41:38 +02:00
AidanBeltonS
4833ac209d [SYCL] Fix cpy with dims of 3 (#5289)
* Fix cpy with dims of 3

* rm asserts

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-05 12:38:24 +05:30
github-actions[bot]
9392ebd49e flake.lock: Update
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/07f6395285469419cf9d078f59b5b49993198c00' (2024-01-11)
  → 'github:hercules-ci/flake-parts/b253292d9c0a5ead9bc98c4e9a26c6312e27d69f' (2024-02-01)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/b0d36bd0a420ecee3bc916c91886caca87c894e9?dir=lib' (2023-12-30)
  → 'github:NixOS/nixpkgs/97b17f32362e475016f942bbdfda4a4a72a8a652?dir=lib' (2024-01-29)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/ae5c332cbb5827f6b1f02572496b141021de335f' (2024-01-25)
  → 'github:NixOS/nixpkgs/b8b232ae7b8b144397fdb12d20f592e5e7c1a64d' (2024-01-31)
2024-02-04 08:45:35 -08:00
Kawrakow
5ed26e1fc9 Adding some imatrix tools (#5302)
* imatrix: adding --combine and --continue-from

* imatrix: be able to start from a specific chunk

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-04 10:39:58 +02:00
Welby Seely
277fad30c6 cmake : use set() for LLAMA_WIN_VER (#5298)
option() is specifically for booleans.

Fixes #5158
2024-02-03 23:18:51 -05:00
Johannes Gäßler
3c0d25c475 make: add nvcc info print (#5310) 2024-02-03 20:15:13 +01:00
Johannes Gäßler
3cc5ed353c make: fix nvcc optimization flags for host code (#5309) 2024-02-03 20:14:59 +01:00
Martin Schwaighofer
60ecf099ed add Vulkan support to Nix flake 2024-02-03 13:13:07 -06:00
0cc4m
e920ed393d Vulkan Intel Fixes, Optimizations and Debugging Flags (#5301)
* Fix Vulkan on Intel ARC

Optimize matmul for Intel ARC

Add Vulkan dequant test

* Add Vulkan debug and validate flags to Make and CMakeLists.txt

* Enable asynchronous transfers in Vulkan backend

* Fix flake8

* Disable Vulkan async backend functions for now

* Also add Vulkan run tests command to Makefile and CMakeLists.txt
2024-02-03 18:15:00 +01:00
Michael Klimenko
52bb63c708 refactor : switch to emplace_back to avoid extra object (#5291) 2024-02-03 13:23:37 +02:00
Jared Van Bortel
1ec3332ade YaRN : store rope scaling type as int32_t in memory (#5285)
* YaRN : store rope scaling type as int32_t in memory

* llama : store mapped names as const char *
2024-02-03 13:22:06 +02:00
BADR
6a66c5071a readme : add tenere in the ui tools list (#5284) 2024-02-03 13:20:26 +02:00
AidanBeltonS
a305dba8ff Fix im2col with 32fp (#5286) 2024-02-03 16:11:37 +08:00
kalomaze
191221178f perplexity : fix KL divergence calculations on Windows (#5273) 2024-02-02 16:15:30 +02:00
Georgi Gerganov
e437b37fd0 scripts : parse wtype in server-llm.sh (#5167)
* scripts : parse wtype in server-llm.sh

* scripts : fix check for wfile
2024-02-02 14:23:40 +02:00
Mirror Azure
2d40085c26 py : add check for '.attn.masked_bias' layers to GPT2model (#5281) 2024-02-02 13:39:09 +02:00
AidanBeltonS
b05102fe8c Tidy ggml-sycl (#5261)
* Tidy some code in ggml-sycl

* Remove blank space

* Remove std::printf comments

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-02-02 16:39:48 +08:00
Xuan Son Nguyen
6b91b1e0a9 docker : add build for SYCL, Vulkan + update readme (#5228)
* add vulkan dockerfile

* intel dockerfile: compile sycl by default

* fix vulkan dockerfile

* add docs for vulkan

* docs: sycl build in docker

* docs: remove trailing spaces

* docs: sycl: add docker section

* docs: clarify install vulkan SDK outside docker

* sycl: use intel/oneapi-basekit docker image

* docs: correct TOC

* docs: correct docker image for Intel oneMKL
2024-02-02 09:56:31 +02:00
Meng, Hengyu
e805f0fa99 [SYCL] get MAX_MEM_ALLOC from device property (#5270)
* get max alloc size from device prop

* fix macro typo
2024-02-02 15:54:14 +08:00
Neo Zhang Jianyu
af3ba5d946 [SYCL] update guide of SYCL backend (#5254)
* update guide for make installation, memory, gguf model link,  rm todo for windows build

* add vs install requirement

* update for gpu device check

* update help of llama-bench

* fix grammer issues
2024-02-02 15:53:27 +08:00
Ian Bull
e1e721094d llama : fix memory leak in llama_batch_free (#5252)
The llama_batch_init allocates memory for a fixed number of tokens.
However, the llama_batch_free only frees memory for the number of
tokens that were added to the batch.

This change-set uses a null terminated array for the batch seq_id, and
frees all the elements until the nullptr is reached. This change-set
also changes the name of the first parameter from `n_tokens` to
`n_tokens_alloc` to more clearly indicate that this value is the number
of tokens allocated to the batch, not the number of tokens in the batch.
2024-02-02 09:20:13 +02:00
Neo Zhang Jianyu
128dcbd3c9 add --no-mmap in llama-bench (#5257)
* add --no-mmap, show sycl backend

* fix conflict

* fix code format, change print for --no-mmap

* ren no_mmap to mmap, show mmap when not default value in printer

* update guide for mmap

* mv position to reduce model reload
2024-02-01 20:48:53 +01:00
0cc4m
4d0924a890 Vulkan Phi Fix for AMD Proprietary Drivers (#5260)
* Replace tanh to avoid NaN in gelu shader on AMD proprietary driver

* Fix another Vulkan CPY buffer size bug
2024-02-01 19:25:24 +01:00
slaren
8ca511cade cuda : fix LLAMA_CUDA_F16 (#5262) 2024-02-01 18:30:17 +01:00
Ali Nehzat
d71ac90985 make : generate .a library for static linking (#5205) 2024-02-01 17:18:53 +02:00
Guoteng
ce32060198 llama : support InternLM2 (#5184)
* support InternLM2 inference
  * add add_space_prefix KV pair
2024-02-01 11:19:51 +02:00
Eve
1cfb5372cf Fix broken Vulkan Cmake (properly) (#5230)
* build vulkan as object

* vulkan ci
2024-01-31 20:21:55 +01:00
Georgi Gerganov
d3bac7d584 llama : reorder build_orion() at correct place (#5118) 2024-01-31 18:47:10 +02:00
Georgi Gerganov
5cb04dbc16 llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)
* llama : remove LLAMA_MAX_DEVICES from llama.h

ggml-ci

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* server : remove LLAMA_MAX_DEVICES

ggml-ci

* llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD

ggml-ci

* train : remove LLAMA_SUPPORTS_GPU_OFFLOAD

* readme : add deprecation notice

* readme : change deprecation notice to "remove" and fix url

* llama : remove gpu includes from llama.h

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-31 17:30:17 +02:00
Georgi Gerganov
efb7bdbbd0 metal : add im2col F32 dst support (#5132) 2024-01-31 15:35:41 +02:00
JidongZhang-THU
15606309a0 llava : add MobileVLM support (#5132)
* New Feature:
    1. Sum_Rows:
        fix cuda kernel overflow
        fix block shape error when nrows too big
    2. Im2Col:
        Support Batch in cuda
        Support f32 to f32 both in cpu && cuda
    3. DepthWiseConv:
        Support by Im2Col && MulMat
    4. Pool_2d:
        Supoort avg pooling in cuda
    5. HardSigmoid:
        Imp in cuda
    6. HardSwish:
        Imp in cuda

* fix tabs instead of spaces

* code clean

* CUDA POOL2D

* ADD POOL2D test case in test-backend-ops.cpp

* code clean

* fix pool2d_kernel

nits

* fix bug in pool2d kernel

* fix avg pooling, count_include_pad

nits

* test-backend-ops : add more pool_2d tests

* cuda : fix warnings and formatting

* ggml : check types in release builds too in pool_2d

* test-backend-ops : remove f16 pool_2d tests

* cuda : more style fixes

* Add assert in ggml_cuda_op_pool2d

* pool2d float padding fallback

* test-backend-ops : add dst_type to im2col

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-31 15:10:15 +02:00
Neo Zhang Jianyu
b2b9f025e7 format license text, restore apache license by legal suggestion (#5233) 2024-01-31 18:34:46 +05:30
slaren
dabcc5b471 ggml : limit n_threads to the max n_tasks (#5238) 2024-01-31 13:43:03 +01:00
0cc4m
f8e9140cb4 Vulkan Fixes (#5223)
* Fix Vulkan F16 models

* Fix Vulkan context shift crash

* Add Vulkan to common.cpp dump_non_result_info_yaml function

* Fix bug in Vulkan CPY op

* Fix small matrix multiplication errors in AMD GPUs on Windows or with amdvlk

Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>

---------

Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com>
2024-01-31 11:44:19 +01:00
Yiming Cui
d62520eb2c Fix typos of IQ2_XXS and IQ3_XXS in llama.cpp (#5231) 2024-01-30 22:04:21 -05:00
Neo Zhang Jianyu
01684139c3 support SYCL backend windows build (#5208)
* support SYCL backend windows build

* add windows build in CI

* add for win build CI

* correct install oneMKL

* fix install issue

* fix ci

* fix install cmd

* fix install cmd

* fix install cmd

* fix install cmd

* fix install cmd

* fix win build

* fix win build

* fix win build

* restore other CI part

* restore as base

* rm no new line

* fix no new line issue, add -j

* fix grammer issue

* allow to trigger manually, fix format issue

* fix format

* add newline

* fix format

* fix format

* fix format issuse

---------

Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-01-31 08:08:07 +05:30
Jared Van Bortel
e8dc55d006 kompute : llama-bench support and ggml_cpu_has_kompute() (#5226) 2024-01-30 19:04:37 -05:00
Georgi Gerganov
e0085fdf7c Revert "server : change deps.sh xxd files to string literals (#5221)"
This reverts commit 4003be0e5f.
2024-01-30 21:19:26 +02:00
Georgi Gerganov
e6f291d158 server : fix context shift (#5195)
* server : fix context shift + simplify self-extend

* server : take system_tokens into account

* server : more n_past fixes

* server : rever n_past_se changes
2024-01-30 20:17:30 +02:00
JohnnyB
4003be0e5f server : change deps.sh xxd files to string literals (#5221)
* Changed ugly xxd to literals.

HPP files are much more readable as multiline literals rather than hex arrays.

* Dashes in literal variable names.

Replace . and - with _ in file names -> variable names.

* Comment on removing xxd.

XXD-> string literals

* XXD to string literals.

Replaced these unreadable headers with string literal versions using new deps.sh.
2024-01-30 20:15:05 +02:00
Kawrakow
fea4fd4ba7 ggml : fix IQ3_XXS on Metal (#5219)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 19:15:28 +02:00
Georgi Gerganov
8f8ddfcfad sync : ggml (#0) 2024-01-30 16:21:57 +02:00
Georgi Gerganov
6fb50ebbf0 gguf : fix comparison (ggml/715)
ggml-ci
2024-01-30 16:20:25 +02:00
John Balis
625a699b54 ggml_cuda_cpy support for 4d tensors and float16->float32 upcasting (ggml/686)
* added cuda float16->float32 upcasting to ggml_cuda_cpy

* added ability to copy 4d tensors with the cuda backend

* added tests for float16_>float32 upcast and 4d tensor cuda copys

* added 4d copy test for float32->float16 copy

* applied patch suggested by @iamlemec

* simplify cpy tests

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-30 16:20:25 +02:00
Georgi Gerganov
a4b07c057a gguf : add input validation, prevent integer overflows (ggml/709)
* gguf : add input validation, prevent integer overflows

ggml-ci

* gguf : fix switch default case

* gguf : sanitize info->n_dims and info->type

ggml-ci

* gguf : assert GGUF_TYPE_SIZE access

ggml-ci

* ggml : assert mallocs are successful

ggml-ci

* gguf : prevent integer overflow

* gguf : sanitize tensor info

ggml-ci

* gguf : stricter limit on the number of items

ggml-ci
2024-01-30 16:20:25 +02:00
Georgi Gerganov
549a1e6cd5 ci : fix yolo URLs + fix metal capture (ggml/712) 2024-01-30 16:20:25 +02:00
Jack Mousseau
5f14ee0b0c metal : add debug capture backend function (ggml/694)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-30 16:20:25 +02:00
Kawrakow
8e14e3ddb3 Faster AVX2 dot product for IQ2_XS (#5187)
* iq2xs: faster AVX2 dot product

* iq2xs: small AVX2 imrovement

* Speed up computing sign bits in AVX2 iq2_xs dot product

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Peter Reid <peter@peterreid.net>
2024-01-30 15:15:07 +02:00
Kawrakow
f4d7e54974 SOTA 3-bit quants (#5196)
* iq3_xxs: quantize/dequantize

RMSE seems a bit high-ish at about half-way between q2_K and
q3_K, so need to check more.

* iq3_xxs: CUDA dequantize works

* iq2_xxs: tuning quantization

* iq3_xxs: starting to look better

PPL on wiki.test.raw
LLaMA-v1-7B: 6.4218
LLaMA-v2-7B: 6.3560
Mistral-7B : 6.0717

This is better than Q3_K_XS, with a 5% reduction in quantized model
size.

* iq3_xxs: CUDA dot product

We have
PP-512: 5891 t/s
TG-128: 143.9 t/s

* iq3_xxs: scalar and AVX2 dot products

* iq3_xxs: ARM_NEON and Metal

Metal performance is decent, ARM_NEON is pathetic

* iq3_xxs: slightly better grid points

* Faster iq3_xxs and iq2_xs dot products on CUDA

* iq3_xxs: add some quant mix

* iq3_xxs: fix failing quantization test

Dot product still fails. Is this real?

* iq3_xxs: hopefully fix ROCm

* iq3_xxs: failing tests

This time the dot product accuracy did find an actual bug
in the AVX2 implementation.

* Add IQ3_XXS to test-backend-ops

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-30 15:14:12 +02:00
0cc4m
2256f36b79 Vulkan Windows APU Memory Handling (#5199)
* Add basic UMA memory handling

Improve memory OOM behavior

Fix tests

* Fix UMA handling

* Also fix UMA handling for prealloc buffers

* Remove unnecessary warning message

* Remove outdated comment
2024-01-30 13:59:30 +01:00
Vladimir Malyutin
7359016c7c quantize : fix typo (#5211)
Fix misprint in quantize help
2024-01-30 12:57:07 +02:00
divinity76
813416991a main : allow empty --prompt-cache file (#5176)
* allow empty --prompt-cache file

This allows the use of std::tmpnam(), std::tmpfile(), Python's tempfile.NamedTemporaryFile(), and similar create-empty-file API's for the user.

I switched from the C fopen API to the C++ filesystem api to get around the fact that, to the best of my knowledge, C has no portable way to get the file size above LONG_MAX, with std::ftell() returning long? fallback to std::ifstream for c++  < 17
(the project is currently targeting C++11 it seems - file_exists() and file_size() can be removed when we upgrade to c++17)

* formatting

(requested in codereview)

* remove c++17, file_is_empty
2024-01-30 11:18:02 +02:00
Romain Neutron
5589921ef8 readme : minor (#5204)
This is about tuning the code formatting of the README file
2024-01-30 11:16:38 +02:00
Georgi Gerganov
49f44b5c55 readme : update hot topics 2024-01-30 11:14:44 +02:00
Wu Jian Ping
6685cc41c2 server : improve README (#5209) 2024-01-30 11:11:46 +02:00
Paul Tsochantaris
ceebbb5b21 ggml alloc: Fix for null dereference on alloc failure (#5200)
* Fix for a null pointer dereference if a metal GGML buffer fails to be allocated

* Freeing the allocated buffers rather than the pointer in ggml-alloc.c

* Fixed the fix of the fix
2024-01-29 23:19:29 +01:00
Jared Van Bortel
6daa69ee81 kompute : fix fallback to CPU (#5201) 2024-01-29 17:11:27 -05:00
Jared Van Bortel
fbf1ddec69 Nomic Vulkan backend (#4456)
Signed-off-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: niansa <anton-sa@web.de>
Co-authored-by: Adam Treat <treat.adam@gmail.com>
Co-authored-by: Aaron Miller <apage43@ninjawhale.com>
Co-authored-by: ToKiNoBug <tokinobug@163.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-29 15:50:50 -05:00
divinity76
2aed77eb06 fix typo "RLIMIT_MLOCK" (#5175) 2024-01-29 09:45:41 -05:00
Wu Jian Ping
c82d18e863 server : embeddings compatibility for OpenAI (#5190) 2024-01-29 15:48:10 +02:00
Georgi Gerganov
14fef85e2d py : fix except (#5194)
ggml-ci
2024-01-29 15:35:54 +02:00
Sang-Kil Park
e76627bcce py : improve BPE tokenizer support (#5189) 2024-01-29 11:24:19 +02:00
slaren
fbe7dfa53c ggml : add max buffer sizes to opencl and metal backends (#5181) 2024-01-29 10:05:13 +02:00
Eve
172ac82629 cmake : fix Vulkan build (#5182) 2024-01-29 10:04:47 +02:00
Paul Tsochantaris
d2f650cb5b metal : free metal objects (#5161)
* Releasing MTLFunction references after Metal pipeline construction

* Keeping the `ggml_metal_kernel` structure

* Spacing fix

* Whitespace fix
2024-01-28 21:50:16 +02:00
Georgi Gerganov
35dec26cc2 sync : ggml 2024-01-28 19:48:05 +02:00
Georgi Gerganov
d460510c72 ggml : minor type fix (int64_t -> size_t) 2024-01-28 19:47:31 +02:00
0cc4m
2307523d32 ggml : add Vulkan backend (#2059)
* Vulkan loader code

* Fix matmul kernel, continue implementation

* Continue implementation

* Vulkan memory management

* Vulkan development

* Matmul call

* Add aligned malloc and free for VMA

* Continue implementation

* First matmul success

* GEMM Kernel optimization

* 1D Blocktiling

* 2D Blocktiling

* Write coalescing

* Continue vulkan implementation and optimization

* First FP16 attempt, disabled for now

* Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel

* Enable device extensions properly, restore fp16 matmul op

* Fix mulmat_f16

* Output FP32 in fp16 matmul shader

* Fix f16_to_f32 kernel

* dequant_q4_0 kernel

* Add VMA library

* Avoid requesting dedicated memory, VMA can decide that by itself

* Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly

* add cmake commands

* Add 2d write operation, profiling code

* Fix 2d write

* Fix queue selection for AMD RADV

* Fix trailing whitespace in vk_mem_alloc.h

* Add WIP warp tile mat mul shaders

* Disable glslc optimization

* Disable glslc optimization for CMake

* Optimize warptile matmul shader, replace blocktile with it

* Add split-k optimization for small matrix multiplication

Use semaphores for synchronization instead of fences or waitidle

Rework async write/read for synchronization

* Fix validation errors, improve compatibility with AMD GPUs

* Rework command buffer handling

* Variable matmul kernel using specialization constants

* Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints

* Reuse semaphores

* Handle stage flags during command buffer submission properly

* Increase matmul test runs for consistent results

* Fix F32 matmul

* Add vectorized loading and zeropadding for matrix multiplication

* Use pinned memory for f16 preprocessing

* Don't force aligned matmul

* Don't free before queue done

* Replace VMA library with native Vulkan buffer management

* Basic offloading support with mul_f32 and dmmv for q4_0

* Run glslc commands in parallel

* Unroll loops in dmmv shader

* Reduce usage of waitIdle

* Reuse pinned allocation for f16 conversion

* Handle devices with only a single queue

* Fix trailing whitespace in CMakeLists.txt

* Allow parallel execution of kernels, parallelize third and fourth dimension calls

* Add fallback for devices only supporting one DescriptorSet per DescriptorPool

* Move to graph function similar to CUDA implementation

* Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function

* Add F32 dmmv shaders

* Batch submissions

* Add .spv to gitignore

* Split off matrix vector multiplication for separate optimization

* Use single command buffer for matrix vector multiplication ops

* Reduce overhead of mul_f32 calls by using a single command buffer

* Add submission batching to mul_f32

* Fix tests

* Add missing barrier

* Add further missing barrier

* Add further ops

* Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions

* Remove unnecessary cblas link

* Fix descriptor set pre-allocation assert

* Add runtime shader compilation, start transferring shaders to this approach

* Transfer remaining shaders to header and compile on runtime

* Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16

* Add support for q4_1, q5_0, q5_1 and q8_0

* Remove unnecessary scalar layout extension

* Parse graph early to pre-record command buffers

* Add q6_k support

* Add multi-submit for command buffers

* Fix q6_k dequant shader for AMD

* Fix q6_k for GPUs without fp16 support

* Simplify q6_k fp16 fix

* Minor fixes

* Fix wg_denom of m-mulmat shaders

* Add Python-based Vulkan shader generator

* Replace shaderc dependency with precompiled shaders

Fix python script to generate shaders

* Clean up code

* Fix shader generator script Windows compatibility

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>

* Close file before deletion

* Fix vulkan shader fp32 name

* Add q2_k and q3_k support

Add validation check to compare shader results to cpu results

* Add q4_k support

* Add q5_k support

* Bake SPIR-V bytecode into the library instead of loading shaders from file

* Switch to signal semaphores for flexibility

Prepare broadcasting support for mul mat

* Finish broadcasting mul mat support for GQA

* Clean up unused functions

Add repeat op

* Add further ops, not yet enabled. Improve semaphore code

* Reduce number of used semaphores by utilizing timelines more properly

* Remove queue information

* Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations

* Add Vulkan to llama-bench

* Remove cblas dependency

* Fix matmul k-split bug

* Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader

* Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug

* Fix issues with float16 overflows in shaders

* Fix issues with older Vulkan headers on Ubuntu 22.04

* Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers

* Implement further ops, rework op_f32 calls, fix bugs

* Finish full offloading support, add last remaining ops, fix bugs, remove redundant code

* Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders

* Merge upstream changes, fix conflicts, adapt soft_max op

* Fix Python and shader header format

* Free model gpu buffers on exit

* Use single queue per device to simplify code

* Add matmul shader support for running multiple calculations in parallel

* Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible

* Fix missing event cast

* Replace uint64_t(-1) with UINT64_MAX, rename function for clarity

* Fix warning about empty C function parameters

* Fix compiler warnings

* Properly implement Vulkan backend buffer handling

* Fix oversized host staging buffers

* Simplify barrier synchronization calls

* Fix gcc warnings

* Implement max_size for backend buffer types to limit the size of a single allocation

* Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size

* refactor multi buf

* Disable unsupported ops to fix tests

* Check for maintenance4 support before using it

* Handle devices with only a single queue

* Fix single queue logic

* propagate buffer usage in multi buffers

* Implement rope_neox op

* Cleanup header and other files

* Simplify gpu_extras by removing events and putting staging memcpys into contexts

* Move queue into context

Add not-yet-enabled async backend ops

* Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization

* Add get_max_size to SYCL backend.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix trailing whitespace

---------

Co-authored-by: Henri Vasserman <henv@hot.ee>
Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 19:03:59 +02:00
Abhilash Majumder
0f648573dd ggml : add unified SYCL backend for Intel GPUs (#2690)
* first update for migration

* update init_cublas

* add debug functio, commit all help code

* step 1

* step 2

* step3 add fp16, slower 31->28

* add GGML_LIST_DEVICE function

* step 5 format device and print

* step6, enhance error check, remove CUDA macro, enhance device id to fix none-zero id issue

* support main device is non-zero

* step7 add debug for code path, rm log

* step 8, rename all macro & func from cuda by sycl

* fix error of select non-zero device, format device list

* ren ggml-sycl.hpp -> ggml-sycl.h

* clear CMAKE to rm unused lib and options

* correct queue: rm dtct:get_queue

* add print tensor function to debug

* fix error: wrong result in 658746bb26702e50f2c59c0e4ada8e9da6010481

* summary dpct definition in one header file to replace folder:dpct

* refactor device log

* mv dpct definition from folder dpct to ggml-sycl.h

* update readme, refactor build script

* fix build with sycl

* set nthread=1 when sycl, increase performance

* add run script, comment debug code

* add ls-sycl-device tool

* add ls-sycl-device, rm unused files

* rm rear space

* dos2unix

* Update README_sycl.md

* fix return type

* remove sycl version from include path

* restore rm code to fix hang issue

* add syc and link for sycl readme

* rm original sycl code before refactor

* fix code err

* add know issue for pvc hang issue

* enable SYCL_F16 support

* align pr4766

* check for sycl blas, better performance

* cleanup 1

* remove extra endif

* add build&run script, clean CMakefile, update guide by review comments

* rename macro to intel hardware

* editor config format

* format fixes

* format fixes

* editor format fix

* Remove unused headers

* skip build sycl tool for other code path

* replace tab by space

* fix blas matmul function

* fix mac build

* restore hip dependency

* fix conflict

* ren as review comments

* mv internal function to .cpp file

* export funciton print_sycl_devices(), mv class dpct definition to source file

* update CI/action for sycl code, fix CI error of repeat/dup

* fix action ID format issue

* rm unused strategy

* enable llama_f16 in ci

* fix conflict

* fix build break on MacOS, due to CI of MacOS depend on external ggml, instead of internal ggml

* fix ci cases for unsupported data type

* revert unrelated changed in cuda cmake
remove useless nommq
fix typo of GGML_USE_CLBLAS_SYCL

* revert hip cmake changes

* fix indent

* add prefix in func name

* revert no mmq

* rm cpu blas duplicate

* fix no_new_line

* fix src1->type==F16 bug.

* pass batch offset for F16 src1

* fix batch error

* fix wrong code

* revert sycl checking in test-sampling

* pass void as arguments of ggml_backend_sycl_print_sycl_devices

* remove extra blank line in test-sampling

* revert setting n_threads in sycl

* implement std::isinf for icpx with fast math.

* Update ci/run.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/sycl/run-llama2.sh

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update CMakeLists.txt

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add copyright and MIT license declare

* update the cmd example

---------

Co-authored-by: jianyuzh <jianyu.zhang@intel.com>
Co-authored-by: luoyu-intel <yu.luo@intel.com>
Co-authored-by: Meng, Hengyu <hengyu.meng@intel.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-28 17:56:23 +02:00
Georgi Gerganov
b764b8f1d0 flake.lock: Update (#5162) 2024-01-28 14:54:54 +00:00
Johannes Gäßler
9241c3a2ac Apply min_p to unsorted tokens (#5115) 2024-01-28 09:59:49 +01:00
Johannes Gäßler
b2b2bf988c Tests for min_p, sampling queue (#5147) 2024-01-28 09:35:14 +01:00
Marcus Dunn
af4980bfed readme : add link to rust bindings (#5148)
* added link to another set of rust bindings with brief note on differences.

* fixed link name
2024-01-28 10:30:44 +02:00
sharpHL
f2e69d28c0 llama : add support for Orion-14B (#5118)
* add support for Orion-14B(https://huggingface.co/OrionStarAI/Orion-14B-Chat)

* flake8 support

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Update llama.cpp

* Update llama.cpp

---------

Co-authored-by: lixiaopu <lixiaopu@cmcm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-28 10:00:30 +02:00
Kyle Mistele
39baaf55a1 docker : add server-first container images (#5157)
* feat: add Dockerfiles for each platform that user ./server instead of ./main

* feat: update .github/workflows/docker.yml to build server-first docker containers

* doc: add information about running the server with Docker to README.md

* doc: add information about running with docker to the server README

* doc: update n-gpu-layers to show correct GPU usage

* fix(doc): update container tag from `server` to `server-cuda` for README example on running server container with CUDA
2024-01-28 09:55:31 +02:00
John
6db2b41a76 llava : support for Yi-VL and fix for mobileVLM (#5093)
* Support for Yi-VL, templating fix for mobileVLM

* ws

* Update examples/llava/clip.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llava-cli.cpp

* Update clip.cpp

bugfix for new conversions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-27 17:09:18 +02:00
Georgi Gerganov
753eafed0e sync : ggml 2024-01-27 17:00:24 +02:00
Judd
e976423005 ggml : check ggml_add src1 type (ggml/708)
Co-authored-by: Judd <foldl@boxvest.com>
2024-01-27 16:59:00 +02:00
Michael Klimenko
35a2ee9143 Remove unused data and add fixes (#5154)
* Remove unused data and add fixes

* Add missing file

* Address review comments

* Replace the scope of vq allocation
2024-01-27 15:25:55 +01:00
Maximilian Winter
ec903c0341 server : add self-extend support (#5104)
* Ported self extension to server example

* Update server.cpp

* Fixed prompt caching without self extend

* Update server.cpp

* Added description to server readme.

* Update server.cpp

* Update server.cpp

* Update server.cpp

* Update server.cpp

* Update README.md

* Changed descriptions

* server : formatting

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update server.cpp

* Update server.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-27 15:38:05 +02:00
0cc4m
a1d6df129b Add OpenCL add kernel (#5151)
* Add OpenCL add kernel

* Put add kernel into different string to stay within MSVC string length limit, disable float16 support due to bad results
2024-01-26 23:07:32 +01:00
Jared Van Bortel
bbe7c56c99 cmake : pass CPU architecture flags to nvcc (#5146) 2024-01-26 15:34:06 -05:00
slaren
62fead3ea0 cuda : fix tensor size calculation for non-split buffer (#5145) 2024-01-26 18:59:43 +01:00
slaren
15b4538ff2 ggml-alloc : add 10% margin to the buffer sizes (#5149) 2024-01-26 19:18:26 +02:00
snadampal
7032f4f634 ggml : update softmax n_task calculation (#5126)
updated the n_task calculation to use max number of
threads possible. This has improved the prompt eval
performance by around 5% for DOT kernels and by
around 10% for MMLA kernels on AWS Graviton3.
2024-01-26 19:17:59 +02:00
Georgi Gerganov
5f1925a8ce scripts : move run-with-preset.py from root to scripts folder 2024-01-26 17:09:44 +02:00
Georgi Gerganov
3b7c914de2 tests : gitignore test-c.o 2024-01-26 14:48:15 +02:00
Xuan Son Nguyen
48c857aa10 server : refactored the task processing logic (#5065)
* server: add llama_server_queue struct

* server: add llama_server_response_event

* server: add comments

* server: move all mutexes away from server.cpp

* server: correct multitask response

* server: only add back deferred tasks when one slot is available

* server: fix a race condition cause by "request_completion"
2024-01-26 14:42:20 +02:00
crasm
413e7b0559 ci : add model tests + script wrapper (#4586)
* scripts : add lib.sh and lib_test.sh

* scripts : stub out new ci-run.sh script

* scripts : switch to PascalCase for functions

This looks a little odd at first, but I find it very useful as a
convention to know if a command is part of our code vs a builtin.

* scripts : add some fancy conversion from snake_case to PascalCase

* Add venv to ci/run.sh

* Revert scripts work

* scripts : add wrapper script for local use of ci/run.sh

* Simplify .gitignore for tests, clang-tidy fixes

* Label all ctest tests

* ci : ctest uses -L main

* Attempt at writing ctest_with_model

* Update test-model-load-cancel

* ci : add ctest_with_model for debug and release

ggml-ci

* Fix gg_get_model function

ggml-ci

* got stuck on CMake

* Add get_model.cpp to tests/CMakeLists.txt

ggml-ci

* Fix README.md output for ctest_with_model

ggml-ci

* workflows : use `-L main` for all ctest

ggml-ci

* Fixes

* GG_RUN_CTEST_MODELFILE => LLAMACPP_TESTMODELFILE
* Always show warning rather than failing if model file variable is not
  set

* scripts : update usage text for ci-run.sh
2024-01-26 14:18:00 +02:00
Paul Tsochantaris
6dd3c28c9c metal : remove unused n_buffers and buffers (#5129) 2024-01-26 14:16:07 +02:00
Riceball LEE
38b431de23 gguf : fix "general.alignment" type in gguf_reader.py (#5136) 2024-01-26 11:10:28 +02:00
Georgi Gerganov
aad0b01d73 readme : update hot topics 2024-01-26 10:52:33 +02:00
Kawrakow
1182cf4d4f Another bucket sort (#5109)
* Initial bucket sort

* Bucket sort: slightly better version

* Bucket sort: another minor improvement

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-26 09:14:39 +02:00
XiaotaoChen
fe54033b69 readme : add MobileVLM 1.7B/3B to the supported models list (#5107)
Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-25 22:14:32 +02:00
l3utterfly
5eaf9964fc llama : dynamic temperature sampling (#4972)
* implemented dynamic temperature sampling from koboldcpp

* removed trailing whitespace

* removed unused temp parameter in llama_sample_entropy

* exposed exponent_val in dynamic temp sampler

* added debug check for printf statements

* use nullptr in llama_sample_softmax call during llama_sample_entropy

this avoids counting the time taken stats twice

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* return earlier if there is only 1 candiate (i.e. max_entropy == 0)

* reformat 't' case in llama_sample_queue

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* check for one or zero candidates case in llama_sample_entropy

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2024-01-25 22:06:22 +02:00
Jared Van Bortel
d292f4f204 examples : make pydantic scripts pass mypy and support py3.8 (#5099) 2024-01-25 14:51:24 -05:00
Valentin Konovalov
256d1bb0dd android : use release cmake build type by default (#5123) 2024-01-25 19:05:51 +02:00
Kawrakow
faa3526a1e Fix Q3_K_XS for MoE models (#5113)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-25 17:58:53 +02:00
Georgi Gerganov
ddc5a5033f metal : show compile log messages 2024-01-25 11:26:17 +02:00
Engininja2
cd4fddb29f cuda : fix 2-bit quants on amd hip (#5105)
* cuda : fix 2-bit quants on amd hip

* use __low2float intrinsic function for new quants
2024-01-24 23:18:15 +01:00
Michael Hueschen
c9b316c78f nix-shell: use addToSearchPath
thx to @SomeoneSerge for the suggestion!
2024-01-24 12:39:29 +00:00
Michael Hueschen
bf63d695b8 nix: add cc to devShell LD_LIBRARY_PATH
this fixes the error I encountered when trying to run the convert.py
script in a venv:

```
$ nix develop

[...]$ source .venv/bin/activate
(.venv)
[...]$ pip3 install -r requirements.txt
<... clipped ...>
[...]$ python3 ./convert.py
Traceback (most recent call last):
  File "/home/mhueschen/projects-reference/llama.cpp/./convert.py", line 40, in <module>
    from sentencepiece import SentencePieceProcessor
  File "/home/mhueschen/projects-reference/llama.cpp/.venv/lib/python3.11/site-packages/sentencepiece/__init__.py", line 13, in <module>
    from . import _sentencepiece
ImportError: libstdc++.so.6: cannot open shared object file: No such file or directory
```

however, I am not sure this is the cleanest way to address this linker
issue...
2024-01-24 12:39:29 +00:00
slaren
1387ea2117 llama : pre-allocate input tensors in a separate buffer (#5100) 2024-01-24 12:48:14 +01:00
Georgi Gerganov
26d607608d metal : disable support for MUL_MAT F32 x F16 2024-01-23 15:50:56 +02:00
Kawrakow
44879ee885 Additional KL-divergence statistics (#5081)
* perplexity: add top-token probability

* perplexity: add additional KL-divergence statistics

* perplexity: a better organized KL-divergence statistics output

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-23 15:17:20 +02:00
Johannes Gäßler
9ecdd12e95 CUDA: more info when no device code (#5088) 2024-01-23 13:31:56 +01:00
Georgi Gerganov
89758723c7 minor : clean-up some warnings and style (#5094)
* minor : clean-up some warnings and style

ggml-ci

* ggml : add comment
2024-01-23 14:12:57 +02:00
Xuan Son Nguyen
2bed4aa3f3 devops : add intel oneapi dockerfile (#5068)
Co-authored-by: Xuan Son Nguyen <xuanson.nguyen@snowpack.eu>
2024-01-23 09:11:39 +02:00
Michael Coppola
125d03a503 llama.vim : added api key support (#5090)
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2024-01-23 08:51:27 +02:00
slaren
011e8ec577 llama : fix not enough space in buffer with Qwen (#5086) 2024-01-22 23:42:41 +01:00
Kawrakow
6f9939d119 KL-divergence (#5076)
* kl-divergence: be able to save all logits to a file

* Add ability to compute KL-divergence

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-22 16:10:14 +02:00
Reinforce-II
780e24a22e ggml : parallelize FP32 conversion when using BLAS (#5045)
* make GGML_TASK_INIT phase can be run in multithread

* multithreaded dequantize in mul_mat when using blas library

* minor fixes

* update outdated comment
* fix coding style

* simplify code

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-22 15:15:08 +02:00
XiaotaoChen
3ce7e8f8e7 llava : MobileVLM support (#4954)
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
2024-01-22 15:09:35 +02:00
Someone Serge
b2d80e105a flake.nix: add a comment about flakes vs nix 2024-01-22 12:19:30 +00:00
Someone Serge
28603cd283 nix: add a comment on the many nixpkgs-with-cuda instances 2024-01-22 12:19:30 +00:00
Someone Serge
5e97ec91ae nix: add a comment about makeScope 2024-01-22 12:19:30 +00:00
Someone Serge
7251870780 nix: refactor the cleanSource rules 2024-01-22 12:19:30 +00:00
Someone Serge
fe8b3c0d4b workflows: nix-ci: drop the redundant "paths" filter 2024-01-22 12:19:30 +00:00
Someone Serge
f4dd059259 workflows: nix-build-aarch64: rate limit 2024-01-22 12:19:30 +00:00
Someone Serge
f7276f7500 workflows: nix-ci: rebuild on flake.lock updates 2024-01-22 12:19:30 +00:00
Kawrakow
15bceec2d7 imatrix : keep intermediate imatrix results (#5077)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-22 14:18:43 +02:00
compilade
d6bd4d46dd llama : support StableLM 2 1.6B (#5052)
* llama : support StableLM 2 1.6B

* convert : fix Qwen's set_vocab wrongly naming all special tokens [PAD{id}]

* convert : refactor Qwen's set_vocab to use it for StableLM 2 too

* nix : add tiktoken to llama-python-extra

* convert : use presence of tokenizer.json to determine StableLM tokenizer loader

It's a less arbitrary heuristic than the vocab size.
2024-01-22 13:21:52 +02:00
Daniel Bevenius
152d9d05e0 finetune : print sample-start/include-sample-start (#5072)
This commit adds `--sample-start` and `--include-sample-start` to the
output from the main function in finetune.cpp.

The motivation for this is that even though these are set explicitly by
the user via the command line, if one forgets to set them then it is
useful to have their values printed out. Otherwise it is possible to go
through the whole training process before realizing that the values are
not what one expected.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-22 13:11:01 +02:00
Kawrakow
66d575c45c llama : add Q3_K_XS (#5060)
* Add Q3_K_XS - intermediate size between Q2_K and Q3_K_S

* Q3_K_XS: quanize first 1/8 of ffn_down layers with Q4_K

Together with an importance matrix, this brings perplexity
for LLaMA-v2-70B below the perplexity of the former Q2_K
with a 800 MB smaller quantized model size.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-22 12:43:33 +02:00
bobqianic
57744932c6 ci : fix Windows CI by updating Intel SDE version (#5053) 2024-01-22 10:55:05 +02:00
Shijie
3466c6ebcf llama : add more qwen2 models (#5071) 2024-01-22 09:33:19 +02:00
iSma
504dc37be8 Revert LLAMA_NATIVE to OFF in flake.nix (#5066) 2024-01-21 21:37:13 +00:00
kuronekosaiko
05490fad7f add safetensors support to convert-lora-to-ggml.py (#5062)
* add safetensors support to convert-lora-to-ggml.py

* Update convert-lora-to-ggml.py

Remove white space in line 69.
2024-01-21 17:28:14 +01:00
bobqianic
6c5629d4d2 add #include <string> to unicode.h (#5051)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2024-01-21 10:17:35 -05:00
Kawrakow
7dcbe39d36 Add ability to evauate multiple choice tasks (#5047)
* TruthfulQA: 1st attempt, does not look like it is working

The same implementation can be used for HellaSwag as well,
so I converted a HellaSwag validation dataset to the binary
format used here and tested with that. The score is only
around 50, so something is not quite right.

* TruthfulQA: works but the result is bad

I know it works because if I convert the HellaSwag validation
data to the binary format used in the truthful_qa_score() function
I get the exact same result as from the hellaswag_score() function.
But I guess, the questions are tricky and the way I have done
the combination of question + answer is very likely not the best.
The TruthfulQA validation dataset contains 817 questions, with
random chance result around 19%. With this version I get
29.1% for Mistral-7B and 55.2% for Mistral-7B-Instruct-v0.2.
The HF leader board results for these two models are
42.2% and 68.3%, respectively.

* TruthfulQA: fix random sample

* TruthfulQA: prepare tasks in parallel for large test datasets

* Rename truthful_qa to multiple_choice

* Make MSVC happy

I had forgotten that MSVC does not make constexpr's available
inside a lambda.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-21 14:42:44 +02:00
Kawrakow
726c0fa9a2 Slightly faster imatrix (#5050)
* imatrix: speedup by avoiding unnecessary allocations and copies

* imatrix: add --no-ppl option to skip PPL calculations altogether

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-21 08:01:20 +02:00
Georgi Gerganov
942c0107a7 flake.lock: Update (#5054)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/9b19f5e77dd906cb52dade0b7bd280339d2a1f3d' (2024-01-13)
  → 'github:NixOS/nixpkgs/bbe7d8f876fbbe7c959c90ba2ae2852220573261' (2024-01-19)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-21 03:17:27 +00:00
Jared Van Bortel
b43ebde3b0 convert : partially revert PR #4818 (#5041) 2024-01-20 18:14:18 -05:00
Jared Van Bortel
97c1549808 perplexity : fix MSVC build after #5020 (#5043)
* perplexity : fix MSVC build after #5020

* try a differerent fix
2024-01-20 17:08:08 +02:00
slaren
6df465a91d llama : run all KQV ops on the CPU with no KV offload (#5049)
ggml-ci
2024-01-20 17:05:49 +02:00
Herman Semenov
77bc1bbd05 cmake : add support for ccache (#5002)
* Added support ccache for speedup recompilation

* cmake : option to disable ccache

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-20 10:11:31 +02:00
adel boussaken
48e2b13372 Add a dart/flutter binding to README.md (#4882) 2024-01-20 03:05:43 -05:00
Kylin
cca894f16a cuda : fix compile error in jetson platform (#4975)
* cuda: fix compile error in jetson platform

* cuda: update comment in ggml-cuda.cu

* cuda: update ggml-cuda.cu comment
2024-01-20 09:01:46 +02:00
Uzo Nweke
381ee19572 finetune : fix ggml_allocr lifetimes (tmp workaround) (#5033)
* Fix issue with alloc causing max_compute_size to be calculated

* remove ggml_allocr_free as suggested in issue #4791
2024-01-19 20:20:50 +02:00
Georgi Gerganov
a5cacb22b2 imatrix : add README.md 2024-01-19 15:24:47 +02:00
Shijie
9b75cb2b3c llama : support upcoming Qwen2 (#5037) 2024-01-19 13:53:13 +02:00
Georgi Gerganov
de9a147df1 py : fix flake8 lint 2024-01-19 13:52:22 +02:00
Kawrakow
7051aacfac winogrande: evaluate log-probs in parallel (#5036)
This is a relatively minor performance tweak resulting in
~10% speedup on my system.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-19 11:39:11 +02:00
chiranko
2b3b999cac llama : add CodeShell support (#5016)
* llama: add codeshell support

* llama.cpp: fix codeshell with NeoX rope

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19 11:07:27 +02:00
Kawrakow
993fba8180 perplexity: avoid unnecessary alloocations and logit copies (#5035)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-19 11:02:39 +02:00
Georgi Gerganov
8b20858e5e perplexity : faster Winogrande via batching (#5024)
* perplexity : faster Winogrande via batching

ggml-ci

* perplexity : remove unused function

* perplexity : only tokenize selected tasks for Winogrande
2024-01-19 10:45:06 +02:00
John
57e2a7a52a llama : fix falcon arch for tied output embeddings (#4978)
* falcon arch fix for tied output embeddings

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

* Update llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-19 00:12:15 +02:00
Georgi Gerganov
9b6ea4263a cmake : add ggml public headers (#5011) 2024-01-18 23:36:07 +02:00
Xuan Son Nguyen
821f0a271e server : defer tasks when "slot unavailable" (#5018)
* server: defer task when no slot is available

* remove unnecessary log

---------

Co-authored-by: Xuan Son Nguyen <xuanson.nguyen@snowpack.eu>
2024-01-18 22:33:05 +02:00
slaren
96d7f56d29 llama : fix mlock with no-mmap with Metal (#5025) 2024-01-18 21:12:15 +01:00
Georgi Gerganov
2d5419d08a imatrix : fix assert for src0 non-cont check 2024-01-18 21:45:51 +02:00
Georgi Gerganov
d391ae9b49 perplexity : fix winogrande N tasks option 2024-01-18 20:49:00 +02:00
Georgi Gerganov
e9240cdfa0 scripts : add get-winogrande.sh 2024-01-18 20:45:39 +02:00
David Sommers
b46757735d convert.py : fix llama/llama2 conversion due to vocab_size=-1 (#5019)
PR #4818 (merged last week) reintroduced a config check for vocab_size that was addressed in PR #4258 (merged 2023-11-30).

Without the fix, llama2 models can't be converted. The error is:

`ValueError: The model's vocab size is set to -1 in params.json. Please update it manually. Maybe 32000?`
2024-01-18 19:20:59 +02:00
Kawrakow
3e945cc1e9 HellaSwag: speed up by parallelizing log-prob evaluation (#5020)
For Mistral-7B and fp16, time on my system goes down from 536 seconds
to 423 seconds for the full evaluation dataset (10042 tasks).

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-18 19:18:21 +02:00
Georgi Gerganov
ad19812cda perplexity : faster HellaSwag via batching (#5017)
* perplexity : faster HellaSwag

ggml-ci

* perplexity : clean-up

ggml-ci

* perplexity : no need for decode_helper

ggml-ci

* perplexity : add comments

* perplexity : option to specify max batched tasks via `n_parallel`

* perplexity : remove HellaSwag restruction for n_batch
2024-01-18 15:33:01 +02:00
Kawrakow
682986a08e Add Winogrande evaluation (#5015)
* winogrande: simple implementation

It doesn't look like it is working - why?
For Mistral-7B it is barely better than
random chance (score ~60% for 1267 tasks), while I see
Mistral-7B scoring 78.4% on the HF leader board.
1-sigma statistical uncertainty for 1267 tasks is ~1.4,
so no way the difference is due to statistics.

* winogrande: somewhat better

Score for Mistrali7-B is now 68.9 on the validation set of
winogrande_debiased. Still far from the reported 78.4, but
better than what I had before.

* winogrande: improving

Mistral-7B score is now 73.56.
Still not quite 78.4 but getting there.
We are also getting a lower score on HellaSwag
compared to HF leader board, so I'm not expecting
we will get up to 78.4 anyway.

It looks like it is better to skip the choice word(s)
when evaluating the average log-likelihood. This kind of
makes sense because a more common word (in Winogrande this is
often a name) will have a higher probability without knowing
about the follow up context, and this will skew the log-likelihood
towards the more common word. We can only do this if the
choice words are not last in the sentence.

It also looks like it is better to skip the punctuation at the
end of the sentence, provided the choice words are not last.

* winogrande: add dataset instructions

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-18 13:46:27 +02:00
Georgi Gerganov
dcad445d0c scritps : add helper script to get hellaswag data in txt format 2024-01-18 11:44:49 +02:00
Paul Tsochantaris
1e605f4102 metal : fix memory leak, dangling pointer and unused autorel (#5007)
* Metal memory: Small memory leak on init, dangling pointer, and unused autorelease pool in graph compute

* SPM header potential fix

* Reverting symlinks
2024-01-18 10:47:24 +02:00
Georgi Gerganov
6b6916b215 sync : ggml 2024-01-17 20:54:50 +02:00
Georgi Gerganov
38566680cd ggml : add IQ2 to test-backend-ops + refactoring (#4990)
* ggml : add IQ2 to test-backend-ops + refactoring

ggml-ci

* cuda : update supports_op for IQ2

ggml-ci

* ci : enable LLAMA_CUBLAS=1 for CUDA nodes

ggml-ci

* cuda : fix out-of-bounds-access in `mul_mat_vec_q`

ggml-ci

* tests : avoid creating RNGs for each Q tensor

ggml-ci

* tests : avoid creating RNGs for each tensor

ggml-ci
2024-01-17 18:54:56 +02:00
Georgi Gerganov
ba69bbc84c imatrix : offload to GPU support (#4957)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* imatrix : offload to GPU support

* imatrix : fix ggml_mul_mat_id hanlding

ggml-ci

* ci : add imatrix test

ggml-ci

* ci : rearrange output

ggml-ci
2024-01-17 18:46:30 +02:00
Georgi Gerganov
44a1a4a41a backend : add eval callback (#4935)
* backend : add eval callback

ggml-ci

* backend : group nodes in a single compute when user don't need them

* backend : clean-up the implementation

ggml-ci

* simple : do not perform tensor data copy if not needed

* simple : fix

* simple : no need for ggml_is_contiguous + fix bool parse

* llama : fix callback placement in llama_context_params

* backend : avoid double-ask callback calls

* simple : restore examples, imatrix will serve as a demo
2024-01-17 18:39:41 +02:00
Georgi Gerganov
c918fe8dca metal : create autorelease pool during library build (#4970)
* metal : create autorelease pool during library build

ggml-ci

* test : simplify

ggml-ci
2024-01-17 18:38:39 +02:00
Georgi Gerganov
0f83e727af py : fix whitespace 2024-01-17 18:37:36 +02:00
Georgi Gerganov
4f4bf35f46 py : fix missing added_tokens_dict for SPM and BPE vocabs (#4971)
* py : fix missing added_tokens_dict for SPM vocab

* py : pad with unknown tokens when data is missing

ggml-ci

* py : fix BPE vocab conversion

ggml-ci

* py : fix padded dummy tokens (I hope)
2024-01-17 15:45:03 +02:00
Kawrakow
2b3a665d39 llama : use Q4_K for attn_v for Q2_K_S when n_gqa >= 4 (#4996)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-17 12:36:37 +02:00
Paul Tsochantaris
7563293665 metal : remove unnecessary nil check (#4986) 2024-01-17 10:07:24 +02:00
David Renshaw
f46c0c1b0e llama : fix copy/paste error in llama_sampling_params comment (#4994) 2024-01-17 09:17:50 +02:00
Georgi Gerganov
5c99960901 py : remove unnecessary hasattr (#4903) 2024-01-16 20:59:31 +02:00
Philip Taron
bee938da74 nix: remove nixConfig from flake.nix (#4984) 2024-01-16 09:56:21 -08:00
Daniel Bevenius
cec8a48470 finetune : add training data file to log message (#4979)
This commit adds the name of the training data file to the log message
printed when the training data is tokenized.

The motivation for this change is that it can be useful to show which
file is being tokenized when running the finetune example.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-16 19:54:24 +02:00
Kawrakow
334a835a1c ggml : importance matrix support for legacy quants (#4969)
* imatrix: adding support for legacy quants

* imatrix: guard Q4_0/Q5_0 against ffn_down craziness

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-16 19:51:26 +02:00
Maximilian Winter
4feb4b33ee examples : add complete parallel function calling example (#4974) 2024-01-16 19:41:42 +02:00
Georgi Gerganov
959ef0c0df perplexity : fix kv cache handling for hellaswag (#4981)
ggml-ci
2024-01-16 19:34:54 +02:00
Georgi Gerganov
c37b3474e6 flake.lock: update flake-parts, flake-parts/nixpkgs-lib, and nixpkgs (#4920)
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/34fed993f1674c8d06d58b37ce1e0fe5eebcb9f5' (2023-12-01)
  → 'github:hercules-ci/flake-parts/07f6395285469419cf9d078f59b5b49993198c00' (2024-01-11)
• Updated input 'flake-parts/nixpkgs-lib':
    'github:NixOS/nixpkgs/e92039b55bcd58469325ded85d4f58dd5a4eaf58?dir=lib' (2023-11-29)
  → 'github:NixOS/nixpkgs/b0d36bd0a420ecee3bc916c91886caca87c894e9?dir=lib' (2023-12-30)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/cfc3698c31b1fb9cdcf10f36c9643460264d0ca8' (2023-12-27)
  → 'github:NixOS/nixpkgs/317484b1ead87b9c1b8ac5261a8d2dd748a0492d' (2024-01-08)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-16 09:13:54 -08:00
Paul Tsochantaris
158f8c9e21 metal : localized logic in ggml_metal_graph_compute (#4924)
* Metal: Localized logic in `ggml_metal_graph_compute`, minor performance improvement

* Whitespace

* Collecting command buffer completions on single thread

* Whitespace

* Reduce diff noise
2024-01-16 19:05:19 +02:00
Neuman Vong
862f5e41ab android : introduce starter project example (#4926)
* Introduce starter project for Android

Based on examples/llama.swiftui.

* Add github workflow

* Set NDK version

* Only build arm64-v8a in CI

* Sync bench code

* Rename CI prop to skip-armeabi-v7a

* Remove unused tests
2024-01-16 15:47:34 +02:00
Alex Azarov
3a48d558a6 metal : replace loop of dispatch_async with dispatch_apply (#4934)
* Replace loop of dispatch_async with dispatch_apply

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-16 15:41:27 +02:00
Alex Azarov
7c8d3abd1a metal : log recommendedMaxWorkingSetSize on iOS 16+ (#4936)
* metal: Log `recommendedMaxWorkingSetSize` on iOS 16+

* Only log on iOS and macOS, ignoring tvOS and other platforms

* Check for Xcode version before using recommendedMaxWorkingSetSize

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-16 15:33:02 +02:00
Maximilian Winter
122ed4840c examples : fix and improv docs for the grammar generator (#4909)
* Create pydantic-models-to-grammar.py

* Added some comments for usage

* Refactored Grammar Generator

Added example and usage instruction.

* Update pydantic_models_to_grammar.py

* Update pydantic-models-to-grammar-examples.py

* Renamed module and imported it.

* Update pydantic-models-to-grammar.py

* Renamed file and fixed grammar generator issue.

* Fixed some issues and bugs of the grammar generator. Imporved Documentation

* Update pydantic_models_to_grammar.py
2024-01-16 14:10:48 +02:00
Justine Tunney
a0b3ac8c48 ggml : introduce GGML_CALL function annotation (#4850)
This change makes it possible to build ggml-cuda.cu and ggml-metal.m as
independent dynamic shared objects, that may be conditionally linked at
runtime in a multiplatform binary. It introduces a GGML_CALL annotation
that documents which functions have a cyclic call relationship, between
the application code and GPU modules.

This change does nothing, unless the build defines -DGGML_MULTIPLATFORM
which causes back-references and function pointers to conform to MS ABI
which is supported by NVCC, ROCm, XCode, GCC and Clang across platforms
2024-01-16 13:16:33 +02:00
Daniel Bevenius
d75c232e1d finetune : use LLAMA_FILE_MAGIC_GGLA (#4961)
This commit replaces the magic number LLAMA_FILE_MAGIC_LORA used in
finetune.cpp with LLAMA_FILE_MAGIC_GGLA defined in llama.h.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-16 13:14:19 +02:00
stduhpf
e0324285a5 speculative : threading options (#4959)
* speculative: expose draft threading

* fix usage format

* accept -td and -tbd args

* speculative: revert default behavior when -td is unspecified

* fix trailing whitespace
2024-01-16 13:04:32 +02:00
ngc92
3e5ca7931c pass cpu-architecture arguments only to host code (C;C++) (#4943) 2024-01-15 19:40:48 +01:00
David Friehs
4483396751 llama : apply classifier-free guidance to logits directly (#4951) 2024-01-15 15:06:52 +02:00
Victor Z. Peng
d9aa4ffa6e awq-py : fix typo in awq-py/README.md (#4947) 2024-01-15 14:41:46 +02:00
Georgi Gerganov
ddb008d845 cuda : fix dequantize kernel names (#4938) 2024-01-15 13:27:00 +02:00
Kawrakow
2faaef3979 llama : check for 256 divisibility for IQ2_XS, IQ2_XXS (#4950)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-15 10:09:38 +02:00
Kawrakow
4a3156de2f CUDA: faster dequantize kernels for Q4_0 and Q4_1 (#4938)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-15 07:48:06 +02:00
David Pflug
a836c8f534 llama : fix missing quotes (#4937) 2024-01-14 17:46:00 +02:00
Kawrakow
467a882fd2 Add ability to use importance matrix for all k-quants (#4930)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 16:21:12 +02:00
Georgi Gerganov
bb0c139247 llama : check LLAMA_TRACE env for extra logging (#4929)
* llama : minor fix indent

* llama : check LLAMA_TRACE env for extra logging

ggml-ci
2024-01-14 13:26:53 +02:00
Georgi Gerganov
9408cfdad6 scripts : sync-ggml-am.sh option to skip commits 2024-01-14 11:08:41 +02:00
Georgi Gerganov
03c5267490 llama : use LLAMA_LOG_ macros for logging 2024-01-14 11:03:19 +02:00
Kawrakow
a128c38de8 Fix ffn_down quantization mix for MoE models (#4927)
* Fix ffn_down quantization mix for MoE models

In #4872 I did not consider the part where every third
tensor is quantized with more bits. Fir MoE this leads to tensors
of the same layer being quantized with different number of bits,
which is not considered as a possibility in the inference implementation
(it is assumed all experts use the same quantization).

* Fix the fix

* Review suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 10:53:39 +02:00
Alex Azarov
5f5fe1bd60 metal : correctly set SIMD support flags on iOS (#4923)
* Correctly set support_simdgroup_reduction and support_simdgroup_mm on iPhone/iPad

* log a little bit more info on iOS
2024-01-14 10:44:39 +02:00
Karthik Kumar Viswanathan
ac32902a87 llama : support WinXP build with MinGW 8.1.0 (#3419) 2024-01-14 10:41:44 +02:00
Kawrakow
147b17ac94 2-bit quantizations (#4897)
* imatrix: load

* imatrix: WIP

* imatrix: Add Q2_K quantization

* imatrix: also guard against Q2_K_S quantization without importance matrix

* imatrix: guard even more against low-bit quantization misuse

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:45:56 +02:00
Kawrakow
807179ec58 Make Q3_K_S be the same as olf Q3_K_L for Mixtral-8x7B (#4906)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-14 09:44:30 +02:00
Georgi Gerganov
76484fbfd3 sync : ggml 2024-01-14 00:14:46 +02:00
Johannes Gäßler
c71d608ce7 ggml: cache sin/cos for RoPE (#4908) 2024-01-13 21:41:37 +01:00
Georgi Gerganov
4be5ef556d metal : remove old API (#4919)
ggml-ci
2024-01-13 20:45:45 +02:00
Georgi Gerganov
0ea069b87b server : fix prompt caching with system prompt (#4914) 2024-01-13 19:31:26 +02:00
Georgi Gerganov
f172de03f1 llama : fix detokenization of non-special added-tokens (#4916)
Co-authored-by: goerch <jhr.walter@t-online.de>
2024-01-13 18:47:38 +02:00
Georgi Gerganov
2d57de5255 metal : disable log for loaded kernels (#4794) 2024-01-13 18:46:37 +02:00
David Friehs
df845cc982 llama : minimize size used for state save/load (#4820)
* examples : save-load-state: save only required state

* llama : only reserve n_vocab * n_batch at most for logits

llama_decode asserts that only n_batch tokens are passed each call, and
n_ctx is expected to be bigger than n_batch.

* llama : always reserve n_vocab * n_batch for logits

llama_context de-serialization breaks if the contexts have differing
capacity for logits and llama_decode will at maximum resize to
n_vocab * n_batch.

* llama : only save and restore used logits

for batch sizes of 512 this reduces save state in the best case by
around 62 MB, which can be a lot if planning to save on each message
to allow regenerating messages.

* llama : use ostringstream and istringstream for save and load

* llama : serialize rng into minimum amount of space required

* llama : break session version due to serialization changes
2024-01-13 18:29:43 +02:00
Someone
6b48ed0893 workflows: unbreak nix-build-aarch64, and split it out (#4915)
The fix should be just the `sudo apt-get update`
2024-01-13 16:29:16 +00:00
Yann Follet
722d33f34e main : add parameter --no-display-prompt (#4541)
* add the parameter : --no-display-prompt , combine with --log-disable it will display only the generated tokens

* remove empty line

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-13 18:09:08 +02:00
texmex76
c30b1ef39a gguf : fix potential infinite for-loop (#4600)
Co-authored-by: Bernhard Gstrein <gstrein@informatik.uni-freiburg.de>
2024-01-13 18:06:20 +02:00
Georgi Gerganov
b38b5e93ae metal : refactor kernel loading code (#4794)
* metal : detect more GPU families

* metal : refactor kernel loading

* metal : set kernel family requirements

* metal : fix kernel init + fix compile options

* metal : take into account simdgroup reduction support

* metal : print only skipped kernels

* metal : fix check for simdgroup reduction support

* metal : check for Metal 3

* metal : free allocations

* metal : normalize encoder:setComputePipelineStatus calls

ggml-ci

* metal : fix Metal3 family check

ggml-ci

* metal : check for simdgroup matrix mul. feature

ggml-ci
2024-01-13 18:03:45 +02:00
Johannes Gäßler
7dc78764e2 compare-llama-bench: tweak output format (#4910) 2024-01-13 15:52:53 +01:00
Ziad Ben Hadj-Alouane
356327feb3 server : fix deadlock that occurs in multi-prompt scenarios (#4905)
* * fix deadlock

* * dont ruint all whitespace
2024-01-13 16:20:46 +02:00
makomk
ee8243adaa server : fix crash with multimodal models without BOS token (#4904) 2024-01-13 16:16:11 +02:00
Georgi Gerganov
15ebe59210 convert : update phi-2 to latest HF repo (#4903)
* convert : update phi-2 to latest HF repo

ggml-ci

* py : try to fix flake stuff
2024-01-13 13:44:37 +02:00
Georgi Gerganov
de473f5f8e sync : ggml 2024-01-12 22:02:43 +02:00
Georgi Gerganov
f238461236 ggml : fix 32-bit ARM compat for IQ2_XS (whisper/1758)
* ggml : fix 32-bit ARM compat

* ggml : fix fix

* ggml : fix fix fix
2024-01-12 22:02:11 +02:00
slaren
fa5c1fb44a backend_sched : fix assignments
ggml-ci
2024-01-12 22:02:11 +02:00
Maximilian Winter
52ee4540c0 examples : add pydantic models to GBNF grammar generator (#4883)
* Create pydantic-models-to-grammar.py

* Added some comments for usage

* Refactored Grammar Generator

Added example and usage instruction.

* Update pydantic_models_to_grammar.py

* Update pydantic-models-to-grammar-examples.py

* Renamed module and imported it.

* Update pydantic-models-to-grammar.py

* Renamed file and fixed grammar generator issue.
2024-01-12 21:46:45 +02:00
Johannes Gäßler
3fe81781e3 CUDA: faster q8_0 -> f16 dequantization (#4895) 2024-01-12 20:38:54 +01:00
slaren
e7e4df031b llama : ggml-backend integration (#4766)
* llama : ggml-backend integration

* ggml-backend : add names to buffers

* fix unmap after loading

* batched-bench : add tensor_split param

* llama : check for null tensor_split

* ggml-backend : increase GGML_MAX_BACKENDS

* improve graph splitting, partial fix for --no-kv-offload

* cuda : add ggml-backend split buffer support

* cuda : do not create buffer types for devices that don't exist (fixes usage without CUDA devices available)

* ggml : fix null backend dereference (#4807)

* ggml : fix null backend dereference

* ggml : also check ggml_backend_is_cpu

* test-backend-ops : check buffer allocation failures

* llama : add cparam (split_mode) and command line argument (--split-mode, -sm) to configure the split mode (none, layer or row)

* ggml : fix mul_mat_id work size

* llama : rewrite session kv load/set without graphs

* minor

* llama : only initialize used backends, free backends on context free

* llama : abort ctx if cuda backend init fails

* llama : rewrite lora with ggml-backend and compute on CPU

ggml-ci

* llama : only map to a backend buffer the region of the file mapping containing the tensors used in the buffer

* opencl : add ggml-backend buffer type

* cuda : only use batched_cublas with batched mat muls (fixes fp16 tg perf)

* llama : on Metal, by default offload the full model

ggml-ci

* metal : page align the data ptr (#4854)

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* cuda : fix split buffer free

* address review comments

* llama-bench : add split-mode parameter

* fix whitespace

* opencl : fix double initialization

* server : add --split-mode parameter

* use async copy and compute to improve multi-gpu performance

ggml-ci

* use async memcpys to copy the graph outputs to the CPU

* fix opencl

* use a host buffer for the cpu compute buffer for faster copies to the gpu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-01-12 20:07:38 +01:00
Georgi Gerganov
584d674be6 llama : remove redundant assert for StableLM (#4901) 2024-01-12 20:54:12 +02:00
Daniel Bevenius
930f907d3e export-lora : use LLAMA_FILE_MAGIC_GGLA (#4894)
This commit replaces the magic number used in export-lora.cpp with
the one defined in llama.h, which is indirectly included via common.h.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-12 19:54:53 +02:00
Zay
e790eef21c llama.swiftui : update models layout (#4826)
* Updated Models Layout

- Added a models drawer
- Added downloading directly from Hugging Face
- Load custom models from local folder
- Delete models by swiping left

* trimmed trailing white space

* Updated Models Layout
2024-01-12 14:48:00 +02:00
Georgi Gerganov
5537d9d36b gitignore : imatrix 2024-01-12 14:33:21 +02:00
Johannes Gäßler
1b280c9fff CUDA: fix softmax compile for old CUDA versions (#4862) 2024-01-12 12:30:41 +01:00
Georgi Gerganov
3cabe80630 llama : fix typo "imp_embd" -> "inp_embd" 2024-01-12 13:11:15 +02:00
howlger
4315a94366 common : streamline the formatting of help (#4890)
* common : streamline the formatting of help

- Separate alternative parameters by a comma

- Do not indent `--version` differently

* Update common/common.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 13:05:32 +02:00
Georgi Gerganov
2d00741e12 py : fix lint (#4889) 2024-01-12 13:03:38 +02:00
Georgi Gerganov
f445c0e68c llama : fix llm_build_k_shift to use correct n_rot (#4889)
* llama : fix llm_build_k_shift to use correct n_rot

ggml-ci

* llama : always use hparams.n_rot for ggml_rope_custom

ggml-ci

* convert : fix persimmon conversion to write correct n_rot
2024-01-12 13:01:56 +02:00
Kawrakow
326b418b59 Importance Matrix calculation (#4861)
* imatrix: 1st version

* imatrix: WIP

* Cleanup

* Update examples/imatrix/imatrix.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-12 06:59:57 +01:00
Georgi Gerganov
1d118386fe server : fix infill when prompt is empty (#4833) 2024-01-11 23:23:49 +02:00
Georgi Gerganov
7edefbd79c main : better name for variable n_print (#4874) 2024-01-11 22:46:26 +02:00
Georgi Gerganov
3ca63b4538 main : disable token count by default (#4874) 2024-01-11 22:43:05 +02:00
Georgi Gerganov
b037787548 swift : track ggml release branch (#4867) 2024-01-11 21:58:28 +02:00
Kawrakow
469e75d0a3 llama : restore intended k-quants mixes for MoE models (#4872)
* Restore intended k-quants quantization mixes for MoE models

* Update Q2_K_S values in the quantize tool

Still using LLaMA-v1 PPL values in the quant description
today does not make much sense. But let's leave this update
for another PR.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-11 21:43:15 +02:00
Kawrakow
49662cbed3 ggml : SOTA 2-bit quants (add IQ2_XS) (#4856)
* iq2_xs: basics

* iq2_xs: this should have been in the basics

* iq2_xs: CUDA and scalar CPU works

* iq2_xs: WIP Metal

* iq2_xs: Metal now works

* iq2_xs: working, but dog slow, ARM_NEON dot product

* iq2_xs: better ARM_NEON dot product

We are now at 19.5 t/s for TG-128 and 61 t/s for PP-512 when
running on the CPU.

* iq2_xs: AVX2 dot product - 19.5 t/s

* iq2_xs: faster AVX2 dit product

21.4 t/s for TG-128, 59.2 t/s for PP-512.
The latter is 2x compared to the previous version.

* iq2_xs: had forgotten to delete iq2-data.h

* Add llama enum for IQ2_XS

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-11 21:39:39 +02:00
Georgi Gerganov
3ba5b8ca8e swift : pin ggml commit + remove ggml.h from spm-headers (#4878)
ggml-ci
2024-01-11 21:31:31 +02:00
Laura
4330bd83fe server : implement credentialed CORS (#4514)
* Implement credentialed CORS according to MDN

* Fix syntax error

* Move validate_api_key up so it is defined before its first usage
2024-01-11 20:02:48 +02:00
Michael Coppola
27379455c3 server : support for multiple api keys (#4864)
* server: added support for multiple api keys, added loading api keys from file

* minor: fix whitespace

* added file error handling to --api-key-file, changed code to better
reflect current style

* server: update README.md for --api-key-file

---------

Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2024-01-11 19:51:17 +02:00
Behnam M
eab6795006 server : add LOG_INFO when model is successfully loaded (#4881)
* added /health endpoint to the server

* added comments on the additional /health endpoint

* Better handling of server state

When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.

* initialized server_state

* fixed a typo

* starting http server before initializing the model

* Update server.cpp

* Update server.cpp

* fixes

* fixes

* fixes

* made ServerState atomic and turned two-line spaces into one-line

* updated `server` readme to document the `/health` endpoint too

* used LOG_INFO after successful model loading
2024-01-11 19:41:39 +02:00
Someone
d8d90aa343 ci: nix-flake-update: new token with pr permissions (#4879)
* ci: nix-flake-update: new token with pr permissions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-11 17:22:34 +00:00
pudepiedj
43f76bf1c3 main : print total token count and tokens consumed so far (#4874)
* Token count changes

* Add show token count

* Updating before PR

* Two requested changes

* Move param def posn
2024-01-11 18:14:52 +02:00
Isaac McFadyen
2f043328e3 server : fix typo in model name (#4876) 2024-01-11 16:33:26 +02:00
Paul Tsochantaris
2a7c94db5f metal : put encoder debug group behind a define (#4873) 2024-01-11 16:31:52 +02:00
Georgi Gerganov
64802ec00d sync : ggml 2024-01-11 09:39:08 +02:00
Georgi Gerganov
3267c2abc7 metal : fix deprecation warning (ggml/690) 2024-01-11 09:39:05 +02:00
Timothy Cronin
f85a973aa1 ggml : remove ggml_cpy_inplace and ggml_cont_inplace (ggml/693) 2024-01-11 09:39:05 +02:00
Jack Mousseau
5362e43962 metal : wrap each operation in debug group (ggml/690) 2024-01-11 09:39:05 +02:00
leejet
e739de7909 ggml : change GGML_MAX_NAME at compile time (ggml/682)
* change GGML_MAX_NAME to 128

* allow controlling the value of GGML_MAX_NAME through external macro definitions
2024-01-11 09:39:05 +02:00
Halalaluyafail3
c910e3c28a Fix execlp call (ggml/689)
NULL can be an integer constant expression with the value zero, in this case the behavior would be undefined because of an incorrect type being passed to the variable arguments.
2024-01-11 09:39:05 +02:00
Erik Scholz
f34432ca1e fix : cuda order of synchronization when setting a buffer (ggml/679)
* fix : cuda order of synchronization when setting a buffer

* also sync before memcpy

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-01-11 09:39:05 +02:00
Behnam M
7a9f75c38b server : update readme to document the new /health endpoint (#4866)
* added /health endpoint to the server

* added comments on the additional /health endpoint

* Better handling of server state

When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.

* initialized server_state

* fixed a typo

* starting http server before initializing the model

* Update server.cpp

* Update server.cpp

* fixes

* fixes

* fixes

* made ServerState atomic and turned two-line spaces into one-line

* updated `server` readme to document the `/health` endpoint too
2024-01-11 09:12:05 +02:00
Georgi Gerganov
5c1980d8d4 server : fix build + rename enums (#4870) 2024-01-11 09:10:34 +02:00
Behnam M
cd108e641d server : add a /health endpoint (#4860)
* added /health endpoint to the server

* added comments on the additional /health endpoint

* Better handling of server state

When the model is being loaded, the server state is `LOADING_MODEL`. If model-loading fails, the server state becomes `ERROR`, otherwise it becomes `READY`. The `/health` endpoint provides more granular messages now according to the server_state value.

* initialized server_state

* fixed a typo

* starting http server before initializing the model

* Update server.cpp

* Update server.cpp

* fixes

* fixes

* fixes

* made ServerState atomic and turned two-line spaces into one-line
2024-01-10 21:56:05 +02:00
Brian
57d016ba2d llama : add additional suffixes for model params (#4834)
* llm_load_print_meta: Add additional suffixs for model params

* Update llama.cpp model param log

remove unneeded comments and convert from > to >=
2024-01-10 16:09:53 +02:00
Austin
329ff61569 llama : recognize 1B phi models (#4847)
This update categorizes models with 24 layers as MODEL_1B, ensuring compatibility with different Phi model variants without impacting existing Phi-2 model functionality.
2024-01-10 15:39:09 +02:00
John
d34633d8db clip : support more quantization types (#4846)
Uses ggml functions instead of hardcoded names and adds support to quantize into the modern Q-K variants.
This is just the bare minimum to get k-types working - a more refined choice of types would be needed to get best quality on low quantizations.

I ran a few tests, it doesn't break anything I could notice and a Q6_K ViT works almost as well as Q8_0 but 3 times the inference speed.
2024-01-10 15:37:09 +02:00
Johannes Gäßler
4f56458d34 Python script to compare commits with llama-bench (#4844) 2024-01-10 01:04:33 +01:00
Austin
6efb8eb30e convert.py : fix vanilla LLaMA model conversion (#4818)
* Update Imports and Add Notes for Future Reference

- Updated import statements in `convert.py`.
- Added import for `AutoTokenizer` from `transformers` module.
- Added conditional import for `gguf` from the local directory.
- Added comments and notes for future reference.

Additional Notes:

- Noted removal of a redundant `TypeAlias` import.
- Noted the removal of a `gguf` debug statement.
- Commented on the presence of `ARCH` and `NDArray` definitions.
- Commented on cleaning up and refactoring data type definitions.

* Refine Model Hyperparameters and Params Class

- Updated type annotations to use `Optional` for clarity.
- Improved method names and attribute consistency.
- Removed unnecessary variables for better code readability.

Additional Notes:

- Highlighted the use of `Optional` for clearer intent.
- Ensured backward and forward compatibility.

* Restore BpeVocab and SentencePieceVocab classes

- Restored the BpeVocab class for handling BPE tokenization.
- Restored the SentencePieceVocab class for SentencePiece tokenization.

These classes are essential for maintaining the original behavior of the codebase.

* refactor: Standardize vocabulary handling with HfVocab

- Replaced VocabLoader with HfVocab, aligning vocabulary handling across classes.
- Updated initialization of HfVocab with local_files_only=True for AutoTokenizer.
- Introduced optional parameter fname_added_tokens for flexible added token management.
- Streamlined added token handling for clarity and conciseness.
- Maintained special tokens and IDs, enhancing token management.
- Simplified token processing methods for improved readability.
- Added a placeholder for score computation with a default value of -1000.0.
- Optimized newline token check for efficiency.
- Updated __repr__ function for clarity in representation.
- Adjusted type alias Vocab to include BpeVocab, SentencePieceVocab, and HfVocab.
- Removed redundant code related to special token handling, reverse vocabulary mapping, and vocabulary file detection.

This refactoring promotes a standardized and modular approach to vocabulary management, facilitating future integration with a VocabFactory and improving code maintainability and scalability.

* refactor: Enhance readability, functionality, and code quality

- Improved code formatting and readability for better maintainability.
- Refactored LazyUnpickler's CLASSES dictionary for clarity.
- Added print statements and warnings in check_vocab_size for user feedback.
- Removed find_vocab_file_path, as it's superseded by VocabFactory.
- Preparatory changes for upcoming classes: OutputFile and VocabFactory.
- Overall focus on code quality, error handling, and consistency.

These changes reflect a continuous effort to refine the codebase, ensuring it meets best practices and prepares for future enhancements, such as the VocabFactory.

* refactor: Update OutputFile class for enhanced model vocabulary management

- Restructured the constructor for improved readability.
- Updated `add_meta_arch` method for flexible model name determination.
- Introduced `handle_tokenizer_model` for mapping vocab types to supported tokenizer models.
- Streamlined vocabulary extraction with `extract_vocabulary_from_model`.
- Simplified vocabulary metadata addition using `add_meta_vocab`.
- Refactored `add_tensor_info` for clarity and consistency.
- Improved error handling for better user feedback.

These changes signify the development of a versatile and comprehensive `OutputFile` class, enabling efficient management of model conversion output, metadata, vocabulary, and tensor information.

* feat: Introduce VocabFactory for flexible vocabulary management in model conversion

- The VocabFactory class is added to facilitate modular vocabulary handling.
- The constructor initializes a directory path and detects vocabulary-related files.
- The _select_file method provides file paths based on vocabulary type (e.g., BPE, SentencePiece).
- _create_special_vocab generates special vocabularies, accommodating different types.
- The load_vocab method loads vocabularies, handling BPE, SentencePiece, and Hugging Face Fast Tokenizer.
- Error handling and logging enhance debugging and user feedback.
- The modular and flexible design simplifies vocabulary management and supports future extensions.

The VocabFactory class enhances code modularity and maintainability, allowing versatile vocabulary handling in the model conversion process.

* refactor: Improve code organization, argument parsing, and user interface

- Renamed 'default_outfile' to 'default_output_file' for clarity.
- Refactored argument parser setup into 'get_argument_parser' function.
- Introduced descriptive comments for each argument in the parser.
- Added '--vocab-type' argument with choices ["spm", "bpe", "hfft"] for vocabulary processing.
- Improved flag naming consistency: '--outfile' to '--out-file' and '--bigendian' to '--big-endian'.
- Enhanced error handling to prevent overwriting input data in 'default_output_file'.
- Made 'argv' in 'main' an optional parameter for flexibility.
- Introduced dynamic import for 'awq.apply_awq' based on 'args.awq_path' for conditional dependency.

These changes enhance code clarity, organization, and the user interface of the script, aligning it with Python best practices and improving maintainability.

* refactor: Further refine functionality, improve user interaction, and streamline vocabulary handling

- Renamed command-line arguments for clarity and consistency.
- Improved path resolution and import adjustments for robustness.
- Thoughtfully handled 'awq-path' and conditional logic for the weighted model.
- Enhanced model and vocabulary loading with the 'VocabFactory' class for structured and adaptable loading.
- Strengthened error handling and user feedback for a more user-friendly experience.
- Structured output file handling with clear conditions and defaults.
- Streamlined and organized the 'main' function for better logic flow.
- Passed 'sys.argv[1:]' to 'main' for adaptability and testability.

These changes solidify the script's functionality, making it more robust, user-friendly, and adaptable. The use of the 'VocabFactory' class is a notable enhancement in efficient vocabulary handling, reflecting a thoughtful and iterative approach to script development.

* chore: Apply ruff formatting to convert.py

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>

* Revert to commit 0614c33

* chore: Apply flake8 formatting rules

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>

* refactor: Revise `check_vocab_size` for Enhanced Clarity and Correctness

- Resolved an unreachable branch issue by reorganizing the conditional structure.
- Moved the special case check for `params.n_vocab == -1` to the top for immediate assertion.
- Flattened the conditional logic for improved clarity and predictability of the function's behavior.

These changes enhance the readability and functional correctness of the `check_vocab_size` function without altering its intended functionality.

* py : fix outfile and outtype

* py : suggest hint for missing vocab size

---------

Signed-off-by: teleprint-me <77757836+teleprint-me@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-09 20:46:46 +02:00
Justine Tunney
36e5a08b20 llava-cli : don't crash if --image flag is invalid (#4835)
This change fixes an issue where supplying `--image missing-file` would
result in a segfault due to a null pointer being dereferenced. This can
result in distracting info being printed if robust crash analysis tools
are being used.
2024-01-09 19:59:14 +02:00
Georgi Gerganov
4dccb38d9a metal : improve dequantize precision to match CPU (#4836)
ggml-ci
2024-01-09 19:37:08 +02:00
Georgi Gerganov
9a818f7c42 scripts : improve get-pg.sh (#4838) 2024-01-09 19:21:13 +02:00
iohub
18adb4e9bb readme : add 3rd party collama reference to UI list (#4840)
Add a VSCode extension for llama.cpp reference to UI list
2024-01-09 18:45:54 +02:00
Georgi Gerganov
d9653894df scripts : script to get Paul Graham essays in txt format (#4838) 2024-01-09 16:23:05 +02:00
Behnam M
128de3585b server : update readme about token probs (#4777)
* updated server readme to reflect the gg/server-token-probs-4088 commit

added explanation for the API's completion result which now includes `completion_probabilities`. Also added a JSON schema that shows the type/structure of `completion_probabilities`.

* simplified the `completion_probabilities` JSON schema 

It's now easier to understand what the structure of `completion_probabilities` looks like.

* minor : fix trailing whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-09 12:02:05 +02:00
Zsapi
8c58330318 server : add api-key flag to documentation (#4832)
Document the api-key flag added to server in https://github.com/ggerganov/llama.cpp/pull/4441
2024-01-09 11:12:43 +02:00
Georgi Gerganov
18c2e1752c ggml : fix vld1q_s8_x4 32-bit compat (#4828)
* ggml : fix vld1q_s8_x4 32-bit compat

ggml-ci

* ggml : fix 32-bit ARM compat (cont)

ggml-ci
2024-01-09 10:42:06 +02:00
Johannes Gäßler
8f900abfc0 CUDA: faster softmax via shared memory + fp16 math (#4742) 2024-01-09 08:58:55 +01:00
howlger
1fc2f265ff common : fix the short form of --grp-attn-w, not -gat (#4825)
See https://github.com/ggerganov/llama.cpp/blob/master/common/common.cpp#L230C53-L230C57
2024-01-08 21:05:53 +02:00
Georgi Gerganov
a9a8c5de3d readme : add link to SOTA models 2024-01-08 20:25:17 +02:00
Kawrakow
dd5ae06405 SOTA 2-bit quants (#4773)
* iq2_xxs: basics

* iq2_xxs: scalar and AVX2 dot products

Needed to change Q8_K to have quants in the -127...127 range,
else the IQ2_XXS AVX implementation becomes very awkward.
The alternative would have been to use Q8_0 instead. Perhaps
I'll change later, for now this is what we have.

* iq2_xxs: ARM_NEON dot product

Somehow strangely slow (112 ms/token).

* iq2_xxs: WIP Metal

Dequantize works, something is still wrong with the
dot product.

* iq2_xxs: Metal dot product now works

We have
PP-512 = 475 t/s
TG-128 = 47.3 t/s

Not the greatest performance, but not complete garbage either.

* iq2_xxs: slighty faster dot product

TG-128 is now 48.4 t/s

* iq2_xxs: slighty faster dot product

TG-128 is now 50.9 t/s

* iq2_xxs: even faster Metal dot product

TG-128 is now 54.1 t/s.

Strangely enough, putting the signs lookup table
into shared memory has a bigger impact than the
grid values being in shared memory.

* iq2_xxs: dequantize CUDA kernel - fix conflict with master

* iq2_xxs: quantized CUDA dot product (MMVQ)

We get TG-128 = 153.1 t/s

* iq2_xxs: slightly faster CUDA dot product

TG-128 is now at 155.1 t/s.

* iq2_xxs: add to llama ftype enum

* iq2_xxs: fix MoE on Metal

* Fix missing MMQ ops when on hipBLAS

I had put the ggml_supports_mmq call at the wrong place.

* Fix bug in qequantize_row_iq2_xxs

The 0.25f factor was missing.
Great detective work by @ggerganov!

* Fixing tests

* PR suggestion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-01-08 16:02:32 +01:00
Georgi Gerganov
668b31fc7d swift : exclude ggml-metal.metal from the package (#4822) 2024-01-08 16:40:51 +02:00
Georgi Gerganov
42ea63c5a3 llama.swiftui : update readme 2024-01-08 15:57:36 +02:00
Georgi Gerganov
52531fdff8 main : add self-extend support (#4815)
* examples : add passkey test

* passkey : better prints

* passkey : select pass key pos from CLI

* passkey : simplify n_past logic

* llama : "self-extend"-like context extension

* passkey : add comment

* main : add Self-Extend support

* llama : add comment about llama_kv_cache_seq_div
2024-01-08 11:18:32 +02:00
Georgi Gerganov
b0034d93ce examples : add passkey test (#3856)
* examples : add passkey test

* passkey : better prints

* passkey : select pass key pos from CLI

* passkey : simplify n_past logic

* make : add passkey target

* passkey : add "self-extend"-like context extension (#4810)

* llama : "self-extend"-like context extension

* passkey : add comment

* passkey : add readme
2024-01-08 11:14:04 +02:00
Lars Grammel
b7e7982953 readme : add lgrammel/modelfusion JS/TS client for llama.cpp (#4814) 2024-01-07 22:24:11 +02:00
slaren
226460cc0d llama-bench : add no-kv-offload parameter (#4812) 2024-01-07 17:59:01 +01:00
Johannes Gäßler
d5a410e855 CUDA: fixed redundant value dequantization (#4809) 2024-01-07 17:24:08 +01:00
Georgi Gerganov
9dede37d81 llama : remove unused vars (#4796) 2024-01-07 14:29:36 +02:00
Georgi Gerganov
3c36213df8 llama : remove redundant GQA check (#4796) 2024-01-07 11:21:53 +02:00
Alex Azarov
72d8407b36 llama.swiftui : use llama.cpp as SPM package (#4804) 2024-01-07 10:20:50 +02:00
Georgi Gerganov
d117d4dc5d llama : print tensor meta for debugging 2024-01-07 09:51:12 +02:00
Alex Azarov
3418c03ecc llama.swiftui : add visionOS target (#4805) 2024-01-07 09:46:55 +02:00
Konstantin Zhuravlyov
63ee677efd ggml : use __builtin_amdgcn_sudot4 in __dp4a for gfx11 (#4787) 2024-01-07 08:52:42 +02:00
Georgi Gerganov
67984921a7 server : fix n_predict check (#4798) 2024-01-07 08:45:26 +02:00
Daniel Illescas Romero
c75ca5d96f llama.swiftui : use correct pointer for llama_token_eos (#4797) 2024-01-06 17:12:59 +02:00
Georgi Gerganov
96e80dabc6 examples : improve base-translate.sh script (#4783) 2024-01-06 11:40:24 +02:00
a-n-n-a-l-e-e
eec22a1c63 cmake : check for openblas64 (#4134)
openblas v0.3.22 64-bit pkg-config file is named openblas64.pc
https://github.com/OpenMathLib/OpenBLAS/issues/3790
2024-01-05 18:04:40 +02:00
Ikko Eltociear Ashimine
be36bb946a flake.nix : fix typo (#4700)
betwen -> between
2024-01-05 18:02:44 +02:00
Georgi Gerganov
91d38876df metal : switch back to default.metallib (ggml/681)
ggml-ci
2024-01-05 18:02:06 +02:00
Georgi Gerganov
d061bf9405 ggml : fix q2_k bpw in comments (ggml/680) 2024-01-05 18:02:06 +02:00
Finn Voorhees
1bf681f90e ggml : add error handling to graph_compute (whisper/1714) 2024-01-05 18:02:06 +02:00
Georgi Gerganov
c1d7cb28d3 ggml : do not sched_yield when calling BLAS (#4761)
* ggml : do not sched_yield when calling BLAS

ggml-ci

* ggml : fix do_yield logic

ggml-ci

* ggml : simplify do_yield logic

ggml-ci
2024-01-05 15:18:21 +02:00
Georgi Gerganov
3681f22443 examples : add few-shot translation example (#4783) 2024-01-05 15:11:10 +02:00
Daniel Bevenius
b3a7c20b5c finetune : remove unused includes (#4756)
This commit removes unused includes from finetune.cpp.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-04 21:45:37 +02:00
Georgi Gerganov
012cf349ae server : send token probs for "stream == false" (#4714) 2024-01-04 19:56:33 +02:00
Johannes Gäßler
a91928014f Print backend name on test-backend-ops failure (#4751) 2024-01-04 09:43:23 +01:00
singularity
3c0b585561 llama.swiftui : support loading custom model from file picker (#4767)
* swiftui: support load model from file picker

* swiftui: remove trailing whitespace
2024-01-04 10:22:38 +02:00
Michael Coppola
e5804313a1 server : fix options in README.md (#4765)
* fix examples/server/README.md

* minor : fix whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-04 10:17:09 +02:00
Georgi Gerganov
dc891b7f7a ggml : include stdlib.h before intrin.h (#4736) 2024-01-04 10:12:26 +02:00
singularity
46cea79e1f llama.swiftui : fix build of ggml.metallib (#4754)
* metal: fix metal backend init failure in swiftui

* metal: build ggml.metallib instead of copy src

* llama.swift : remove debug flags from metallib build

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-04 09:58:16 +02:00
Daniel Bevenius
cb1e2818e0 train : fix typo in overlapping-samples help msg (#4758)
This commit fixes a typo in the help message for the
--overlapping-samples option.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-03 19:53:40 +02:00
Ashraful Islam
ece9a45e8f swift : update Package.swift to use ggml as dependency (#4691)
* updates the package.swift to use ggml as dependency

* changes the ggml package url src to ggerganov
2024-01-03 19:30:02 +02:00
Georgi Gerganov
7bed7eba35 cuda : simplify expression
Co-authored-by: slaren <slarengh@gmail.com>
2024-01-03 14:38:38 +02:00
Georgi Gerganov
d55356d3ba cuda : mark I16 and I32 ops as unsupported
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
75e3fd8581 sync : ggml
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
289313716f metal : add kernel_get_rows_i32
ggml-ci
2024-01-03 14:38:38 +02:00
Georgi Gerganov
ab62fc3e55 scripts : fix sync order + metal sed 2024-01-03 14:38:38 +02:00
Guillaume Wenzek
5f66ebca9c ggml : extend ggml_get_rows, ggml_repeat, ggml_concat (ggml/639)
* add more int ops

* ggml_compute_forward_dup_bytes

* add tests

* PR comments

* tests : minor indentations

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-03 14:38:38 +02:00
Justin Parker
f2eb19bd8b server : throw an error when slot unavailable (#4741) 2024-01-03 10:43:19 +02:00
Georgi Gerganov
f3f62f0d83 metal : optimize ggml_mul_mat_id (faster Mixtral PP) (#4725)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (#4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

* metal : optimizing ggml_mul_mat_id (wip)

* metal : minor fix

* metal : opt mul_mm_id
2024-01-02 21:07:47 +02:00
Phil H
0ef3ca2ac6 server : add token counts to html footer (#4738)
* server: add token counts to stats

* server: generate hpp

---------

Co-authored-by: phiharri <ph@got-root.co.uk>
2024-01-02 17:48:49 +02:00
Georgi Gerganov
540938f890 llama : llama_model_desc print number of experts 2024-01-02 16:26:45 +02:00
Marcus Dunn
0040d42eeb llama : replace all API facing int's with int32_t (#4577)
* replaced all API facing `int`'s with `int32_t`

* formatting and missed `int` in `llama_token_to_piece`
2024-01-02 16:15:16 +02:00
postmasters
83e633c27e llama : differentiate the KV dims in the attention (#4657)
* Add n_key_dim and n_value_dim

Some models use values that are not derived from `n_embd`.
Also remove `n_embd_head` and `n_embd_gqa` because it is not clear
which "head" is referred to (key or value).

Fix issue #4648.

* Fix `llm_build_kqv` to use `n_value_gqa`

* Rebase

* Rename variables

* Fix llm_build_kqv to be more generic wrt n_embd_head_k

* Update default values for n_embd_head_k and n_embd_head_v

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Fix llm_load_tensors: the asserts were not backcompat

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 13:51:28 +02:00
Georgi Gerganov
32866c5edd editorconfig : fix whitespace and indentation #4710 2024-01-02 13:28:15 +02:00
minarchist
5d7002d437 server : add --override-kv parameter (#4710)
* Changes to server to allow metadata override

* documentation

* flake.nix: expose full scope in legacyPackages

* flake.nix: rocm not yet supported on aarch64, so hide the output

* flake.nix: expose checks

* workflows: nix-ci: init; build flake outputs

* workflows: nix-ci: add a job for eval

* workflows: weekly `nix flake update`

* workflows: nix-flakestry: drop tag filters

...and add a job for flakehub.com

* workflows: nix-ci: add a qemu job for jetsons

* flake.nix: suggest the binary caches

* flake.lock: update

to a commit recently cached by nixpkgs-cuda-ci

---------

Co-authored-by: John <john@jLap.lan>
Co-authored-by: Someone Serge <sergei.kozlukov@aalto.fi>
2024-01-02 12:38:15 +02:00
Nam D. Tran
26f3071d71 py : re-enable mmap in convert hf (#4732)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

* fix: update torch version

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-01-02 11:23:38 +02:00
Daniel Bevenius
775ac8712a finetune: fix typo in README.md (#4733)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-01-02 10:16:55 +01:00
Georgi Gerganov
58ba655af0 metal : enable shader debugging (cmake option) (#4705)
* ggml : disable fast-math for Metal (cmake build only)

ggml-ci

* metal : fix Metal API debug warnings

* cmake : add -fno-inline for Metal build (#4545)

* metal : fix API debug warnings

* metal : fix compile warnings

* metal : use uint64_t for strides

* cmake : rename option to LLAMA_METAL_SHADER_DEBUG

* metal : fix mat-vec Q8_0 kernel for BS > 1

* metal : normalize mat-vec kernel signatures

* cmake : respect LLAMA_QKK_64 option

* metal : fix mat-vec Q4_K kernel for QK_K == 64

ggml-ci
2024-01-02 10:57:44 +02:00
Someone Serge
edd1ab7bc3 flake.lock: update
to a commit recently cached by nixpkgs-cuda-ci
2023-12-31 13:14:58 -08:00
Someone Serge
198ed7ebfc flake.nix: suggest the binary caches 2023-12-31 13:14:58 -08:00
Someone Serge
d836174731 workflows: nix-ci: add a qemu job for jetsons 2023-12-31 13:14:58 -08:00
Someone Serge
06f2a5d190 workflows: nix-flakestry: drop tag filters
...and add a job for flakehub.com
2023-12-31 13:14:58 -08:00
Someone Serge
c5239944ba workflows: weekly nix flake update 2023-12-31 13:14:58 -08:00
Someone Serge
1e9ae54cf2 workflows: nix-ci: add a job for eval 2023-12-31 13:14:58 -08:00
Someone Serge
7adedecbe3 workflows: nix-ci: init; build flake outputs 2023-12-31 13:14:58 -08:00
Someone Serge
356ea17e0f flake.nix: expose checks 2023-12-31 13:14:58 -08:00
Someone Serge
a5c088d8c6 flake.nix: rocm not yet supported on aarch64, so hide the output 2023-12-31 13:14:58 -08:00
Someone Serge
1e3900ebac flake.nix: expose full scope in legacyPackages 2023-12-31 13:14:58 -08:00
Georgi Gerganov
e39106c055 ggml : add ggml_vdotq_s32 alias (#4715)
ggml-ci
2023-12-31 11:43:31 +02:00
Georgi Gerganov
9fbda719de clip : refactor + bug fixes (#4696)
* clip : refactor + bug fixes

ggml-ci

* server : add log message
2023-12-30 23:24:42 +02:00
Johannes Gäßler
39d8bc71ed CUDA: fixed tensor cores not being used on RDNA3 (#4697) 2023-12-30 13:52:01 +01:00
automaticcat
24a447e20a ggml : add ggml_cpu_has_avx_vnni() (#4589)
* feat: add avx_vnni based on intel documents

* ggml: add avx vnni based on intel document

* llama: add avx vnni information display

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* docs: add more details about using oneMKL and oneAPI for intel processors

* Update ggml.c

Fix indentation upgate

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-30 10:07:48 +02:00
Johannes Gäßler
a20f3c7465 CUDA: fix tensor core logic for Pascal and HIP (#4682) 2023-12-29 23:12:53 +01:00
Georgi Gerganov
0235b9b571 clip : use ggml_backend_buffer_is_host (#4205) 2023-12-29 18:53:34 +02:00
Steward Garcia
ce18d727a4 clip : enable gpu backend (#4205)
* clip: enable CUDA backend

* add missing kernels

* add enough padding for alignment

* remove ggml_repeat of clip.cpp

* add metal backend

* llava : fixes

- avoid ggml_repeat
- use GGML_USE_ instead of CLIP_USE_ macros
- remove unused vars

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-29 18:52:15 +02:00
hydai
91bb39cec7 cuda: fix vmm oom issue on NVIDIA AGX Orin (#4687)
Signed-off-by: hydai <hydai@secondstate.io>
2023-12-29 17:31:19 +01:00
crasm
04ac0607e9 python : add check-requirements.sh and GitHub workflow (#4585)
* python: add check-requirements.sh and GitHub workflow

This script and workflow forces package versions to remain compatible
across all convert*.py scripts, while allowing secondary convert scripts
to import dependencies not wanted in convert.py.

* Move requirements into ./requirements

* Fail on "==" being used for package requirements (but can be suppressed)

* Enforce "compatible release" syntax instead of ==

* Update workflow

* Add upper version bound for transformers and protobuf

* improve check-requirements.sh

* small syntax change

* don't remove venvs if nocleanup is passed

* See if this fixes docker workflow

* Move check-requirements.sh into ./scripts/

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-12-29 16:50:29 +02:00
Philip Taron
68eccbdc5b flake.nix : rewrite (#4605)
* flake.lock: update to hotfix CUDA::cuda_driver

Required to support https://github.com/ggerganov/llama.cpp/pull/4606

* flake.nix: rewrite

1. Split into separate files per output.

2. Added overlays, so that this flake can be integrated into others.
   The names in the overlay are `llama-cpp`, `llama-cpp-opencl`,
   `llama-cpp-cuda`, and `llama-cpp-rocm` so that they fit into the
   broader set of Nix packages from [nixpkgs](https://github.com/nixos/nixpkgs).

3. Use [callPackage](https://summer.nixos.org/blog/callpackage-a-tool-for-the-lazy/)
   rather than `with pkgs;` so that there's dependency injection rather
   than dependency lookup.

4. Add a description and meta information for each package.
   The description includes a bit about what's trying to accelerate each one.

5. Use specific CUDA packages instead of cudatoolkit on the advice of SomeoneSerge.

6. Format with `serokell/nixfmt` for a consistent style.

7. Update `flake.lock` with the latest goods.

* flake.nix: use finalPackage instead of passing it manually

* nix: unclutter darwin support

* nix: pass most darwin frameworks unconditionally

...for simplicity

* *.nix: nixfmt

nix shell github:piegamesde/nixfmt/rfc101-style --command \
    nixfmt flake.nix .devops/nix/*.nix

* flake.nix: add maintainers

* nix: move meta down to follow Nixpkgs style more closely

* nix: add missing meta attributes

nix: clarify the interpretation of meta.maintainers

nix: clarify the meaning of "broken" and "badPlatforms"

nix: passthru: expose the use* flags for inspection

E.g.:

```
❯ nix eval .#cuda.useCuda
true
```

* flake.nix: avoid re-evaluating nixpkgs too many times

* flake.nix: use flake-parts

* nix: migrate to pname+version

* flake.nix: overlay: expose both the namespace and the default attribute

* ci: add the (Nix) flakestry workflow

* nix: cmakeFlags: explicit OFF bools

* nix: cuda: reduce runtime closure

* nix: fewer rebuilds

* nix: respect config.cudaCapabilities

* nix: add the impure driver's location to the DT_RUNPATHs

* nix: clean sources more thoroughly

...this way outPaths change less frequently,
and so there are fewer rebuilds

* nix: explicit mpi support

* nix: explicit jetson support

* flake.nix: darwin: only expose the default

---------

Co-authored-by: Someone Serge <sergei.kozlukov@aalto.fi>
2023-12-29 16:42:26 +02:00
Cuong Trinh Manh
97bbca6e85 cmake : fix ld warning duplicate libraries libllama.a (#4671)
* fix "ld: warning: ignoring duplicate libraries: '../libllama.a'"

* fix warning in example.
2023-12-29 16:39:15 +02:00
Justine Tunney
4af4801566 llava-cli : refactor to use sampling library (#4669)
This change makes it possible to use flags like `--grammar` when using
the `llava-cli` program. The rest is just code cleanup deleting a long
standing TODO comment.

This change also ensures that logging information is emitted to stderr
which helps the `llava-cli` command be more friendly to shell scripts.

See Mozilla-Ocho/llamafile@1cd334f
2023-12-29 16:38:38 +02:00
Justine Tunney
db49ff8ed7 server : replace sleep with condition variables (#4673)
The server currently schedules tasks using a sleep(5ms) busy loop. This
adds unnecessary latency since most sleep implementations do a round up
to the system scheduling quantum (usually 10ms). Other libc sleep impls
spin for smaller time intervals which results in the server's busy loop
consuming all available cpu. Having the explicit notify() / wait() code
also helps aid in the readability of the server code.

See mozilla-Ocho/llamafile@711344b
2023-12-29 16:24:12 +02:00
SakuraUmi
60f55e888c server : fix OpenAI server sampling w.r.t. penalty. (#4675) 2023-12-29 16:22:44 +02:00
Karthik Sethuraman
b93edd22f5 server : allow to generate multimodal embeddings (#4681) 2023-12-29 16:22:10 +02:00
andrijdavid
82d6eab224 main-cmake-pkg : fix build issue (#4665)
* Fix main-cmake-pkg compilation

* Use glob to load common files

* cmake : fix trailing whitespace

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-29 16:18:20 +02:00
Peter Sugihara
afd997ab60 llama.swiftui : fix infinite loop, ouput timings, buff UI (#4674)
* fix infinite loop

* slight UI simplification, clearer UX

* clearer UI text, add timings to completion log
2023-12-29 15:58:56 +02:00
Georgi Gerganov
c8255f8a6b scripts : print list of sync commits 2023-12-29 15:12:35 +02:00
Tamotsu Takahashi
441f51dca0 ci : build with CLBlast + ggml-opencl use GGML_API (whisper/1576)
* Build with CLBlast

* Declare GGML_API

After rebasing, examples/talk-llama failed:

"D:\a\whisper.cpp\whisper.cpp\build\ALL_BUILD.vcxproj" (build target) (1) ->
"D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj" (default target) (14) ->
(Link target) ->
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_free_data referenced in function "public: __cdecl llama_model::~llama_model(void)" (??1llama_model@@QEAA@XZ) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  llama.obj : error LNK2019: unresolved external symbol ggml_cl_transform_tensor referenced in function "public: void __cdecl llama_model_loader::load_all_data(struct ggml_context *,void (__cdecl*)(float,void *),void *,struct llama_mlock *)" (?load_all_data@llama_model_loader@@QEAAXPEAUggml_context@@P6AXMPEAX@Z1PEAUllama_mlock@@@Z) [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
  D:\a\whisper.cpp\whisper.cpp\build\bin\Release\talk-llama.exe : fatal error LNK1120: 2 unresolved externals [D:\a\whisper.cpp\whisper.cpp\build\examples\talk-llama\talk-llama.vcxproj]
2023-12-29 15:11:53 +02:00
Georgi Gerganov
38b3de4658 sync : ggml 2023-12-29 14:56:41 +02:00
bssrdf
afc8c19291 ggml : fix some mul mat cases + add tests for src1 F16 (ggml/669)
* fixed mul-mat error for old GPUs

* style fixes

* add mul mat src1 f16 test cases, fix more cases

ggml-ci

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-29 14:54:19 +02:00
Georgi Gerganov
ca38b8d334 scripts : do not sync commits from this repo 2023-12-29 14:54:05 +02:00
Justine Tunney
65e5f6dadb Fix OpenAI server sampling w.r.t. temp and seed (#4668)
The default values for tfs_z and typical_p were being set to zero, which
caused the token candidates array to get shrunk down to one element thus
preventing any sampling. Note this only applies to OpenAI API compatible
HTTP server requests.

The solution is to use the default values that OpenAI documents, as well
as ensuring we use the llama.cpp defaults for the rest. I've tested this
change still ensures deterministic output by default. If a "temperature"
greater than 0 is explicitly passed, then output is unique each time. If
"seed" is specified in addition to "temperature" then the output becomes
deterministic once more.

See mozilla-Ocho/llamafile#117
See mozilla-Ocho/llamafile@9e4bf29
2023-12-28 15:20:00 -04:00
manikbhandari
ea5497df5d gpt2 : Add gpt2 architecture integration (#4555) 2023-12-28 15:03:57 +01:00
Nam D. Tran
f6793491b5 llama : add AWQ for llama, llama2, mpt, and mistral models (#4593)
* update: awq support llama-7b model

* update: change order

* update: benchmark results for llama2-7b

* update: mistral 7b v1 benchmark

* update: support 4 models

* fix: Readme

* update: ready for PR

* update: readme

* fix: readme

* update: change order import

* black

* format code

* update: work for bot mpt and awqmpt

* update: readme

* Rename to llm_build_ffn_mpt_awq

* Formatted other files

* Fixed params count

* fix: remove code

* update: more detail for mpt

* fix: readme

* fix: readme

* update: change folder architecture

* fix: common.cpp

* fix: readme

* fix: remove ggml_repeat

* update: cicd

* update: cicd

* uppdate: remove use_awq arg

* update: readme

* llama : adapt plamo to new ffn

ggml-ci

---------

Co-authored-by: Trần Đức Nam <v.namtd12@vinai.io>
Co-authored-by: Le Hoang Anh <v.anhlh33@vinai.io>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-27 17:39:45 +02:00
Daniel Bevenius
879b690a9e finetune : fix output formatting in print_params (#4653)
This commit fixes the output formatting in the print_params function
which currently looks like this:
```console
print_params: n_vocab:   32000
print_params: n_ctx:     128
print_params: n_embd:    4096
print_params: n_ff:      11008
print_params: n_head:    32
print_params: n_head_kv: 32
print_params: n_layer:   32
print_params: norm_rms_eps          : 0.000010
print_params: rope_freq_base        : 10000.000000
print_params: rope_freq_scale       : 1.000000
```
With this comit the output will look like this:
```console
print_params: n_vocab               : 32000
print_params: n_ctx                 : 128
print_params: n_embd                : 4096
print_params: n_ff                  : 11008
print_params: n_head                : 32
print_params: n_head_kv             : 32
print_params: n_layer               : 32
print_params: norm_rms_eps          : 0.000010
print_params: rope_freq_base        : 10000.000000
print_params: rope_freq_scale       : 1.000000
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-12-27 16:16:55 +02:00
Georgi Gerganov
b47879b0dd scripts : add sync-ggml-am.sh 2023-12-27 11:44:22 +02:00
Georgi Gerganov
951010fa53 ggml : fix dot product for ARM (#4630)
ggml-ci
2023-12-27 11:02:13 +02:00
wonjun Jang
f56d6077d0 Add byte token type when tokenizer.model is not exists (#4641)
* Add byte token type to hf format

* remove unused variable
2023-12-27 17:37:25 +09:00
slaren
dc68f0054c cuda : fix vmm pool with multi GPU (#4620)
* cuda : fix vmm pool with multi GPU

* hip

* use recommended granularity instead of minimum

* better error checking

* fix mixtral

* use cudaMemcpy3DPeerAsync

* use cuda_pool_alloc in ggml_cuda_op_mul_mat

* consolidate error checking in ggml_cuda_set_device

* remove unnecessary inlines

ggml-ci

* style fixes

* only use vmm for the main device

* fix scratch buffer size, re-enable vmm pool for all devices

* remove unnecessary check id != g_main_device
2023-12-26 21:23:59 +01:00
WillCorticesAI
de8e496437 Update comment for AdamW implementation reference. (#4604)
Co-authored-by: Will Findley <findley@gmail.com>
2023-12-26 11:42:08 +01:00
FantasyGmm
77465dad48 Fix new CUDA10 compilation errors (#4635) 2023-12-26 11:38:36 +01:00
Paul Tsochantaris
a206137f92 Adding Emeltal reference to UI list (#4629) 2023-12-25 18:09:53 +02:00
slaren
b9f47952ff simplify bug issue template (#4623) 2023-12-24 22:01:12 +02:00
Shintarou Okada
753be377b6 llama : add PLaMo model (#3557)
* add plamo mock

* add tensor loading

* plamo convert

* update norm

* able to compile

* fix norm_rms_eps hparam

* runnable

* use inp_pos

* seems ok

* update kqv code

* remove develop code

* update README

* shuffle attn_q.weight and attn_output.weight for broadcasting

* remove plamo_llm_build_kqv and use llm_build_kqv

* fix style

* update

* llama : remove obsolete KQ_scale

* plamo : fix tensor names for correct GPU offload

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-24 15:35:49 +02:00
slaren
5bf3953d7e cuda : improve cuda pool efficiency using virtual memory (#4606)
* cuda : improve cuda pool efficiency using virtual memory

* fix mixtral

* fix cmake build

* check for vmm support, disable for hip

ggml-ci

* fix hip build

* clarify granularity

* move all caps to g_device_caps

* refactor error checking

* add cuda_pool_alloc, refactor most pool allocations

ggml-ci

* fix hip build

* CUBLAS_TF32_TENSOR_OP_MATH is not a macro

* more hip crap

* llama : fix msvc warnings

* ggml : fix msvc warnings

* minor

* minor

* cuda : fallback to CPU on host buffer alloc fail

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* ensure allocations are always aligned

* act_size -> actual_size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-12-24 14:34:22 +01:00
slaren
708e179e85 fallback to CPU buffer if host buffer alloc fails (#4610) 2023-12-23 16:10:51 +01:00
Samuel Maynard
925e5584a0 ci(docker): fix tags in "Build and push docker image (tagged)" (#4603) 2023-12-23 11:35:55 +02:00
Alexey Parfenov
6123979952 server : allow to specify custom prompt for penalty calculation (#3727) 2023-12-23 11:31:49 +02:00
kalomaze
b9ec82d262 grammar : check the full vocab only if necessary (opt) (#4306)
* Check the full vocab for grammar only if necessary

* Fix missing logit restoration step (?)

Does this matter, actually?

* Fix whitespace / formatting

* Adjust comment

* Didn't mean to push test gbnf

* Split sampling into the helper function (?)

And also revert the changes made to the header

* common : fix final newline

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-23 11:27:07 +02:00
Johannes Gäßler
e0a4002273 CUDA: fixed row rounding for 0 tensor splits (#4594) 2023-12-23 09:16:33 +01:00
LeonEricsson
7082d24cec lookup : add prompt lookup decoding example (#4484)
* initial commit, going through initializations

* main loop finished, starting to debug

* BUG: generates gibberish/repeating tokens after a while

* kv_cache management

* Added colors to distinguish drafted tokens (--color). Updated README

* lookup : fix token positions in the draft batch

* lookup : use n_draft from CLI params

* lookup : final touches

---------

Co-authored-by: Leon Ericsson <leon.ericsson@icloud.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22 18:05:56 +02:00
Georgi Gerganov
ba66175132 sync : ggml (fix im2col) (#4591)
* cuda : fix im2col_f32_f16 (ggml/#658)

ggml-ci

* ggml-alloc : fix ggml_tallocr_is_own

---------

Co-authored-by: leejet <leejet714@gmail.com>
2023-12-22 17:53:43 +02:00
FantasyGmm
a55876955b cuda : fix jetson compile error (#4560)
* fix old jetson compile error

* Update Makefile

* update jetson detect and cuda version detect

* update cuda marco define

* update makefile and cuda,fix some issue

* Update README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update Makefile

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-22 17:11:12 +02:00
Henrik Forstén
6724ef1657 Fix CudaMemcpy direction (#4599) 2023-12-22 14:34:05 +01:00
slaren
48b7ff193e llama : fix platforms without mmap (#4578)
* llama : fix platforms without mmap

* win32 : limit prefetch size to the file size

* fix win32 error clobber, unnecessary std::string in std::runtime_error
2023-12-22 13:12:53 +02:00
Herman Semenov
48b24b170e ggml : add comment about backward GGML_OP_DIAG_MASK_INF (#4203) 2023-12-22 11:26:49 +02:00
Michael Kesper
28cb35a0ec make : add LLAMA_HIP_UMA option (#4587)
NB: LLAMA_HIP_UMA=1 (or any value) adds MK_CPPFLAG -DGGML_HIP_UMA
2023-12-22 10:03:25 +02:00
rhuddleston
f31b984898 ci : tag docker image with build number (#4584) 2023-12-22 08:56:34 +02:00
Deins
2bb98279c5 readme : add zig bindings (#4581) 2023-12-22 08:49:54 +02:00
bobqianic
0137ef88ea ggml : extend enum ggml_log_level with GGML_LOG_LEVEL_DEBUG (#4579) 2023-12-22 08:47:01 +02:00
crasm
c7e9701f86 llama : add ability to cancel model loading (#4462)
* llama : Add ability to cancel model load

Updated llama_progress_callback so that if it returns false, the model
loading is aborted.

* llama : Add test for model load cancellation

* Fix bool return in llama_model_load, remove std::ignore use

* Update llama.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Fail test if model file is missing

* Revert "Fail test if model file is missing"

This reverts commit 32ebd525bf.

* Add test-model-load-cancel to Makefile

* Revert "Revert "Fail test if model file is missing""

This reverts commit 2796953257.

* Simplify .gitignore for tests, clang-tidy fixes

* Label all ctest tests

* ci : ctest uses -L main

* Attempt at writing ctest_with_model

* ci : get ci/run.sh working with test-model-load-cancel

* ci : restrict .github/workflows/build.yml ctest to -L main

* update requirements.txt

* Disable test-model-load-cancel in make

* Remove venv before creation

* Restructure requirements.txt

Top-level now imports the specific additional requirements for each
python file. Using `pip install -r requirements.txt` will fail if
versions become mismatched in the per-file requirements.

* Make per-python-script requirements work alone

This doesn't break the main requirements.txt.

* Add comment

* Add convert-persimmon-to-gguf.py to new requirements.txt scheme

* Add check-requirements.sh script and GitHub workflow

* Remove shellcheck installation step from workflow

* Add nocleanup special arg

* Fix merge

see: https://github.com/ggerganov/llama.cpp/pull/4462#discussion_r1434593573

* reset to upstream/master

* Redo changes for cancelling model load

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-22 08:19:36 +02:00
Georgi Gerganov
afefa319f1 ggml : change ggml_scale to take a float instead of tensor (#4573)
* ggml : change ggml_scale to take a float instead of tensor

* ggml : fix CPU implementation

* tests : fix test-grad0

ggml-ci
2023-12-21 23:20:49 +02:00
Georgi Gerganov
769a7bc85e gguf-py : fix broken link 2023-12-21 23:20:36 +02:00
Georgi Gerganov
32259b2dad gguf : simplify example dependencies 2023-12-21 23:08:14 +02:00
Samuel Maynard
4a5f9d629e ci : add jlumbroso/free-disk-space to docker workflow (#4150)
* [github][workflows][docker]: removes hardcoded `ggerganov` from `ghcr` repo

* [github][workflows][docker]: adds `jlumbroso/free-disk-space`
2023-12-21 22:36:26 +02:00
slaren
d232aca5a7 llama : initial ggml-backend integration (#4520)
* llama : initial ggml-backend integration

* add ggml-metal

* cuda backend can be used though ggml-backend with LLAMA_GGML_BACKEND_CUDA_TEST
access all tensor data with ggml_backend_tensor_get/set

* add ggml_backend_buffer_clear
zero-init KV cache buffer

* add ggml_backend_buffer_is_hos, used to avoid copies if possible when accesing tensor data

* disable gpu backends with ngl 0

* more accurate mlock

* unmap offloaded part of the model

* use posix_fadvise64(.., POSIX_FADV_SEQUENTIAL) to improve performance with mmap

* update quantize and lora

* update session copy/set to use ggml-backend

ggml-ci

* use posix_fadvise instead of posix_fadvise64

* ggml_backend_alloc_ctx_tensors_from_buft : remove old print

* llama_mmap::align_offset : use pointers instead of references for out parameters

* restore progress_callback behavior

* move final progress_callback call to load_all_data

* cuda : fix fprintf format string (minor)

* do not offload scales

* llama_mmap : avoid unmapping the same fragments again in the destructor

* remove unnecessary unmap

* metal : add default log function that prints to stderr, cleanup code

ggml-ci

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:07:46 +01:00
Marcus Dunn
31f27758fa llama : allow getting n_batch from llama_context in c api (#4540)
* allowed getting n_batch from llama_context in c api

* changed to use `uint32_t` instead of `int`

* changed to use `uint32_t` instead of `int` in `llama_n_ctx`

* Update llama.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 21:57:48 +02:00
Finn Voorhees
56fa50819f metal : fix ggml_metal_log vargs (#4373) 2023-12-21 21:55:02 +02:00
Erik Garrison
0f630fbc92 cuda : ROCm AMD Unified Memory Architecture (UMA) handling (#4449)
* AMD ROCm: handle UMA memory VRAM expansions

This resolves #2797 by allowing ROCm AMD GPU users with a UMA to
dynamically expand the VRAM allocated to the GPU.

Without this, AMD ROCm users with shared CPU/GPU memory usually are
stuck with the BIOS-set (or fixed) framebuffer VRAM, making it
impossible to load more than 1-2 layers.

Note that the model is duplicated in RAM because it's loaded once for
the CPU and then copied into a second set of allocations that are
managed by the HIP UMA system. We can fix this later.

* clarify build process for ROCm on linux with cmake

* avoid using deprecated ROCm hipMallocHost

* keep simplifying the change required for UMA

* cmake: enable UMA-compatible allocation when LLAMA_HIP_UMA=ON
2023-12-21 21:45:32 +02:00
arlo-phoenix
562cf222b5 ggml-cuda: Fix HIP build by adding define for __trap (#4569)
Regression of 1398823922
HIP doesn't have trap, only abort
2023-12-21 20:13:25 +01:00
Jared Van Bortel
8fe03ffdda common : remove incorrect --model-draft default (#4568) 2023-12-21 19:55:34 +02:00
Johannes Gäßler
9154494808 CUDA: mul_mat_id always on GPU for batches >= 32 (#4553) 2023-12-21 18:42:59 +01:00
Georgi Gerganov
c083718c89 readme : update coding guidelines 2023-12-21 19:27:14 +02:00
howlger
880e352277 py : open merges file as 'utf-8' (#4566)
Otherwise, on Windows converting bling-phi-2-v0 (<https://huggingface.co/llmware/bling-phi-2-v0>) via convert-hf-to-gguf.py will fail with the following error:

```
Traceback (most recent call last):
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 1061, in <module>
    model_instance.set_vocab()
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 52, in set_vocab
    self._set_vocab_gpt2()
  File "C:\Users\User\git\gguf\convert-hf-to-gguf.py", line 264, in _set_vocab_gpt2
    special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 33, in __init__
    self._load(Path(path))
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 81, in _load
    self._try_load_merges_txt(path)
  File "C:\Users\User\git\gguf\gguf\vocab.py", line 95, in _try_load_merges_txt
    for line in fp:
  File "C:\Users\User\miniconda3\envs\gguf\lib\encodings\cp1252.py", line 23, in decode
    return codecs.charmap_decode(input,self.errors,decoding_table)[0]
UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 1415: character maps to <undefined>
```
2023-12-21 19:07:34 +02:00
bobqianic
66f35a2f48 cuda : better error message for ggml_get_rows (#4561)
* Update ggml-cuda.cu

* Update ggml-cuda.cu

* Update ggml-cuda.cu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-21 19:06:44 +02:00
slaren
1398823922 cuda : replace asserts in wrong architecture checks with __trap (#4556)
* cuda : replace asserts in wrong architecture checks with __trap

* make bad_arch noreturn, remove returns
2023-12-21 18:02:30 +01:00
Johannes Gäßler
d3223afdad llama : disable per-tensor info prints on model load (#4562) 2023-12-21 18:34:17 +02:00
LoganDark
1d7a1912ce Fix access violation in ggml_cuda_free_data if tensor->extra is NULL (#4554) 2023-12-21 10:59:27 +01:00
Johannes Gäßler
799fc22689 CUDA: Faster Mixtral prompt processing (#4538)
* CUDA: make MoE tensors contiguous for batch size>1

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-20 15:41:22 +01:00
Eric Sommerlade
328b83de23 ggml : fixed check for _MSC_VER (#4535)
Co-authored-by: Eric Sommerlade <ersomme@microsoft.com>
2023-12-19 18:17:01 +02:00
arlo-phoenix
a7aee47b98 ggml-cuda: Fix HIP build (#4528)
regression of #4490
Adds defines for two new datatypes
cublasComputeType_t, cudaDataType_t.

Currently using deprecated hipblasDatatype_t since newer ones very recent.
2023-12-18 22:33:45 +01:00
Georgi Gerganov
0e18b2e7d0 llama.swiftui : add tinyllama 1.1B F16 2023-12-18 20:17:43 +02:00
Georgi Gerganov
6ff39b129d llama.swiftui : add more models 2023-12-18 20:05:12 +02:00
Ebey Abraham
b9e74f9bca llama : add phi-2 + fix NeoX rope + ggml_mul_mat_set_prec (#4490)
* phi2 implementation

* fix breaking change

* phi-2 : various fixes

* phi-2 : use layer norm eps

* py : whitespaces

* llama : fix meta KV override bug

* convert : phi don't add BOS token

* convert : revert "added_tokens_decoder" change

* phi-2 : scale Q instead of KQ for better precision

* ggml : fix NeoX rope to rotate just first n_dims

* cuda : less diff in the rope_neox kernel

* ggml : add ggml_mul_mat_set_prec

ggml-ci

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: slaren <slarengh@gmail.com>

* cuda : ggml_cuda_op_mul_mat_cublas support F32 precision

* cuda : remove oboslete comment

---------

Co-authored-by: Ebey Abraham <ebeyabraham@microsoft.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2023-12-18 19:27:47 +02:00
hankcs
3c04bf6da8 llama : fix try_override for bool_value which always return true (#4519) 2023-12-18 15:14:58 +02:00
Jared Van Bortel
2994f0c5a2 decode : fix logits_valid for legacy API (#4516) 2023-12-17 19:39:02 -05:00
Georgi Gerganov
b1306c4394 readme : update hot topics 2023-12-17 20:16:23 +02:00
Georgi Gerganov
800a489e4a llama.swiftui : add bench functionality (#4483)
* llama.swiftui : add bench button

* llama.swiftui : initial bench functionality

* force to use n_gpu_layers on simulator

* add download buttons & expose llamaState.loadModel

* update project.pbxproj

* comment #Preview & fix editorconfig check

* gitignore : xcode stuff

* llama.swiftui : UX improvements

* llama.swiftui : avoid data copy via "downloadTask"

* llama.swiftui : remove model from project

* llama : remove "mostly" from model infos

* llama.swiftui : improve bench

---------

Co-authored-by: jhen <developer@jhen.me>
2023-12-17 19:38:41 +02:00
Jared Van Bortel
f7f468a97d gguf-py : fail fast on nonsensical special token IDs (#4489) 2023-12-17 10:45:46 -05:00
Matheus Gabriel Alves Silva
919c40660f build : Check the ROCm installation location (#4485)
* build : Check the ROCm installation location

* more generic approach

* fixup! It was returning the path instead of the command output

* fixup! Trailing whitespace
2023-12-17 17:23:33 +02:00
slaren
45668633fd finetune : keep allocs alive until all allocations are done (#4486) 2023-12-17 16:05:56 +01:00
olexiyb
0ffc92d2d2 server : disable llm logs if SERVER_VERBOSE is off (#3792) 2023-12-17 17:02:16 +02:00
AdithyanI
8edd2b40fd server : fix grammar being ignored (#4494)
Fix bug in identifying the grammar.
2023-12-17 16:57:56 +02:00
Alexey Parfenov
eb16dae7e7 server : fix possible ambiguity in content type charset (#4501) 2023-12-17 16:56:09 +02:00
mzcu
62bd52b7bf server : allow requests larger than 8K (#4500) 2023-12-17 16:54:37 +02:00
Bach Le
5daa5f54fd Link to cublas dynamically on Windows even with LLAMA_STATIC (#4506) 2023-12-17 11:57:33 +01:00
slaren
c6c4fc081c lora : add support for non-llama models (#3333)
* lora : add support for non-llama models

ggml-ci

* avoid leaking ggml_context on failure
cleanup

ggml-ci

* lora : allow 1d tensors

* lora : include embd and output layers in size calculation

* fix style
2023-12-16 18:58:46 +01:00
Jared Van Bortel
8a5be3bd58 llama : sanity checks for access to logits (#4274)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-15 22:16:15 -05:00
ShadovvBeast
88ae8952b6 server : add optional API Key Authentication example (#4441)
* Add API key authentication for enhanced server-client security

* server : to snake_case

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-15 13:49:01 +02:00
slaren
ee4725a686 ggml : group mul_mat_id rows by matrix (cpu only) (#4480)
* ggml : group mul_mat_id rows by matrix (cpu only)

* remove mmid parameters from mm forward

* store row groups in wdata and calculate only once in GGML_TASK_INIT

ggml-ci
2023-12-15 12:45:50 +01:00
slaren
6744dbe924 ggml : use ggml_row_size where possible (#4472)
* ggml : use ggml_row_size where possible

ggml-ci

* ggml : move ggml_nbytes_split to ggml-cuda.cu
2023-12-14 20:05:21 +01:00
slaren
cafcd4f895 ggml : remove n_dims from ggml_tensor (#4469)
ggml-ci
2023-12-14 16:52:08 +01:00
wonjun Jang
c50e400163 py : add protobuf dependency (#4466) 2023-12-14 14:44:49 +02:00
LostRuins
20a68a7030 ggml : add ggml_row_size() (fixes llama out of space) (#4461)
* Fixes "Not enough space in the context's memory pool" encountered on certain models, which seems to be caused by some imprecision related to the automatic casting of floating point values

* do not cast to size_t, instead just use doubles

* ggml : add ggml_row_size(), deprecate ggml_type_sizef()

* ggml : fix row size compute to avoid overflows

* tests : fix sizey -> sizez

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-14 14:13:33 +02:00
Georgi Gerganov
55e87c3749 ggml : fix OpenCL broadcast requirement for ggml_mul (close #4453) 2023-12-14 10:35:29 +02:00
wonjun Jang
873637afc7 convert : support loading vocab from fast tokenizer config (#3633)
* Add HFVocab into convert.py

* Update convert.py

* Update convert.py

* add bytes_to_unicode function

* change add_meta_vocab fucntion

* remove debug code

* remove byte_encoder

* Add newline between classes

* Check tokenizer.json when tokenizer.model is not exist.

* Move transformers dependency to local code

* Add error context with 'raise from'

* Add fast tokenizer option to BpeVocab

* Update convert.py

* Add VocabLoader and remove *Vocab class

* Add transformers dependency

* remove added tokens and check newline token to decide spm or bpe

* Update convert.py

* Add special token type

* Update convert.py

* Update convert.py

* Update convert.py

* Fix typo in convert.py

* Fix when params.n_vocab < tokenizer vocab size

* update vocab class

* change funtion name

* Remove unused variable/functions, add types to class variable and methods, delete blank liens

* fix flake8 warnings

* code style cleanup

* make mypy happy

* change exception

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-12-14 10:09:34 +02:00
BarfingLemurs
0353a18401 readme : update supported model list (#4457) 2023-12-14 09:38:49 +02:00
shibe2
948ff137ec server : fix handling of characters that span multiple tokens when streaming (#4446) 2023-12-13 21:57:15 +02:00
Georgi Gerganov
4d98d9a656 sync : ggml (SD ops, tests, kernels) (#4444)
* sync : ggml (SD ops, tests, kernels)

ggml-ci

* cuda : restore im2col

ggml-ci

* metal : fix accuracy of dequantization kernels

ggml-ci

* cuda : restore correct im2col

ggml-ci

* metal : try to fix moe test by reducing expert size

ggml-ci

* cuda : fix bin bcast when src1 and dst have different types

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-13 21:54:54 +02:00
Jared Van Bortel
70f806b821 build : detect host compiler and cuda compiler separately (#4414) 2023-12-13 12:10:10 -05:00
Siwen Yu
9fb13f9584 common : add --version option to show build info in CLI (#4433) 2023-12-13 14:50:14 +02:00
Georgi Gerganov
113f9942fc readme : update hot topics 2023-12-13 14:05:38 +02:00
slaren
799a1cb13b llama : add Mixtral support (#4406)
* convert : support Mixtral as LLAMA arch

* convert : fix n_ff typo

* llama : model loading

* ggml : sync latest ggml_mul_mat_id

* llama : update graph to support MoE

* llama : fix cur -> cur_expert

* llama : first working version

* llama : fix expert weighting in the FFN

* ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only)

* ggml : add n_as argument to ggml_mul_mat_id

* ggml : fix ggml_get_rows to take into account ne02 / ne11

* metal : add more general support for ggml_get_rows + tests

* llama : add basic support for offloading moe with CUDA

* metal : add/mul/div use general kernel when src1 not cont

* metal : reduce the kernel launches for ggml_mul_mat_id

* ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D

* ggml : update get_rows f16 and q

* cuda : support non-contiguous src1 in get_rows

* llama : offload missing ffn_moe_silu

* metal : fix ggml_get_rows to work with non-cont src1

* metal : add indirect mat-vec kernels for all quantization types

* llama : do not quantize expert gating tensors

* llama : add n_expert and n_expert_used to hparams + change quants

* test-backend-ops : add moe test

* cuda : fix get_rows when ncols is odd

* convert : determine n_ctx correctly

* metal : fix ggml_mul_mat_id for F32

* test-backend-ops : make experts more evenly probable (test_moe)

* test-backend-ops : cleanup, add moe test for batches

* test-backend-ops : add cpy from f32 -> all types test

* test-backend-ops : fix dequantize block offset

* llama : fix hard-coded number of experts

* test-backend-ops : simplify and disable slow tests to avoid CI timeout

* test-backend-ops : disable MOE test with thread sanitizer

* cuda : fix mul_mat_id with multi gpu

* convert : use 1e6 rope_freq_base for mixtral

* convert : fix style

* convert : support safetensors format

* gguf-py : bump version

* metal : add cpy f16 -> f32 kernel

* metal : fix binary ops for ne10 % 4 != 0

* test-backend-ops : add one more sum_rows test

* ggml : do not use BLAS with ggml_mul_mat_id

* convert-hf : support for mixtral-instruct (#4428)

* convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct

* convert : use sentencepiece tokenizer for Mixtral-instruct

* convert : make flake8 happy

* metal : fix soft_max kernels

ref: 1914017863

* metal : limit kernels to not use more than the allowed threads

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Radek Pilar <github@mrkva.eu>
2023-12-13 14:04:25 +02:00
kalomaze
fecac45658 server : tweak default sampling parameters (#4367)
* Set a more typical Top P setting as the default

* Update temp max
2023-12-12 12:12:35 +02:00
Richard Kiss
9494d7c477 english : use typos to fix comments and logs (#4354) 2023-12-12 11:53:36 +02:00
Jared Van Bortel
6138963fb2 build : target Windows 8 for standard mingw-w64 (#4405)
* build : target Windows 8 for standard mingw-w64

* make : fix missing console.o deps

This was causing a link error with `make all` on Windows.
2023-12-12 11:27:26 +02:00
crasm
6391817cd1 llama : document logits_all deprecation (#4418)
llama_context_params.logits_all is a parameter for controlling
llama_eval. This documents that logits_all should not be used with
llama_decode and llama_batch.
2023-12-12 11:25:57 +02:00
Vladimir Zorin
d9d4cfef64 server : fix local model name in server (#4420) 2023-12-12 11:25:29 +02:00
Taikono-Himazin
41a11aaf99 ggml : increased GGML_MAX_PARAMS to allow finetuning of 70b models (#4424) 2023-12-12 11:24:32 +02:00
Yueh-Po Peng
8a7b2fa528 Update README.md (#4388)
Fix small typo.
2023-12-10 23:27:38 +01:00
Xiang (Kevin) Li
e18f7345a3 grammar : revert the replacement of llama_token_to_piece with id_to_token (#4396) 2023-12-09 23:29:27 +02:00
Georgi Gerganov
fe680e3d10 sync : ggml (new ops, tests, backend, etc.) (#4359)
* sync : ggml (part 1)

* sync : ggml (part 2, CUDA)

* sync : ggml (part 3, Metal)

* ggml : build fixes

ggml-ci

* cuda : restore lost changes

* cuda : restore lost changes (StableLM rope)

* cmake : enable separable compilation for CUDA

ggml-ci

* ggml-cuda : remove device side dequantize

* Revert "cmake : enable separable compilation for CUDA"

This reverts commit 09e35d04b1.

* cuda : remove assert for rope

* tests : add test-backend-ops

* ggml : fix bug in ggml_concat

* ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()`

* ci : try to fix macOS

* ggml-backend : remove backend self-registration

* ci : disable Metal for macOS cmake build

ggml-ci

* metal : fix "supports family" call

* metal : fix assert

* metal : print resource path

ggml-ci

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 22:26:54 +02:00
Georgi Gerganov
bcc0eb4591 llama : per-layer KV cache + quantum K cache (#4309)
* per-layer KV

* remove unnecessary copies

* less code duplication, offload k and v separately

* llama : offload KV cache per-layer

* llama : offload K shift tensors

* llama : offload for rest of the model arches

* llama : enable offload debug temporarily

* llama : keep the KV related layers on the device

* llama : remove mirrors, perform Device -> Host when partial offload

* common : add command-line arg to disable KV cache offloading

* llama : update session save/load

* llama : support quantum K cache (#4312)

* llama : support quantum K cache (wip)

* metal : add F32 -> Q8_0 copy kernel

* cuda : add F32 -> Q8_0 copy kernel

ggml-ci

* cuda : use mmv kernel for quantum cache ops

* llama : pass KV cache type through API

* llama : fix build

ggml-ci

* metal : add F32 -> Q4_0 copy kernel

* metal : add F32 -> Q4_1 copy kernel

* cuda : wip

* cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels

* llama-bench : support type_k/type_v

* metal : use mm kernel only for quantum KV cache

* cuda : add comment

* llama : remove memory_f16 and kv_f16 flags

---------

Co-authored-by: slaren <slarengh@gmail.com>

* readme : add API change notice

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-12-07 13:03:17 +02:00
Hongyu Ouyang
81bc9214a3 train : fix #4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (#4351)
On commit b1108 (44c117f4) xaedes added

    ggml_allocr * alloc = NULL;

    ... (many lines in between)

    if (alloc) {
        ggml_allocr_free(alloc);
    }

Which is correct, but it's easy to lose context after many lines in between.

On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly.

    alloc = ggml_allocr_new(...)
    ... (short lines of code)
    ggml_allocr_free(alloc)

This happens a few times, but alloc is never set to NULL, and many lines below,
we still have

    if (alloc) {
        ggml_allocr_free(alloc);
    }

which causes a double-free.
2023-12-07 12:25:22 +02:00
Georgi Gerganov
05cd6e5036 server : recognize cache_prompt parameter in OAI API (#4347) 2023-12-06 20:21:59 +02:00
Georgi Gerganov
caa9249217 common : fix compile warning 2023-12-06 10:41:03 +02:00
stduhpf
da5eaef1f3 speculative : support --color (#4343)
* speculative: add some colors

* minor : add braces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-06 10:08:17 +02:00
Marcus Dunn
5f6e0c0dff grammar : pre-computed pieces + reserve mem + less string copies (#4330)
* reserve space for codepoints

* improvement for the appended 0

* used precomputed token text for grammar sample

* reserve canidates_decoded

* reserve canidates_grammar

* remove candidates_decoded

* Revert "remove candidates_decoded"

This reverts commit 3773328080.

* changed decode_utf8 to take src by ref
2023-12-05 22:55:12 +02:00
Kerfuffle
5aa365d88f llama : allow overriding GGUF metadata when loading model (#4092)
* feat: Allow overriding GGUF metadata when loading model

* Fix the one time GCC is stricter than clang about something

* Step1

* Refactor... basically everything!

* Nuke obsolete GetArrayLen struct

* simplify std::string specialization

* Various cleanups

Add informational output when overrides are applied

Warn user when an override with the wrong type is specified

* Fix broken logic for parsing bool KV overrides
Fix issue where overrides didn't apply when key missing in GGUF metadata
Resolve merge changes

* llama : rearrange model params

* Update new GET_KEY call

Add note that metadata KV overrides aren't reflected in initial metadata KV info dump

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-05 19:19:18 +02:00
MaggotHATE
52c8bc3cf3 sampling : custom samplers order (#4285)
* Samplers sequence order w parameter

* Cleaned commented code

* Fixed formatting

* Rewrote with unordered_map

* Revert and rewrite, too many problems and safeguards would be needed

* Fixed code style

* Code style fixes according to review

* More readable samplers input string, fixed help

* Style fix in sampler_queue

* Formatting fixes

* Fixing whitespaces
2023-12-05 12:05:51 +02:00
kchro3
e4b76bbe31 swift : revert compiler checks for swift package (#4332) 2023-12-05 09:29:46 +02:00
Daniel Bevenius
23b5e12eb5 simple : update error message for KV cache check (#4324)
This commit updates the error message that is printed when the
KV cache is not big enough to hold all the prompt and generated
tokens. Specifically it removes the reference to n_parallel and
replaces it with n_len.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-12-04 18:04:21 +02:00
Miwa / Ensan
d208995c6d swift : fix concatenation method to avoid invalid UTF8 stringfication (#4325) 2023-12-04 18:03:49 +02:00
Miwa / Ensan
5c9f90cba1 swift : fix prompt tokenization logic (#4321) 2023-12-04 15:43:45 +02:00
Ikko Eltociear Ashimine
4fa44e84ad grammar-parser : fix typo (#4318)
preceeding -> preceding
2023-12-04 09:57:35 +02:00
Georgi Gerganov
fbbc42827b ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (#4308)
* ggml : fix soft max out-of-bounds access

ggml-ci

* ggml : reuse ggml_get_n_tasks() in ggml_graph_plan()

ggml-ci
2023-12-03 15:56:35 +02:00
Georgi Gerganov
adf3de4f69 ggml : fix soft max out-of-bounds access (#4307)
ggml-ci
2023-12-03 15:56:22 +02:00
Ed Lee
33e171d1e9 server : fix OpenAI API stop field to be optional (#4299)
(cherry picked from commit Mozilla-Ocho/llamafile@e8c92bcb84)
2023-12-03 11:10:43 +02:00
Rickard Edén
6949b50df5 py : add grammar to oai like api (#4294) 2023-12-03 11:03:25 +02:00
Georgi Gerganov
d7b800b8bc llama : pad KV cache size (#4280)
* llama : pad KV cache size to 32

* metal : try to improve batched decoding
2023-12-03 10:58:16 +02:00
Georgi Gerganov
5a7d3125e7 llama : avoid using "optional" keyword (#4283) 2023-12-01 20:39:12 +02:00
Georgi Gerganov
d5a1cbde60 llama : support optional tensors (#4283) 2023-12-01 20:35:47 +02:00
Miwa / Ensan
b220222a64 swift : fix token_to_piece implementation (#4278)
* Fix token_to_piece implementation in Swift

* Fix errors
2023-12-01 20:19:45 +02:00
Jared Van Bortel
511f52c334 build : enable libstdc++ assertions for debug builds (#4275) 2023-12-01 20:18:35 +02:00
CausalLM
03562f3a86 llama : support attention bias on LLaMA architecture (#4283)
* Support attention_bias on LLaMA architecture

QKVO bias, should fix InternLM (https://github.com/ggerganov/llama.cpp/issues/3133) and works for LLaMAfied Qwen models (https://github.com/ggerganov/llama.cpp/pull/3743#issuecomment-1825923608).

* check existence of qkvo bias while loading llama models

Tested on LLaMA2, CUDA and CPU.

* Update llama.cpp
2023-12-01 20:17:06 +02:00
Shijie
37c746d687 llama : add Qwen support (#4281)
* enable qwen to llama.cpp

* llama : do not GPU split bias tensors

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-12-01 20:16:31 +02:00
Georgi Gerganov
880f57973b llama : fix integer overflow during quantization (#4284)
happens with multi-threaded quantization of Qwen-72B

ggml-ci
2023-12-01 18:42:11 +02:00
Daniel Bevenius
8d6d9f033b py : add requirements file for convert-hf-to-gguf.py (#4277)
This commit adds a requirements file for the convert-hf-to-gguf.py
script, and also add the torch and transformers packages to it.

The motivation for this is that currently running convert-hf-to-gguf.py
will produce the following error:
```console
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
Collecting numpy==1.24.4
Collecting sentencepiece==0.1.98
Collecting gguf>=0.1.0
Installing collected packages: sentencepiece, numpy, gguf
Successfully installed gguf-0.5.1 numpy-1.24.4 sentencepiece-0.1.98

(venv) $ python convert-hf-to-gguf.py --help
Traceback (most recent call last):
  File "llama.cpp/convert-hf-to-gguf.py", line 16, in <module>
    import torch
ModuleNotFoundError: No module named 'torch'
```
With this commit, and using requirements-hf-to-gguf.txt instead of
requirements.txt, the script can be run and shows the help output.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-12-01 11:41:56 +02:00
Georgi Gerganov
ef47ec18da ggml : add ggml_soft_max_ext (#4256)
* metal : implement soft_max_ext

* cuda : implement soft_max_ext

* ggml : implement soft_max_ext (CPU)

* batched-bench : print threads

ggml-ci

* metal : simplify soft_max encoding

ggml-ci

* cuda : use 512 threads for soft_max instead of 32

* ggml : update soft max cpu

* cuda : do warp-based block reduce

* cuda : increase max block size to 1024

* cuda : fix warp reduction initialization of shared mem

* metal : warp-based reduction for soft max kernel

* metal : warp-based reduce for rms_norm

* metal : simplify soft max kernel

ggml-ci

* alloc : fix build with debug
2023-12-01 10:51:24 +02:00
Ziad Ben Hadj-Alouane
1d144112c0 server : add --log-disable to disable logging to file (#4260)
* * add --log-disable to disable logging to file in the server example

* * typo fix
2023-12-01 00:25:49 +02:00
Ziad Ben Hadj-Alouane
f43f09366d server : add single-client multi-prompt support (#4232)
* * add multiprompt support

* * cleanup

* * more cleanup

* * remove atomicity of id_gen, and change lock_guard to unique_lock on completion requests

* * remove all references to mutex_multitasks

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update examples/server/server.cpp

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* * change to set

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-12-01 00:25:04 +02:00
WillCorticesAI
d2809a3ba2 make : fix Apple clang determination bug (#4272)
Co-authored-by: Will Findley <findley@gmail.com>
2023-12-01 00:23:44 +02:00
Jared Van Bortel
15f5d96037 build : fix build info generation and cleanup Makefile (#3920)
* cmake : fix joining of REAL_GIT_DIR

* fix includes with help from include-what-you-use

* make : remove unneeded deps and add test-rope target

* fix C includes in C++ source files

* Revert "fix includes with help from include-what-you-use"

This reverts commit 635e9fadfd.
2023-12-01 00:23:08 +02:00
John
33c9892af5 llava : ShareGPT4V compatibility (vision encoder only loading) (#4172)
* ShareGPT4 compatibility (vision encoder only loading)

Load only a CLIP vision encoder (as supplied by ShareGPT finetunes)
Corrects the argument parsing for --img_mean and --img_std (which were previously not parsed but attempted to access)
Defines defaults for img_mean and img_std which are equal to the llava 1.5 CLIP encoder, so you do not have to provide them

* Update convert-image-encoder-to-gguf.py
2023-11-30 23:11:14 +01:00
Andrew Godfrey
8efa0f6ebe main : pass LOG_TEE callback to llama.cpp log (#4033)
* main : Call llama_log_set to use LOG_TEE

* tabs to spaces
2023-11-30 23:56:19 +02:00
vodkaslime
524907aa76 readme : fix (#4135)
* fix: readme

* chore: resolve comments

* chore: resolve comments
2023-11-30 23:49:21 +02:00
Juraj Bednar
3bd2c7ce1b docker : add finetune option (#4211) 2023-11-30 23:46:01 +02:00
Miwa / Ensan
bde629bb53 batched.swift : update README.md (#4214)
docs: update how to run
2023-11-30 23:45:17 +02:00
Li Tan
f7f9e06212 cmake : fix the metal file foder path (#4217) 2023-11-30 23:44:11 +02:00
Dawid Wysocki
74daabae69 readme : fix typo (#4253)
llama.cpp uses GitHub Actions, not Gitlab Actions.
2023-11-30 23:43:32 +02:00
Daniel Bevenius
b18c66ca6e llama : fix alignment of general.name in print meta (#4254)
* llama: fix alignment of general.name in print meta

This commit fixes the alignment of the general.name field in the
llm_load_print_meta function.

Currently the output looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name   = LLaMA v2
```
And with this commit it looks like this:
```console
llm_load_print_meta: model ftype      = mostly Q4_0
llm_load_print_meta: model params     = 13.02 B
llm_load_print_meta: model size       = 6.86 GiB (4.53 BPW)
llm_load_print_meta: general.name     = LLaMA v2
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* llama: fix alignment of special tokens

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-11-30 23:43:08 +02:00
slaren
f4d973cecb convert.py : fix llama/llama2 conversion due to vocab_size=-1 (#4258) 2023-11-30 23:42:23 +02:00
tarcey
954e22858c llama : fix typical sampling (#4261)
Typical sampling was broken because after copying new_candidates into canditates, the "sorted" bool is left at "true", but the new data is no longer sorted according to probability. Patch to set "sorted" to false.

Test: Generating with temp=0.0001 (approx. argmax)  should generate the same sequence at typical>=1.0 and typical=0.9999 (approx. disabled, but enters the typical sampling codepath).
2023-11-30 23:40:23 +02:00
rhjdvsgsgks
e2bd725f4b py : fix oai proxy (#3972)
* fix oai proxy

fix generation not stoped while bot stop talking in chat mode

fix possible `slot_id` not exist

response for cors (and pre flight)

* oai proxy: workaround for some client (such as Chatbox)

* use stop as separator to replace hardcoded `\n`
2023-11-30 22:50:40 +02:00
Georgi Gerganov
1f5cd83275 examples : add readme files 2023-11-29 11:00:17 +02:00
Peter Sugihara
4fea3420ee readme : add FreeChat (#4248) 2023-11-29 09:16:34 +02:00
Jared Van Bortel
64e64aa255 ggml : restore abort() in GGML_ASSERT (#4242) 2023-11-28 11:51:11 +02:00
Georgi Gerganov
8406b0924b ggml : re-enable BLAS for CPU when src0 != F32 + remove redundant full offload checks in llama.cpp (#4240)
* ggml : use blas even if src0 is not F32

* llama : use n_threads_batch only when n_tokens >= 32

ggml-ci

* llama : revert n_threads_batch logic

ggml-ci
2023-11-28 10:32:03 +02:00
bandoti
b38a16dfcf cmake : fix issue with version info not getting baked into LlamaConfig.cmake (#3970)
* Split CPP generation from build-info query

* Remove blank lines

* Add BUILD_SHARED_LIBS option
2023-11-27 21:25:42 +02:00
Kasumi
0dab8cd7cc readme : add Amica to UI list (#4230) 2023-11-27 19:39:42 +02:00
Bailey Chittle
bb03290c17 examples : iOS example with swift ui (#4159)
* copy to llama.cpp as subdir

* attempt enabling metal, fails

* ggml metal compiles!

* Update README.md

* initial conversion to new format, utf8 errors?

* bug fixes, but now has an invalid memory access :(

* added O3, now has insufficient memory access

* begin sync with master

* update to match latest code, new errors

* fixed it!

* fix for loop conditionals, increase result size

* fix current workflow errors

* attempt a llama.swiftui workflow

* Update .github/workflows/build.yml

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-27 16:56:52 +02:00
Jared Van Bortel
f3b269813f ggml : fix -Warray-bounds warning with gcc (#4231) 2023-11-26 22:58:43 -05:00
Georgi Gerganov
3e73d31d9c lookahead : support -n -1 infinite generation 2023-11-26 21:52:23 +02:00
Georgi Gerganov
9656026b53 readme : update hot topics 2023-11-26 20:42:51 +02:00
Georgi Gerganov
922754a8d6 lookahead : add example for lookahead decoding (#4207)
* lookahead : init

* lookahead : generate and store n-grams

* lookahead : use loop instead recursion to generate n-grams

* lookahead : initial working implementation

* lookahead : filter repeating n-grams

* lookahead : use deterministic init

* lookahead : add to Makefile

* lookahead : fix a bug in the seq_id of the lookahead tokens

* lookahead : add comments

---------

Co-authored-by: slaren <slarengh@gmail.com>
2023-11-26 20:33:07 +02:00
Xiao-Yong Jin
22da05536f metal : fix yarn (#4220)
get the correct n_orig_ctx in metal
2023-11-26 10:30:02 +02:00
Galunid
1ddb52ec38 scripts : Use mmap in torch load (#4202)
* Use mmap in torch load, prefer .bin files when loading

* Revert .bin > .safetensors preference
2023-11-25 22:45:02 +01:00
Marcus Dunn
f837c3a992 llama : grammar reserve space in decode_utf8 (#4210)
* reserve space for codepoints

* improvement for the appended 0
2023-11-25 18:58:23 +02:00
crasm
3014b5415d Update docs for yarn_ext_factor <0.0 as unspecified instead of NaN (#4189) 2023-11-25 10:47:07 -05:00
Georgi Gerganov
04814e718e readme : update hot topics 2023-11-25 12:02:13 +02:00
Georgi Gerganov
af19d35734 server : OAI API compatibility (#4198)
* Add openai-compatible POST /v1/chat/completions API endpoint to server example

* fix code style

* Update server README.md

* Improve server README.md

* Fix server.cpp code style according to review

* server : some style changes

* server : indentation

* server : enable special tokens during tokenization by default

* server : minor code style

* server : change random string generator

* straightforward /v1/models endpoint

---------

Co-authored-by: kir-gadjello <111190790+kir-gadjello@users.noreply.github.com>
Co-authored-by: Tobi Lütke <tobi@Tobis-MacBook-Pro.local>
2023-11-25 11:29:06 +02:00
slaren
e9c13ff781 llama : set metal log callback correctly (#4204) 2023-11-24 18:10:01 +01:00
slaren
8a052c131e ggml-cuda : support stablelm rope (#4156)
* ggml-cuda : support stablelm rope

* remove unused freq_base kernel parameter

* add n_dims parameter to llm_build_k_shift, default to n_rot via overload

* llama : fix llm_build_k_shift args

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-24 18:04:31 +01:00
Galunid
189d68446e convert : fix tensors using grad in some models (#4173) 2023-11-24 15:02:49 +01:00
eastriver
2568a4bf54 main.swift : fix eos checking (#4197)
llama_token_eos(const struct llama_model *) is currently getting struct llama_context type variable context as a parameter.
2023-11-24 11:25:10 +02:00
Aaryaman Vasishta
b35f3d0def readme : use PATH for Windows ROCm (#4195)
* Update README.md to use PATH for Windows ROCm

* Update README.md

* Update README.md
2023-11-24 09:52:39 +02:00
Haohui Mai
55978ce09b Fix incorrect format strings and uninitialized variables. (#4133)
* Fix incorrect format strings and uninitialized variables.

* Address comments

* Add the missing include statement
2023-11-23 22:56:53 +01:00
Georgi Gerganov
6b0a7420d0 llama : KV cache view API + better KV cache management (#4170)
* llama : keep track of used KV cells + better KV cache management

* llama : zero KV cache used upon clear

ggml-ci

* llama : allow exporting a view of the KV cache (#4180)

* Allow exporting a view of the KV cache

* Allow dumping the sequences per cell in common

* Track max contiguous cells value and position as well

* Fix max contiguous empty cells index calculation

Make dump functions deal with lengths or sequences counts > 10 better

* Fix off by one error in dump_kv_cache_view

* Add doc comments for KV cache view functions

Eliminate cell sequence struct; use llama_seq_id directly

Minor cleanups

* common : add -dkvc arg for enabling kv cache dumps

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-11-23 19:07:56 +02:00
Georgi Gerganov
d103d935c0 readme : update hot topics 2023-11-23 13:51:22 +02:00
Daniel Bevenius
9d5949f04b examples : fix typo in parallel example doc comment (#4181)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-11-23 13:34:20 +02:00
Georgi Gerganov
ff8238f71d docs : add llama-star arch idea 2023-11-23 11:35:04 +02:00
Galunid
8e672efe63 stablelm : simplify + speedup generation (#4153) 2023-11-21 16:22:30 +01:00
Galunid
0b871f1a04 finetune - update readme to mention llama support only (#4148) 2023-11-20 19:30:00 +01:00
Aaryaman Vasishta
dfc7cd48b1 readme : update ROCm Windows instructions (#4122)
* Update README.md

* Update README.md

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-11-20 17:02:46 +02:00
Seb C
881800d1f0 main : Add ChatML functionality to main example (#4046)
Co-authored-by: Sebastian Cramond <sebby37@users.noreply.github.com>
2023-11-20 14:56:59 +01:00
Galunid
f23c0359a3 ci : add flake8 to github actions (python linting) (#4129)
Disabled rules:

* E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned

* E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned

* E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned

* E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard

* E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned

* E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned

* E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard

* E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard

* E266 Too many leading '#' for block comment - sometimes used as "section" separator

* E501 Line too long - disabled because it's broken so often it seems like a standard

* E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead)

* E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead)
2023-11-20 11:35:47 +01:00
Branden Butler
40a34fe8d0 speculative : fix prompt tokenization in speculative example (#4025)
* Support special tokens and not adding BOS to prompt in speculative

* Adapt to new should_add_bos function

* Ensure tgt and dft have same add_bos setting
2023-11-20 11:50:04 +02:00
Georgi Gerganov
dae06c06e5 Revert "finetune : add --n-gpu-layers flag info to --help (#4128)"
This reverts commit 05e8301e45.
2023-11-19 19:16:07 +02:00
Clark Saben
05e8301e45 finetune : add --n-gpu-layers flag info to --help (#4128) 2023-11-19 18:56:38 +02:00
SoftwareRenderer
936c79b227 server : relay error messages (#4131) 2023-11-19 18:54:10 +02:00
kchro3
262005ad9d common : comma should be semicolon (#4137) 2023-11-19 18:52:57 +02:00
Georgi Gerganov
35985acffa gitignore : tokenize 2023-11-19 18:50:49 +02:00
slaren
e937066420 gguf-py : export chat templates (#4125)
* gguf-py : export chat templates

* llama.cpp : escape new lines in gguf kv info prints

* gguf-py : bump version

* gguf-py : check chat_template type

* gguf-py : initialize chat_template
2023-11-19 11:10:52 +01:00
Kerfuffle
28a2e6e7d4 tokenize example: Respect normal add BOS token behavior (#4126)
Allow building with Makefile
2023-11-18 14:48:17 -07:00
Galunid
0b5c3b0457 scripts : Remove missed baichuan convert script (#4127) 2023-11-18 21:08:33 +01:00
Kerfuffle
2923f17f6f Clean up ggml-cuda.cu warnings when compiling with clang (for ROCM) (#4124)
* ggml-cuda.cu: Clean up warnings when compiling with clang

* ggml-cuda.cu: Move static items into anonymous namespace

* ggml-cuda.cu: Fix use of namespace start macro

* Revert "ggml-cuda.cu: Fix use of namespace start macro"

This reverts commit 26c1149026.

* Revert "ggml-cuda.cu: Move static items into anonymous namespace"

This reverts commit e29757e0f7.
2023-11-18 08:11:18 -07:00
slaren
bbecf3f415 llama : increase max nodes (#4115) 2023-11-17 21:39:11 +02:00
Roger Meier
8e9361089d build : support ppc64le build for make and CMake (#3963)
* build: support ppc64le build for make and CMake

* build: keep __POWER9_VECTOR__ ifdef and extend with __powerpc64__

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-17 18:11:23 +02:00
Georgi Gerganov
5ad387e994 tokenize : fix trailing whitespace 2023-11-17 18:01:38 +02:00
zakkor
2fa02b4b3d examples : add tokenize (#4039) 2023-11-17 17:36:44 +02:00
Don Mahurin
2ab0707acb convert : use 'model' value if it exists. This allows karpathy/tinyllamas to load (#4089)
Co-authored-by: Don Mahurin <@>
2023-11-17 17:32:34 +02:00
John
11173c92d6 py : Falcon HF compatibility (#4104)
Falcon HF compatibility
2023-11-17 17:24:30 +02:00
Jannis Schönleber
9e87ef60e1 common : improve yaml log escaping (#4080)
* logging: improve escaping in yaml output

* logging: include review feedback
2023-11-17 17:24:07 +02:00
Huawei Lin
c7cce1246e llava : fix compilation warning that fread return value is not used (#4069) 2023-11-17 17:22:56 +02:00
Jiří Podivín
f7d5e97542 py : remove superfluous import statements (#4076)
Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
Co-authored-by: Jiri Podivin <jpodivin@redhat.com>
2023-11-17 17:20:53 +02:00
Jiří Podivín
ba4cf5c0bf train : move number of gpu layers argument parsing to common/train.cpp (#4074)
- introduces help entry for the argument
 - cuts '--gpu-layers' form in order to simplify usage and documentation.

Signed-off-by: Jiri Podivin <jpodivin@gmail.com>
Co-authored-by: Jiri Podivin <jpodivin@redhat.com>
2023-11-17 17:19:16 +02:00
slaren
e85bb1a8e7 llama : add functions to get the model's metadata (#4013)
* llama : add functions to get the model's metadata

* format -> std::to_string

* better documentation
2023-11-17 17:17:37 +02:00
gwjr
3e916a07ac finetune : speed-up ggml_compute_forward_out_prod_f32 via BLAS (#4079)
* Remove logically superfluous assertions and order by dimension

* Use cblas_sgemm() to implement ggml_compute_forward_out_prod()

* Remove ggml_compute_forward_out_prod_use_blas(), fix compiling errors on cmake/zig, remove trailing whitespace

* Add openBLAS support for sgemm() in compute_forward_out_prod()
2023-11-17 16:48:19 +02:00
Andrew Godfrey
947f64f163 finetune : zero the loraB initial vectors (#4082)
* finetune : zero the loraB initial vectors

Without this, the first iteration is starting out far from the base model, instead of exactly on it.
Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs
(though it departs from the paper in using a different distribution for the other vector, in some cases).

* tabs to spaces

* Use ggml_set_zero instead of adding a new function
2023-11-17 11:23:11 +01:00
Andrew Godfrey
b83e149ec6 cuda : get_row_rounding F32 (#4095)
* Fix #4017

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update ggml-cuda.cu

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

---------

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-11-17 10:01:15 +02:00
Georgi Gerganov
4f447a4833 llama : fix data units (#4101)
* llama : fix data units

ggml-ci

* Revert "llama : fix data units"

This reverts commit f5feac831f.

* llama : disambiguate data units

ggml-ci
2023-11-17 10:00:15 +02:00
Kerfuffle
91f6499393 Respect tokenizer.ggml.add_bos_token value when tokenizing (#4040)
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode.

* Respect add_bos_token GGUF metadata value

* gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
2023-11-16 19:14:37 -07:00
texmex76
8da46278e1 gguf : fix potential infinite loops while parsing (#4100)
Co-authored-by: Bernhard Gstrein <gstrein@cs.uni-freiburg.de>
2023-11-16 17:01:48 +02:00
Jared Van Bortel
a6fc554e26 llama : restore prefix space in llama tokenizer (#4081) 2023-11-15 11:34:47 -05:00
slaren
1cf2850d52 ggml-cuda : increase max graph size (#4084) 2023-11-15 14:58:13 +02:00
Michael Potter
6bb4908a17 Fix MacOS Sonoma model quantization (#4052)
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-14 12:34:41 -05:00
Galunid
36eed0c42c stablelm : StableLM support (#3586)
* Add support for stablelm-3b-4e1t
* Supports GPU offloading of (n-1) layers
2023-11-14 11:17:12 +01:00
afrideva
b46d12f86d convert.py: also look for plain model.safetensors (#4043)
* add safetensors to convert.py help message

* Check for single-file safetensors model

* Update convert.py "model" option help message

* revert convert.py help message change
2023-11-13 18:03:40 -07:00
M. Yusuf Sarıgöz
bd90eca237 llava : fix regression for square images in #3613 (#4056) 2023-11-13 18:20:52 +03:00
Georgi Gerganov
3d68f364f1 ggml : sync (im2col, GPU conv, 32-bit arm compat) (#4060)
ggml-ci
2023-11-13 16:55:52 +02:00
Georgi Gerganov
c049b37d7b readme : update hot topics 2023-11-13 14:18:08 +02:00
Georgi Gerganov
4760e7cc0b sync : ggml (backend v2) (#3912)
* sync : ggml (backend v2) (wip)

* sync : migrate examples and llama.cpp to dynamic graphs (wip)

* sync : update tests + fix max op params to 64

ggml-ci

* sync : ggml-cuda

ggml-ci

* llama : fix save/load state context size

ggml-ci

* sync : try to fix build on tvOS

* sync : pass custom graph sizes in training examples

* sync : update graph copies to new ggml API

* sync : update sync-ggml.sh with new files

* scripts : fix header in sync script

* train : fix context size calculations

* llama : increase inference graph size up to 4096 nodes

* train : allocate grads for backward graphs

* train : allocate grads for gb_tmp
2023-11-13 14:16:23 +02:00
Kerfuffle
bb50a792ec Add ReLU and SQR CUDA ops to (partially) fix Persimmon offloading (#4041)
* Add ReLU and SQR CUDA ops to fix Persimmon offloading

* Persimmon loader: More helpful error on CUDA/ROCM when offloading too many layers
2023-11-13 01:58:15 -07:00
Kerfuffle
21fd874c8d gguf-py: gguf_writer: Use bytearray to build metadata (#4051)
* gguf-py: gguf_writer: Use BytesIO to build metadata

* Use bytearray instead

Bump gguf-py package version
2023-11-12 16:39:37 -07:00
Richard Kiss
532dd74e38 Fix some documentation typos/grammar mistakes (#4032)
* typos

* Update examples/parallel/README.md

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-11-11 23:04:58 -07:00
M. Yusuf Sarıgöz
e86fc56f75 Fix gguf-convert-endian script (#4037)
* Fix gguf-convert-endian script

* Bump version and update description
2023-11-11 08:35:31 -07:00
Alexey Parfenov
d96ca7ded7 server : fix crash when prompt exceeds context size (#3996) 2023-11-10 23:48:21 -06:00
Kerfuffle
34b0a08207 gguf-py: Refactor and allow reading/modifying existing GGUF files (#3981)
* gguf-py: Refactor and add file reading support

* Replay changes from #3871

Credit to @cebtenzzre for that pull

* Various type annotation fixes.

* sort imports with isort (again)

* Fix missing return statement in add_tensor

* style cleanup with flake8

* fix NamedTuple and Enum usage

* Fix an issue with state init in GGUFReader

Move examples to an examples/ directory

Clean up examples

Add an example of modifying keys in a GGUF file

Update documentation with info on examples

Try to support people importing gguf/gguf.py directly

* Damagage is not a word.

* Clean up gguf-py/examples/modify_gguf.py whitespace

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update gguf-py/examples/modify_gguf.py formatting

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Update gguf-py/gguf/gguf_reader.py type hint

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* Make examples executable, formatting changes

* Add more information to GGUFReader and examples comments

* Include a gguf Python package version bump

* Add convert-gguf-endian.py script

* cleanup

* gguf-py : bump minor version

* Reorganize scripts

* Make GGUFReader endian detection less arbitrary

* Add JSON dumping support to gguf-dump.py

Which I kind of regret now

* A few for gguf-dump.py cleanups

* Murder accidental tuple in gguf-py/scripts/gguf-dump.py

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* cleanup

* constants : remove unneeded type annotations

* fix python 3.8 compat

* Set up gguf- scripts in pyproject.toml

* And include scripts/__init__.py, derp

* convert.py: We can't currently support Q8_0 on big endian.

* gguf-py: SpecialVocab: Always try available sources for special token ids

gguf-py: SpecialVocab: Try to load merges from merges.txt if not in tokenizer.json

gguf-py: SpecialVocab: Add 'add_bos_token' type bools to GGUF metadata
u

* cleanup

* Promote add_X_token to GGUF metadata for BOS and EOS

---------

Co-authored-by: Jared Van Bortel <jared@nomic.ai>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
2023-11-11 08:04:50 +03:00
Jhen-Jie Hong
4a4fd3eefa server : allow continue edit on completion mode (#3950)
* server : allow continue edit on completion mode

* server : handle abort case in runCompletion

* server : style improvement
2023-11-10 16:49:33 -06:00
Galunid
df9d1293de Unbreak persimmon after #3837 (#4010) 2023-11-10 14:24:54 +01:00
Galunid
a75fa576ab scripts: Generalize convert scripts (#3838)
* Replace convert-*-hf-to-gguf.py files with convert-hf-to-gguf.py
2023-11-09 11:09:29 +01:00
Mihai
57ad015dc3 server : add min_p param (#3877)
* Update server.cpp with min_p after it was introduced in https://github.com/ggerganov/llama.cpp/pull/3841

* Use spaces instead of tabs

* Update index.html.hpp after running deps.sh

* Fix test - fix line ending
2023-11-08 20:00:34 -06:00
slaren
875fb42871 ggml-alloc : fix backend assignments of views (#3982) 2023-11-08 13:15:14 +01:00
Jared Van Bortel
0a7c980b6f gguf : track writer state, free unneeded tensors, cleanup (#3871) 2023-11-07 12:43:04 -05:00
Georgi Gerganov
413503d4b9 make : do not add linker flags when compiling static llava lib (#3977) 2023-11-07 20:25:32 +03:00
xaedes
e9c1cecb9d ggml : fix backward rope after YaRN (#3974)
* fix backward process of rope

rope backward process was broken after YaRN RoPE (#2268) implementation, due to missing changes in backward functions.

the code for the backward process is nearly identically to the forward process:
the only difference is the sign of the sin-values.

to avoid future regressions remove the near-duplicate backward functions and reuse the forward code:

for this a new function argument `bool forward` was added to `ggml_compute_forward_rope_f32` and `ggml_compute_forward_rope_f16`.
the sin-values will be negated when forward is false.

* fix finetune rope call to use correct default attn_factor of 1.0f

* remove unused `ggml_rope_xpos_back`

it is better to have only one `ggml_rope_back` function that accepts all rope parameters, so that `ggml_compute_backward` can propagate all parameters without having to switch between different rope_back variants.

* fix comments explaining the sinus sign in ggml_forward_rope

* add missing function arguments in declaration

* fix function argument type in declaration
2023-11-07 10:04:51 +02:00
Matthew Tejo
54b4df8886 Use params when loading models in llava-cli (#3976)
llava-cli was loading models with default params and ignoring settings
from the cli. This switches to a generic function to load the params
from the cli options.
2023-11-07 10:43:59 +03:00
Meng Zhang
46876d2a2c cuda : supports running on CPU for GGML_USE_CUBLAS=ON build (#3946)
* protyping the idea that supports running on CPU for a GGML_USE_CUBLAS=on build

* doc: add comments to ggml_cublas_loaded()

* fix defined(...)
2023-11-07 08:49:08 +02:00
Damian Stewart
381efbf480 llava : expose as a shared library for downstream projects (#3613)
* wip llava python bindings compatibility

* add external llava API

* add base64 in-prompt image support

* wip refactor image loading

* refactor image load out of llava init

* cleanup

* further cleanup; move llava-cli into its own file and rename

* move base64.hpp into common/

* collapse clip and llava libraries

* move llava into its own subdir

* wip

* fix bug where base64 string was not removed from the prompt

* get libllava to output in the right place

* expose llava methods in libllama.dylib

* cleanup memory usage around clip_image_*

* cleanup and refactor *again*

* update headerdoc

* build with cmake, not tested (WIP)

* Editorconfig

* Editorconfig

* Build with make

* Build with make

* Fix cyclical depts on Windows

* attempt to fix build on Windows

* attempt to fix build on Windows

* Upd TODOs

* attempt to fix build on Windows+CUDA

* Revert changes in cmake

* Fix according to review comments

* Support building as a shared library

* address review comments

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: Jared Van Bortel <jared@nomic.ai>
2023-11-07 00:36:23 +03:00
slaren
2833a6f63c ggml-cuda : fix f16 mul mat (#3961)
* ggml-cuda : fix f16 mul mat

ggml-ci

* silence common.cpp warning (bonus)
2023-11-05 18:45:16 +01:00
Kerfuffle
d9ccce2e33 Allow common process_escapes to handle \x sequences (#3928)
* Allow common process_escapes to handle \x sequences

* Fix edge case when second hex digit is NUL
2023-11-05 10:06:06 -07:00
Thái Hoàng Tâm
bb60fd0bf6 server : fix typo for --alias shortcut from -m to -a (#3958) 2023-11-05 18:15:27 +02:00
Jared Van Bortel
132d25b8a6 cuda : fix disabling device with --tensor-split 1,0 (#3951)
Co-authored-by: slaren <slarengh@gmail.com>
2023-11-05 10:08:57 -05:00
Meng Zhang
3d48f42efc llama : mark LLM_ARCH_STARCODER as full offload supported (#3945)
as done in https://github.com/ggerganov/llama.cpp/pull/3827
2023-11-05 14:40:08 +02:00
Eve
c41ea36eaa cmake : MSVC instruction detection (fixed up #809) (#3923)
* Add detection code for avx

* Only check hardware when option is ON

* Modify per code review sugguestions

* Build locally will detect CPU

* Fixes CMake style to use lowercase like everywhere else

* cleanup

* fix merge

* linux/gcc version for testing

* msvc combines avx2 and fma into /arch:AVX2 so check for both

* cleanup

* msvc only version

* style

* Update FindSIMD.cmake

---------

Co-authored-by: Howard Su <howard0su@gmail.com>
Co-authored-by: Jeremy Dunn <jeremydunn123@gmail.com>
2023-11-05 10:03:09 +02:00
Eve
a7fac013cf ci : use intel sde when ci cpu doesn't support avx512 (#3949) 2023-11-05 09:46:44 +02:00
slaren
48ade94538 cuda : revert CUDA pool stuff (#3944)
* Revert "cuda : add ROCM aliases for CUDA pool stuff (#3918)"

This reverts commit 629f917cd6.

* Revert "cuda : use CUDA memory pool with async memory allocation/deallocation when available (#3903)"

This reverts commit d6069051de.

ggml-ci
2023-11-05 09:12:13 +02:00
Kerfuffle
f28af0d81a gguf-py: Support 01.AI Yi models (#3943) 2023-11-04 16:20:34 -06:00
Peter Sugihara
d9b33fe95b metal : round up to 16 to fix MTLDebugComputeCommandEncoder assertion (#3938) 2023-11-03 21:18:18 +02:00
Xiao-Yong Jin
5ba3746171 ggml-metal: fix yarn rope (#3937) 2023-11-03 14:00:31 -04:00
slaren
abb77e7319 ggml-cuda : move row numbers to x grid dim in mmv kernels (#3921) 2023-11-03 12:13:09 +01:00
Georgi Gerganov
8f961abdc4 speculative : change default p_accept to 0.5 + CLI args (#3919)
ggml-ci
2023-11-03 09:41:56 +02:00
Georgi Gerganov
05816027d6 common : YAYF (yet another YARN fix) (#3925)
ggml-ci
2023-11-03 09:24:00 +02:00
cebtenzzre
3fdbe6b66b llama : change yarn_ext_factor placeholder to -1 (#3922) 2023-11-03 08:31:58 +02:00
Kerfuffle
629f917cd6 cuda : add ROCM aliases for CUDA pool stuff (#3918) 2023-11-02 21:58:22 +02:00
Andrei
51b2fc11f7 cmake : fix relative path to git submodule index (#3915) 2023-11-02 21:40:31 +02:00
Georgi Gerganov
224e7d5b14 readme : add notice about #3912 2023-11-02 20:44:12 +02:00
Georgi Gerganov
c7743fe1c1 cuda : fix const ptrs warning causing ROCm build issues (#3913) 2023-11-02 20:32:11 +02:00
Oleksii Maryshchenko
d6069051de cuda : use CUDA memory pool with async memory allocation/deallocation when available (#3903)
* Using cuda memory pools for async alloc/dealloc.

* If cuda device doesnt support memory pool than use old implementation.

* Removed redundant cublasSetStream

---------

Co-authored-by: Oleksii Maryshchenko <omaryshchenko@dtis.com>
2023-11-02 19:10:39 +02:00
Georgi Gerganov
4ff1046d75 gguf : print error for GGUFv1 files (#3908) 2023-11-02 16:22:30 +02:00
slaren
21958bb393 cmake : disable LLAMA_NATIVE by default (#3906) 2023-11-02 14:10:33 +02:00
Georgi Gerganov
2756c4fbff gguf : remove special-case code for GGUFv1 (#3901)
ggml-ci
2023-11-02 11:20:21 +02:00
Georgi Gerganov
1efae9b7dc llm : prevent from 1-D tensors being GPU split (#3697) 2023-11-02 09:54:44 +02:00
cebtenzzre
b12fa0d1c1 build : link against build info instead of compiling against it (#3879)
* cmake : fix build when .git does not exist

* cmake : simplify BUILD_INFO target

* cmake : add missing dependencies on BUILD_INFO

* build : link against build info instead of compiling against it

* zig : make build info a .cpp source instead of a header

Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>

* cmake : revert change to CMP0115

---------

Co-authored-by: Matheus C. França <matheus-catarino@hotmail.com>
2023-11-02 08:50:16 +02:00
Georgi Gerganov
4d719a6d4e cuda : check if this fixes Pascal card regression (#3882) 2023-11-02 08:35:10 +02:00
Georgi Gerganov
183b3fac6c metal : fix build errors and kernel sig after #2268 (#3898) 2023-11-02 08:33:37 +02:00
cebtenzzre
2fffa0d61f cuda : fix RoPE after #2268 (#3897) 2023-11-02 07:49:44 +02:00
cebtenzzre
0eb332a10f llama : fix llama_context_default_params after #2268 (#3893) 2023-11-01 19:29:14 -04:00
slaren
d02e98cde0 ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel (#3891)
* ggml-cuda : compute ptrs for cublasGemmBatchedEx in a kernel

* fix warnings
2023-11-01 23:10:09 +01:00
cebtenzzre
898aeca90a llama : implement YaRN RoPE scaling (#2268)
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Jeffrey Quesnelle <jquesnelle@gmail.com>
2023-11-01 18:04:33 -04:00
Georgi Gerganov
c43c2da8af llm : fix llm_build_kqv taking unused tensor (benign, #3837) 2023-11-01 23:08:30 +02:00
Georgi Gerganov
523e49b111 llm : fix falcon norm after refactoring (#3837) 2023-11-01 23:00:50 +02:00
Georgi Gerganov
e16b9fa4ba metal : multi-simd softmax (#3710)
ggml-ci
2023-11-01 21:25:00 +02:00
Georgi Gerganov
ff8f9a88da common : minor (#3715) 2023-11-01 21:15:55 +02:00
Georgi Gerganov
50337961a6 llm : add llm_build_context (#3881)
* llm : add llm_build_context

* llm : deduce norm eps based on type + explict max_alibi_bias, clamp_kqv

* llm : restore the non-graph llm_build_ functional API

ggml-ci

* llm : cleanup + comments
2023-11-01 20:11:02 +02:00
bandoti
0e40806c1c common : allow caller to handle help/argument exceptions (#3715)
* Allow caller to handle help/argument exceptions

* Prepend newline to usage output

* Add new gpt_params_parse_ex function to hide arg-parse impl

* Fix issue blocking success case

* exit instead of returning false

* Update common/common.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/common.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-11-01 19:42:01 +02:00
staviq
a2758d08e4 log : make generating separate log files optional (#3787)
* impl --log-new, --log-append

* Update common/log.h

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

* Update common/log.h

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

* Apply suggestions from code review

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 16:18:27 +02:00
l3utterfly
e75dfdd31b sampling : null grammar field after reset (#3885) 2023-11-01 15:40:43 +02:00
Georgi Gerganov
9a3b4f6c86 ggml : fix UNUSED macro (#3762) 2023-11-01 13:50:45 +02:00
Andrew Godfrey
73bdcb395e finetune : add -ngl parameter (#3762)
* Add '-ngl' support to finetune.cpp

* Add fprintf in ggml_cuda_op_add

When I tried CUDA offloading during finetuning following the readme, I got an assert here.
This probably isn't an important case because inference later gives a warning saying you should use f16 or f32 instead when using lora

* Add 'finetune.sh', which currently fails when using GPU

"error: operator (): Finetuning on tensors with type 'f16' is not yet supported"

* tweak finetune.sh

* Suppress some warnings in ggml.c

* Add f16 implementation to ggml_compute_forward_add_f16_f32

* Add an f16 case to ggml_add_cast_impl and llama_build_lora_finetune_graphs

* finetune.sh: Edit comments

* Add "add_f16_f32_f32_cuda"

* Tweak an error message

* finetune.sh: Add an optional LLAMA_MODEL_DIR variable

* finetune.sh: Add an optional LLAMA_TRAINING_DIR variable

* train : minor

* tabs to spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-11-01 13:49:04 +02:00
Georgi Gerganov
f0e209324a scripts : add server-llm.sh (#3868)
* scripts : add deploy-server.sh

* scripts : rename to server-llm.sh

* scripts : working curl pipe
2023-11-01 11:29:07 +02:00
Adrian Hesketh
ca190bca8e server : re-enable completion and embedded at the same time (#3876) 2023-11-01 11:28:28 +02:00
Georgi Gerganov
71e3718abd llama : refactor graph build code (#3837)
* llama : factor out ggml-alloc from graph graph build functions

ggml-ci

* metal : disable kernel load log

* llama : factor out tensor offloading outside the build call (wip)

ggml-ci

* llama : offload rest of the models

ggml-ci

* llama : update offload log messages to print node index

* llama : comments

* llama : support offloading result_norm + comments

* llama : factor graph input into a function

* llama : do tensor offload only with CUDA

* llama : fix res_norm offloading

* llama : try to optimize offloading code

* llama : fix non-CUDA build

* llama : try to fix build

* llama : move refact in correct place + optimize graph input

* llama : refactor tensor offloading as callback

* llama : add layer index to all tensor names

* llama : add functional header

* llama : comment

ggml-ci

* llama : remove obsolete map for layer counting

* llama : add llm_build helper functions (#3848)

* llama : add llm_build_norm helper function

ggml-ci

* llama : add llm_build_ffn helper function (#3849)

ggml-ci

* llama : add llm_build_k_shift helper

ggml-ci

* llama : fix offloading after recent changes

* llama : add llm_build_kv_store helper

ggml-ci

* llama : remove obsolete offload names

* llama : fix llm_build_k_shift to use n_head_kv instead of n_head

* llama : simplify falcon Q, K, V computation

* llama : remove obsolete comments in build graphs

* llama : add llm_build_kqv helper

ggml-ci

* llama : minor

* llama : add LLAMA_OFFLOAD_DEBUG + fix starcoder offloading

* llama : fix input allocation logic

* llama : update offload functions for KQ tensors

* llama : normalize tensor names

ggml-ci

* llama : enable warning about not offloaded tensors

* llama : remove extra ; + deduplicate gate_b logic

* llama : add llm_build_inp_embd helper
2023-11-01 08:04:02 +02:00
kalomaze
238657db23 samplers : Min-P sampler implementation [alternative to Top P/Top K] (#3841)
* Introduce the new Min-P sampler by @kalomaze
   The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token.

* Min-P enabled and set to 0.05 default

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-31 20:44:49 +01:00
Tungsten842
07178c98e1 flake.nix: fix for rocm 5.7 (#3853) 2023-10-31 19:24:03 +02:00
Georgi Gerganov
207b51900e ggml : move FP16 <-> FP32 code to ggml-impl.h (#3861)
* ggml : move FP16 <-> FP32 stuff to ggml-impl.h

ggml-ci

* tests : fix ARM build

* ggml : explicitly initialize deprecated type traits

* ggml : add math.h to ggml-impl.h

* ggml : remove duplicate static assert macros

* ggml : prefix lookup tables with ggml_

ggml-ci

* ggml-impl : move extern "C" to start of file
2023-10-30 19:19:15 +02:00
Kerfuffle
6e08281e58 Extend llama_kv_cache_seq_rm to allow matching any sequence (#3843)
* Extend llama_kv_cache_seq_rm to allow matichng any sequence

* Replace llama_kv_cache_tokens_rm with llama_kv_cache_clear

Use llama_kv_cache_clear for cache clearing

Change calls to llama_kv_cache_tokens_rm that want to delete by position to use llama_kv_cache_seq_rm functionality
2023-10-29 11:31:40 -06:00
cebtenzzre
2046eb4345 make : remove unnecessary dependency on build-info.h (#3842) 2023-10-29 18:33:47 +02:00
Georgi Gerganov
71a09da301 llama : fix kv shift bug (#3835)
ggml-ci
2023-10-29 18:32:51 +02:00
Georgi Gerganov
d69d777c02 ggml : quantization refactoring (#3833)
* ggml : factor all quantization code in ggml-quants

ggml-ci

* ggml-quants : fix Zig and Swift builds + quantize tool

ggml-ci

* quantize : --pure option for disabling k-quant mixtures

---------

Co-authored-by: cebtenzzre <cebtenzzre@gmail.com>
2023-10-29 18:32:28 +02:00
Erik Scholz
ff3bad83e2 flake : update flake.lock for newer transformers version + provide extra dev shell (#3797)
* flake : update flake.lock for newer transformers version + provide extra dev shell with torch and transformers (for most convert-xxx.py scripts)
2023-10-28 16:41:07 +02:00
Aarni Koskela
82a6646e02 metal : try cwd for ggml-metal.metal if bundle lookup fails (#3793)
* Try cwd for ggml-metal if bundle lookup fails

When building with `-DBUILD_SHARED_LIBS=ON -DLLAMA_METAL=ON -DLLAMA_BUILD_SERVER=ON`,
`server` would fail to load `ggml-metal.metal` because `[bundle pathForResource:...]`
returns `nil`.  In that case, fall back to `ggml-metal.metal` in the cwd instead of
passing `null` as a path.

Follows up on #1782

* Update ggml-metal.m

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-28 15:43:01 +03:00
Georgi Gerganov
ba231e8a6d issues : change label from bug to bug-unconfirmed (#3748) 2023-10-28 15:35:26 +03:00
Georgi Gerganov
8a2f2fea29 convert : ignore tokens if their IDs are within [0, vocab_size) (#3831) 2023-10-28 06:25:15 -06:00
Kerfuffle
bd6d9e2059 llama : allow quantizing k-quants to fall back when tensor size incompatible (#3747)
* Allow quantizing k-quants to fall back when tensor size incompatible

* quantizing: Add warning when tensors were incompatible with k-quants

Clean up k-quants state passing a bit
2023-10-28 14:54:24 +03:00
Georgi Gerganov
ee1a0ec9cb llama : add option for greedy sampling with probs (#3813)
* llama : add option for greedy sampling with probs

* llama : add comment about llama_sample_token_greedy() missing probs

* sampling : temp == 0.0 -> no probs, temp < 0.0 -> probs
2023-10-28 14:23:11 +03:00
Henk Poley
177461104b common : print that one line of the syntax help *also* to standard output (#3823) 2023-10-28 13:16:33 +03:00
Georgi Gerganov
fdee152e4e starcoder : add GPU offloading (#3827)
* starcoder : do not GPU split 1D bias tensors

* starcoder : offload layers to GPU

ggml-ci
2023-10-28 12:06:08 +03:00
Kerfuffle
41aee4df82 speculative : ensure draft and target model vocab matches (#3812)
* speculative: Ensure draft and target model vocab matches

* Tolerate small differences when checking dft vs tgt vocab
2023-10-28 00:40:07 +03:00
cebtenzzre
6d459cbfbe llama : correctly report GGUFv3 format (#3818) 2023-10-27 17:33:53 -04:00
Thibault Terrasson
c8d6a1f34a simple : fix batch handling (#3803) 2023-10-27 08:37:41 -06:00
Georgi Gerganov
2f9ec7e271 cuda : improve text-generation and batched decoding performance (#3776)
* cuda : prints wip

* cuda : new cublas gemm branch for multi-batch quantized src0

* cuda : add F32 sgemm branch

* cuda : fine-tune >= VOLTA params + use MMQ only for small batches

* cuda : remove duplicated cuBLAS GEMM code

* cuda : add CUDA_USE_TENSOR_CORES and GGML_CUDA_FORCE_MMQ macros

* build : add compile option to force use of MMQ kernels
2023-10-27 17:01:23 +03:00
Georgi Gerganov
34b2a5e1ee server : do not release slot on image input (#3798) 2023-10-26 22:54:17 +03:00
Georgi Gerganov
6961c4bd0b batched-bench : print params at start 2023-10-25 10:26:27 +03:00
Georgi Gerganov
cc44877486 log : disable pid in log filenames 2023-10-25 10:09:16 +03:00
cebtenzzre
ad93962657 server : add parameter -tb N, --threads-batch N (#3584) (#3768)
Co-authored-by: Michael Coppola <m18coppola@gmail.com>
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2023-10-24 23:10:43 +03:00
Georgi Gerganov
1717521cdb server : do not block system prompt update (#3767)
* server : do not block system prompt update

* server : update state machine logic to process system prompts

* server : minor
2023-10-24 23:08:20 +03:00
Georgi Gerganov
b2f7e04bd3 sync : ggml (conv ops + cuda MSVC fixes) (#3765)
ggml-ci
2023-10-24 21:51:20 +03:00
John Smith
abd21fc99f cmake : add missed dependencies (#3763) 2023-10-24 20:48:45 +03:00
Georgi Gerganov
2b4ea35e56 cuda : add batched cuBLAS GEMM for faster attention (#3749)
* cmake : add helper for faster CUDA builds

* batched : add NGL arg

* ggml : skip nops in compute_forward

* cuda : minor indentation

* cuda : batched cuBLAS GEMMs for src0 F16 and src1 F32 (attention ops)

* Apply suggestions from code review

These changes plus:

```c++
#define cublasGemmBatchedEx hipblasGemmBatchedEx
```

are needed to compile with ROCM. I haven't done performance testing, but it seems to work.

I couldn't figure out how to propose a change for lines outside what the pull changed, also this is the first time trying to create a multi-part review so please forgive me if I mess something up.

* cuda : add ROCm / hipBLAS cublasGemmBatchedEx define

* cuda : add cublasGemmStridedBatchedEx for non-broadcasted cases

* cuda : reduce mallocs in cublasGemmBatchedEx branch

* cuda : add TODO for calling cublas from kernel + using mem pool

---------

Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
2023-10-24 16:48:37 +03:00
Galunid
daab3d7f45 Add more tokenizer tests (#3742)
* Add more tokenizer tests

* Add starcoder

* Update test vocab files

* Restrict bpe tokenizer tests to unicode planes

* Update comment

* Comment cosmetics

* Remove bloom vocab/test
2023-10-24 09:17:17 +02:00
Georgi Gerganov
469c9addef metal : handle ggml_scale for n%4 != 0 (close #3754)
ggml-ci
2023-10-24 09:47:22 +03:00
Georgi Gerganov
e3932593d4 Revert "make : add optional CUDA_NATIVE_ARCH (#2482)"
This reverts commit 96981f37b1.

See:

https://github.com/ggerganov/llama.cpp/pull/2482#issuecomment-1775975866
2023-10-23 23:46:05 +03:00
M. Yusuf Sarıgöz
9d02956443 issues : separate bug and enhancement template + no default title (#3748) 2023-10-23 22:57:16 +03:00
Galunid
69a6735087 Update special token handling in conversion scripts for gpt2 derived tokenizers (#3746)
We still have the heads up in `README.md` regarding `bpe` tokenizers and this patch is needed for 

- a couple of tokenizer tests
- some more `special` and `non-special` added tokens handling (as far as I understand it)

* Update special token handling

* Add mpt
2023-10-23 21:46:00 +02:00
Marcus Dunn
5be6c803fa llama : remove token functions with context args in favor of model (#3720)
* added `llama_model_token_*` variants to all the `llama_token_*` functions.

* added `LLAMA_API`

* formatting

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* removed old `llama_token` functions

* changed 3 more functions to take in model

- `llama_token_get_text`
- `llama_token_get_score`
- `llama_token_get_type`

* added back docs

* fixed main.cpp

* changed token functions to use new model variants

* changed token functions to use new model variants

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-23 22:40:03 +03:00
Galunid
6336701c93 Fix baichuan convert script not detecing model (#3739)
It seems nobody objects.
2023-10-23 17:47:03 +02:00
Alex
96981f37b1 make : add optional CUDA_NATIVE_ARCH (#2482)
Use the environment variable `CUDA_NATIVE_ARCH` if present to set NVCC arch. Otherwise, use `native`.
2023-10-22 22:56:53 +03:00
Georgi Gerganov
438c2ca830 server : parallel decoding and multimodal (#3677)
* implementing parallel decoding in server example

* crash fixed

* save dev progress

* refactored sampling function

* completion endpoint working

* multiple client support

* grammar + no stream completion

* cached prompt support

* chat.mjs support cached prompt + some fixes

* server ui now support multiple clients

* unused change reverted

* fixed timings per slot

* add context swap

* add changes to README.md

* llava multimodal integration

* fixed tokens probs

* add multimodal input - alfa

* refactor code + remove unused comments + improved README.md

* fix compilation errors with llvm

* notify the user from server ui that multimodality is unavialable

* some ci fixes

* fix ci make build undefined ref errors

* fix long prompt than ctx proposed in #3639

* fixed premature end due stop word

* context shift fixed

* fix llava implementation

* sync README.md changes

* readme change

* update api like OpenAI

* multimodal support enabled by default

* fix make bui;d errors

* fix multiple clients

* fix zig build

* new sampling API

* latest changes of sampling API

* server : coding-style normalization

* server : coding-style normalization (part 2)

* server : remove beam-search functionality

* server : bug fix in ingest_images

n_tokens is incremented internally by llama_batch_add

* server : use refs + use llama_batch_clear()

* server : snake case

* server : minor sync

* added thread safe pipeline

* server : bach has to be allocated for n_parallel sequences

* server : no need for atomic int - already using mutex

* server : logs + minor code style

* server : fix multibyte handle in partial response (#3706)

* fix image load + view image in chat

* make : silence stb warnings

* clip : link to ggml, not to llama

* server : fix switch fallthrough

* server : fix crash in Debug on macOS (I have no idea why this fixes it!?)

* server : refactor ctx_sampling init + n_ctx + names

* server : bug fix for prompt caching

* Do not save/load image_data to localStorage

* editorconfig : new line in index.html

* server : completion requests remember slot_id

* Update readme to document multimodal in server

* server : minor style

* Update readme to document multimodal in server

* server : hide ctx_sampling->prev behind API (#3696)

* server : apply fix from #3722

* server : fix slot reuse

* server : add comment about changing slot_state to bool

---------

Co-authored-by: FSSRepo <go778sgt@gmail.com>
Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
Co-authored-by: Jhen-Jie Hong <iainst0409@gmail.com>
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
2023-10-22 22:53:08 +03:00
goerch
9e70cc0322 Add test for MPT tokenization (#3728)
* Add test for MPT tokenization

* Revert code motion

* Remove unnecessary restriction in test case

* Clarify logic in conversion
2023-10-22 21:21:42 +02:00
Ian Scrivener
5a42a5f8e8 readme : remove unsupported node.js library (#3703)
- https://github.com/Atome-FE/llama-node is quite out of date
- doesn't support recent/current llama.cpp functionality
2023-10-22 21:16:43 +03:00
Kerfuffle
a5e7dbd614 llama : validate special token ids are in range when loading GGUF model (#3635)
* Add validation for special token ids to llama.cpp

Small optimization for llama_byte_to_token SPM mode

* Fix BPE newline check, only I could break something so simple

* Killll meeeeee

* Account for GGUF_KEY_KEY only setting when the key exists

* Minor code cleanups.

* Fix convert.py error msg when added tokens are out of range

* Make gguf SpecialVocab vocab size-aware

Update conversion scripts accordingly

* Avoid a string copy

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-22 21:14:56 +03:00
vvhg1
d3956aea53 main : escape prompt for cfg_negative_prompt and consecutive inputs in main with interactive (#3623)
* infill tokens correction

* serverinfill tokens correction

* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape

* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape

* only rm when params.escape, rm space if possible which is added back or rm added space token

* only rm when params.escape, rm space if possible which is added back or rm added space token

* Revert "only rm when params.escape, rm space if possible which is added back or rm added space token"

This reverts commit 63ba0b621f.

* fix interactive prompt escaping and fix server infill leading space handling

* rm unnecessary bool check

* process escapes for neg prompt and interactive consec prompts

* removed unneccessary static string escape
2023-10-22 21:09:51 +03:00
Georgi Gerganov
22c69a2794 batched : add len CLI argument 2023-10-22 08:37:20 +03:00
shibe2
465219b914 CLBlast: Add outer loops over src0 for broadcasting in mulmat
Reduce repeated dequantization of the same data.
2023-10-20 22:30:52 +04:00
Georgi Gerganov
d1031cf49c sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params

* llama : combine repetition, frequency and presence penalties in 1 call

* examples : remove embd-input and gptneox-wip

* sampling : rename penalty params + reduce size of "prev" vector

* sampling : add llama_sampling_print helper

* sampling : hide prev behind API and apply #3661

ggml-ci
2023-10-20 21:07:23 +03:00
Qin Yue Chen
8cf19d60dc gguf : support big endian platform (#3552)
* check whether platform is 390x if yes->do not import immintrin.h

* support s390x big endian

* support --bigendian option for s390x
1. verified with baichuan7b-chat with float 16 on s390x
2. verified with baichuan7b-chat
3. verified with chinese-alpaca-2-13b-f16

* update format based on editor-config checker result

* Update convert-baichuan-hf-to-gguf.py

* 1. check in ggml.c if endianess is not match
2. update GGUF version
3. change get_pack_prefix to property
4. update information log

* always use "GGUF" as beginng of GGUF file

* Compare "GGUF" with file header char by char
1.  Set GGUF_MAGIC to "GGUF" string instead of int value
2. Compare "GGUF" char by char to ensure its byte order
3. Move bytes swap code from convert.py to gguf.py write_tensor_data

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-20 14:19:40 +03:00
Georgi Gerganov
a0edf73bda server : fix uninitialized sampling context (close #3685) 2023-10-20 13:06:10 +03:00
Herman Semenov
f439e506e8 ggml : fix rope + llama minor optimizations (#3560)
* Minor fixes and fixed memleak

* Using const auto references in range-based loop C++17
2023-10-20 13:02:12 +03:00
cebtenzzre
e78f3ef24a convert : restore compat with old Falcon models (#3680) 2023-10-20 08:32:08 +03:00
M. Yusuf Sarıgöz
f3b25e4043 multimodal : add BakLLaVA conversion support (#3682) 2023-10-19 19:40:41 +03:00
M. Yusuf Sarıgöz
60abea9798 llava : avoid segfault in case of non-existent mmproj file (#3674) 2023-10-19 16:59:11 +03:00
Georgi Gerganov
004797f6ac readme : update hot topics 2023-10-18 21:44:43 +03:00
Georgi Gerganov
4e82b2ea3f speculative : bug fixes 2023-10-18 18:49:40 +03:00
Georgi Gerganov
0e89203b51 speculative : add tree-based sampling example (#3624)
* sampling : one sequence per sampling context

ggml-ci

* speculative : add tree-based sampling support

ggml-ci

* speculative : reuse the n_parallel CLI param

* speculative : refactor sampling

* examples : fix build after sampling refactoring

ggml-ci

* batched : fix n_seq_id

* sampling : fix malloc

ggml-ci

* swift : fix build

ggml-ci

* swift : try to fix build

ggml-ci

* prompts : add assistant.txt

* common : add llama_batch_add() and llama_batch_clear() helpers

* speculative : minor refactor

ggml-ci

* minor : comments + rename

ggml-ci

* speculative : fix off-by-one for n_drafted

* speculative : fix the n_drafted fix + p constants
2023-10-18 16:21:57 +03:00
Jhen-Jie Hong
c67fe68e41 metal : implement q5_0 and q5_1 kernels (#3648)
* metal : implement dequantize_q5_0

* metal : block_q_n_dot_y for block_q5_0 (broken)

* metal : revert unnecessary change

* metal : implement dequantize_q5_1

* metal : block_q_n_dot_y for q5_1 (broken)

* metal : fix block_q_n_dot_y

* minor : spaces / formatting

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-18 15:21:48 +03:00
shibe2
1117d06607 opencl : fix element-wise multiplication (#3656) 2023-10-18 15:09:22 +03:00
slaren
cb33f43a2a fix embeddings when using CUDA (#3657) 2023-10-17 22:24:50 +02:00
Georgi Gerganov
e1675d133c llama : avoid fprintf in favor of LLAMA_LOG (#3538) 2023-10-17 22:34:26 +03:00
BarfingLemurs
8402566a7c readme : update hot-topics & models, detail windows release in usage (#3615)
* Update README.md

* Update README.md

* Update README.md

* move "Running on Windows" section below "Prepare data and run"

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-17 21:13:21 +03:00
shibe2
40e5ce054f CLBlast: Fix temporary buffer size for f16 conversion (wsize)
Fix buffer overflow.
Reduce the size to fit just one 2D slice.
Assert sufficient size.
2023-10-17 21:02:30 +04:00
slaren
a5e8c1d8c7 train-text-from-scratch : fix assert failure in ggml-alloc (#3618) 2023-10-17 20:00:58 +03:00
Georgi Gerganov
e74c705e15 editorconfig : remove trailing spaces 2023-10-17 19:52:53 +03:00
coezbek
3ad1e3f1a1 server : documentation of JSON return value of /completion endpoint (#3632)
* Added documentation of JSON return value of /completion endpoint

* Update examples/server/README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-17 19:51:02 +03:00
Georgi Gerganov
1142013da4 save-load-state : fix example + add ci test (#3655)
* save-load-state : fix example (close #3606)

* ci : add test for save-load-state example

ggml-ci
2023-10-17 19:12:46 +03:00
ldwang
5fe268a4d9 readme : add Aquila2 links (#3610)
Signed-off-by: ldwang <ftgreat@gmail.com>
Co-authored-by: ldwang <ftgreat@gmail.com>
2023-10-17 18:52:33 +03:00
staviq
1a159553f9 tokenizer : special token handling (#3538)
* Rewrite special token handling from #1931

* shorten param name, add st verification by type

* use offsets instead of copy by substr

* formatting, remove copying iterator on delete

* llama : normalize code-style

* swift fix

* print pfx/sfx if verb, main: split pfx input sfx

* dont add space when using special tokens

* minor : comment + spacing

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-17 18:11:01 +03:00
Georgi Gerganov
281ef73c25 k-quants : fix quantization ranges (#3646) 2023-10-17 09:19:28 +03:00
Georgi Gerganov
940efa95fe llava : fix tokenization to not add bos between image embeddings and user prompt (#3645)
* llava : fix tokenization to not add bos after system prompt

* set seed

---------

Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
2023-10-16 23:58:00 +03:00
cebtenzzre
11bff29045 MPT : support GQA for replit-code-v1.5 (#3627) 2023-10-15 09:32:06 +03:00
M. Yusuf Sarıgöz
11dc1091f6 Honor -ngl option for Cuda offloading in llava (#3621) 2023-10-14 04:52:44 -06:00
Daniel Bevenius
2a4bcbacea llama : remove n_threads from llama_decode_internal (#3614)
This commit removes `n_threads` from the `llama_decode_internal`
functions doc comment as it does not exist anymore.

It looks like this parameter was removed in
Commit 16bc66d947 ("llama.cpp : split
llama_context_params into model and context params").

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2023-10-13 13:33:16 +03:00
slaren
424b6381c4 ggml : add context enumeration functions (#3605)
finetune : fix assert failure in ggml-alloc
2023-10-13 12:23:10 +02:00
shibe2
1e0e873c37 CLBlast: Fix matrix-vector multiplication (#3544) 2023-10-12 21:59:47 +02:00
M. Yusuf Sarıgöz
370359e5ba examples: support LLaVA v1.5 (multimodal model) (#3436)
* WIP: start implementing LLaVA

* rm scratch buf for now, will revert after cleanup

* LLaVA image encoder is working. will combine with llama

* Add llava inference code, but it's buggy. debugging

* LLaVA is working e2e, needs to optimize memory allocation + cleanup

* Use ggml_allocr + rm unnecessary code

* fix: crlf -> lf

* fix: new line at EoF

* fix: trailing whitespace

* Add readme

* Update readme

* Some cleanup

* Are you happy editorconfig?

* rm unused batch image preprocessing

* rm unused import

* fix: rm designated initializers

* introduce pad-to-square mode for non-square images

* are you happy editorconfig?

* gitignore /llava

* Handle cases where image file does not exist

* add llava target to Makefile

* add support for 13b model variant

* Maybe seed is unlucky?

* Check if apples are compared to apples

* are you happy editorconfig?

* Use temperature = 0.1 by default

* command line: use gpt_params_parse()

* minor

* handle default n_predict

* fix typo

* llava : code formatting, rename files, fix compile warnings

* do not use Wno-cast-qual for MSVC

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-12 18:23:18 +03:00
uint256_t
9e24cc6e2e docs : fix typo GOMP_CPU_AFFINITY (#3597) 2023-10-12 16:36:16 +03:00
Georgi Gerganov
d28e572c02 cmake : fix add_compile_options on macOS 2023-10-12 14:31:05 +03:00
Ian Scrivener
f3040beaab typo : it is --n-gpu-layers not --gpu-layers (#3592)
fixed a typo in the MacOS Metal run doco
2023-10-12 14:10:50 +03:00
Georgi Gerganov
1a8c8795d6 ci : check if there is enough VRAM (#3596)
ggml-ci
2023-10-12 13:44:56 +03:00
Aarni Koskela
b016596d90 server : add completion mode (no chat) (#3582) 2023-10-12 09:51:53 +03:00
Georgi Gerganov
6b3ae4da92 prompts : add mnemonics.txt 2023-10-12 09:35:30 +03:00
Georgi Gerganov
57dd55e2c7 server : fix kv cache management (#3588) 2023-10-12 09:29:04 +03:00
Georgi Gerganov
b8fe4b5cc9 main : fix session loading bug (#3400) 2023-10-11 23:55:41 +03:00
Michael Coppola
a8bdd65525 server : add parameter -tb N, --threads-batch N (#3584)
Co-authored-by: Michael Coppola <info@michaeljcoppola.com>
2023-10-11 22:42:22 +03:00
Kerfuffle
70c29da118 common : fix mirostat state when using multiple sequences (#3543)
* Fix mirostat state when using multiple sequences

* Fix mirostat by completely refactoring sampling!

* Try to fix zig build.

* Export function to fetch/create default sampler states

Code formatting cleanups and add some comments

Silence a warning about id not being used when logging is disabled

* Apply some renaming suggestions.

Fix comments that were out of sync with the pull.

* Use more consistant naming convention for sampling contexts
2023-10-11 22:35:46 +03:00
Georgi Gerganov
8c70a5ff25 batched : add bench tool (#3545)
* batched : add bench tool

* batched : minor fix table

* batched-bench : add readme + n_kv_max is now configurable

* batched-bench : init warm-up batch

* batched-bench : pass custom set of PP, TG and PL

* batched-bench : add mmq CLI arg
2023-10-11 21:25:33 +03:00
Zane Shannon
24ba3d829e examples : add batched.swift + improve CI for swift (#3562) 2023-10-11 06:14:05 -05:00
Galunid
9f6ede19f3 Add MPT model to supported models in README.md (#3574) 2023-10-10 19:02:49 -04:00
goerch
233fc1c69f Minor improvements in GPT2 tokenizer (#3567)
* Fixing minor bugs in bpe_gpt2_preprocess

* Don't add bos token in test
2023-10-10 18:59:52 +02:00
Xingchen Song(宋星辰)
c5b49360d0 readme : add bloom (#3570) 2023-10-10 19:28:50 +03:00
Xingchen Song(宋星辰)
02d2875def llm : add bloom models (#3553)
* feat: Support bloom models

* fix(bloom): fix model size

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-10 17:48:21 +03:00
Jhen-Jie Hong
0aa6595ae0 swift : improvements and fixes (#3564)
* swift : use macOS 12 as minimum requirement

* swift : add missing ggml-backend.c source

* swift : add -O3 -DNDEBUG unsafe flags
2023-10-10 14:31:13 +03:00
Jan Ploski
f5f9121de1 llm : add MPT support (#3417)
* CUDA: added support for ggml_clamp (see also: https://github.com/ggerganov/ggml/issues/545)

* mpt : added an implementation based (mostly) on falcon integration, modified with deltas from ggml/examples/mpt

* mpt : protect against "clip_qkv": null in mpt-7b

* mpt : quick fix to avoid "Strange model" warning when quantizing MPT models

* mpt : addendum to changeset:84e30e8 - leave parameter clamp_kqv out from metadata rather than use 0.0 to indicate "no clamping" (more compliant with the current GGUF spec?)

* mpt : standardized all tensor names to follow GGUF spec

* mpt : addendum to changeset:1be89c40 - use "req" parameter of GGUF_GET_KEY macro instead of duplicate code

* mpt : fixed comment s/gptneox/mpt/

* mpt : remove tabs, trailing whitespace

* mpt : removed ne01 + n_past == ne00 assertion from alibi (cuda/f32) and rope_shift from build_mpt

* mpt : updated convert-mpt-hf-to-gguf.py to reflect changes made to convert-gptneox-hf-to-gguf.py in pr:3252

* comment out n_past instead of marking it unused

* mpt : removed hardcoded +178 from convert script in favor of utilizing hparams["vocab_size"]

* mpt : remove unused tokenizer_json in convert script

* ggml : remove obsolete n_past assert in ggml_alibi

* llama : print clam_kqv and max_alibi_bias hparams

---------

Co-authored-by: Cebtenzzre <cebtenzzre@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-10-10 10:50:23 +03:00
vvhg1
11ea5c7d96 infill. : fix tokenization (#3508)
* infill tokens correction

* serverinfill tokens correction

* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape

* removing any leading whitespace from infill suffix and removing leeading space token from suffix when params.escape

* only rm when params.escape, rm space if possible which is added back or rm added space token

* only rm when params.escape, rm space if possible which is added back or rm added space token

* Revert "only rm when params.escape, rm space if possible which is added back or rm added space token"

This reverts commit 63ba0b621f.

* fix interactive prompt escaping and fix server infill leading space handling

* rm unnecessary bool check
2023-10-10 10:31:21 +03:00
slaren
95bd60a0a6 ggml-alloc : fix assert in debug builds (#3555) 2023-10-09 15:44:58 +03:00
576 changed files with 227594 additions and 45818 deletions

View File

@@ -12,6 +12,7 @@ Checks: >
-readability-implicit-bool-conversion,
-readability-magic-numbers,
-readability-uppercase-literal-suffix,
-readability-simplify-boolean-expr,
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,

View File

@@ -12,9 +12,10 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
@@ -25,8 +26,10 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
# Enable CUDA
ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make

View File

@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
@@ -39,6 +40,11 @@ ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -3,9 +3,10 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
@@ -14,6 +15,9 @@ WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make
ENV LC_ALL=C.utf8

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
@@ -12,7 +12,7 @@
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-cublas
Name: llama.cpp-cuda
Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
@@ -32,16 +32,16 @@ CPU inference for Meta's Lllama2 models using default options.
%setup -n llama.cpp-master
%build
make -j LLAMA_CUBLAS=1
make -j LLAMA_CUDA=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppcublas
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
cp -p main %{buildroot}%{_bindir}/llamacppcuda
cp -p server %{buildroot}%{_bindir}/llamacppcudaserver
cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
[Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
@@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS
ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@@ -67,10 +67,10 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacppcublas
%{_bindir}/llamacppcublasserver
%{_bindir}/llamacppcublassimple
/usr/lib/systemd/system/llamacublas.service
%{_bindir}/llamacppcuda
%{_bindir}/llamacppcudaserver
%{_bindir}/llamacppcudasimple
/usr/lib/systemd/system/llamacuda.service
%config /etc/sysconfig/llama
%pre

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal

View File

@@ -20,8 +20,8 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
# Enable CUDA
ENV LLAMA_CUDA=1
RUN make

View File

@@ -0,0 +1,26 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build build --config Release --target main
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/main /main
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -23,7 +23,8 @@ ARG ROCM_DOCKER_ARCH=\
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt

View File

@@ -0,0 +1,27 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 && \
cmake --build build --config Release --target main
# Clean up
WORKDIR /
RUN cp /app/build/bin/main /main && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

22
.devops/nix/apps.nix Normal file
View File

@@ -0,0 +1,22 @@
{
perSystem =
{ config, lib, ... }:
{
apps =
let
inherit (config.packages) default;
binaries = [
"llama"
"llama-embedding"
"llama-server"
"quantize"
"train-text-from-scratch"
];
mkApp = name: {
type = "app";
program = "${default}/bin/${name}";
};
in
lib.genAttrs binaries mkApp;
};
}

13
.devops/nix/devshells.nix Normal file
View File

@@ -0,0 +1,13 @@
{
perSystem =
{ config, lib, ... }:
{
devShells =
lib.concatMapAttrs
(name: package: {
${name} = package.passthru.shell;
${name + "-extra"} = package.passthru.shell-extra;
})
config.packages;
};
}

37
.devops/nix/docker.nix Normal file
View File

@@ -0,0 +1,37 @@
{
lib,
dockerTools,
buildEnv,
llama-cpp,
interactive ? true,
coreutils,
}:
# A tar that can be fed into `docker load`:
#
# $ nix build .#llamaPackages.docker
# $ docker load < result
# For details and variations cf.
# - https://nixos.org/manual/nixpkgs/unstable/#ssec-pkgs-dockerTools-buildLayeredImage
# - https://discourse.nixos.org/t/a-faster-dockertools-buildimage-prototype/16922
# - https://nixery.dev/
# Approximate (compressed) sizes, at the time of writing, are:
#
# .#llamaPackages.docker: 125M;
# .#llamaPackagesCuda.docker: 537M;
# .#legacyPackages.aarch64-linux.llamaPackagesXavier.docker: 415M.
dockerTools.buildLayeredImage {
name = llama-cpp.pname;
tag = "latest";
contents =
[ llama-cpp ]
++ lib.optionals interactive [
coreutils
dockerTools.binSh
dockerTools.caCertificates
];
}

View File

@@ -0,0 +1,39 @@
{ inputs, ... }:
{
perSystem =
{
config,
system,
lib,
pkgsCuda,
...
}:
{
legacyPackages =
let
caps.llamaPackagesXavier = "7.2";
caps.llamaPackagesOrin = "8.7";
caps.llamaPackagesTX2 = "6.2";
caps.llamaPackagesNano = "5.3";
pkgsFor =
cap:
import inputs.nixpkgs {
inherit system;
config = {
cudaSupport = true;
cudaCapabilities = [ cap ];
cudaEnableForwardCompat = false;
inherit (pkgsCuda.config) allowUnfreePredicate;
};
};
in
builtins.mapAttrs (name: cap: (pkgsFor cap).callPackage ./scope.nix { }) caps;
packages = lib.optionalAttrs (system == "aarch64-linux") {
jetson-xavier = config.legacyPackages.llamaPackagesXavier.llama-cpp;
jetson-orin = config.legacyPackages.llamaPackagesOrin.llama-cpp;
jetson-nano = config.legacyPackages.llamaPackagesNano.llama-cpp;
};
};
}

View File

@@ -0,0 +1,47 @@
{ inputs, ... }:
{
# The _module.args definitions are passed on to modules as arguments. E.g.
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
# `_module.args.pkgs` (defined in this case by flake-parts).
perSystem =
{ system, ... }:
{
_module.args = {
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
# again, the below creates several nixpkgs instances which the
# flake-centric CLI will be forced to evaluate e.g. on `nix flake show`.
#
# This is currently "slow" and "expensive", on a certain scale.
# This also isn't "right" in that this hinders dependency injection at
# the level of flake inputs. This might get removed in the foreseeable
# future.
#
# Note that you can use these expressions without Nix
# (`pkgs.callPackage ./devops/nix/scope.nix { }` is the entry point).
pkgsCuda = import inputs.nixpkgs {
inherit system;
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,
# and ucx are built with CUDA support)
config.cudaSupport = true;
config.allowUnfreePredicate =
p:
builtins.all
(
license:
license.free
|| builtins.elem license.shortName [
"CUDA EULA"
"cuDNN EULA"
]
)
(p.meta.licenses or [ p.meta.license ]);
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {
inherit system;
config.rocmSupport = true;
};
};
};
}

319
.devops/nix/package.nix Normal file
View File

@@ -0,0 +1,319 @@
{
lib,
glibc,
config,
stdenv,
mkShell,
runCommand,
cmake,
ninja,
pkg-config,
git,
python3,
mpi,
blas,
cudaPackages,
darwin,
rocmPackages,
vulkan-headers,
vulkan-loader,
clblast,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
useVulkan
] && blas.meta.available,
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
precompileMetalShaders ? false
}@inputs:
let
inherit (lib)
cmakeBool
cmakeFeature
optionals
strings
versionOlder
;
stdenv = throw "Use effectiveStdenv instead";
suffices =
lib.optionals useBlas [ "BLAS" ]
++ lib.optionals useCuda [ "CUDA" ]
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ]
++ lib.optionals useVulkan [ "Vulkan" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
"-${strings.concatMapStringsSep "-" strings.toLower suffices}";
descriptionSuffix =
strings.optionalString (suffices != [ ])
", accelerated with ${strings.concatStringsSep ", " suffices}";
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
# TODO: package the Python in this repository in a Nix-like way.
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
# https://peps.python.org/pep-0517/
#
# TODO: Package up each Python script or service appropriately, by making
# them into "entrypoints"
llama-python = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
]
);
# TODO(Green-Sky): find a better way to opt-into the heavy ml python runtime
llama-python-extra = python3.withPackages (
ps: [
ps.numpy
ps.sentencepiece
ps.tiktoken
ps.torchWithoutCuda
ps.transformers
]
);
xcrunHost = runCommand "xcrunHost" {} ''
mkdir -p $out/bin
ln -s /usr/bin/xcrun $out/bin
'';
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately
darwinBuildInputs =
with darwin.apple_sdk.frameworks;
[
Accelerate
CoreVideo
CoreGraphics
]
++ optionals useMetalKit [ MetalKit ];
cudaBuildInputs = with cudaPackages; [
cuda_cccl.dev # <nv/target>
# A temporary hack for reducing the closure size, remove once cudaPackages
# have stopped using lndir: https://github.com/NixOS/nixpkgs/issues/271792
cuda_cudart.dev
cuda_cudart.lib
cuda_cudart.static
libcublas.dev
libcublas.lib
libcublas.static
];
rocmBuildInputs = with rocmPackages; [
clr
hipblas
rocblas
];
vulkanBuildInputs = [
vulkan-headers
vulkan-loader
];
in
effectiveStdenv.mkDerivation (
finalAttrs: {
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
# Note: none of the files discarded here are visible in the sandbox or
# affect the output hash. This also means they can be modified without
# triggering a rebuild.
src = lib.cleanSourceWith {
filter =
name: type:
let
noneOf = builtins.all (x: !x);
baseName = baseNameOf name;
in
noneOf [
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." baseName) # Skip hidden files and directories
(baseName == "flake.lock")
];
src = lib.cleanSource ../../.;
};
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
# `default.metallib` may be compiled with Metal compiler from XCode
# and we need to escape sandbox on MacOS to access Metal compiler.
# `xcrun` is used find the path of the Metal compiler, which is varible
# and not on $PATH
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
nativeBuildInputs =
[
cmake
ninja
pkg-config
git
]
++ optionals useCuda [
cudaPackages.cuda_nvcc
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
glibc.static
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
xcrunHost
];
buildInputs =
optionals effectiveStdenv.isDarwin darwinBuildInputs
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs
++ optionals useBlas [ blas ]
++ optionals useVulkan vulkanBuildInputs;
cmakeFlags =
[
(cmakeBool "LLAMA_NATIVE" false)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUDA" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_MPI" useMpi)
(cmakeBool "LLAMA_VULKAN" useVulkan)
(cmakeBool "LLAMA_STATIC" enableStatic)
]
++ optionals useCuda [
(
with cudaPackages.flags;
cmakeFeature "CMAKE_CUDA_ARCHITECTURES" (
builtins.concatStringsSep ";" (map dropDot cudaCapabilities)
)
)
]
++ optionals useRocm [
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
# Should likely use `rocmPackages.clr.gpuTargets`.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
];
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mv $out/bin/main${executableSuffix} $out/bin/llama${executableSuffix}
mv $out/bin/server${executableSuffix} $out/bin/llama-server${executableSuffix}
mkdir -p $out/include
cp $src/llama.h $out/include/
'';
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
passthru = {
inherit
useBlas
useCuda
useMetalKit
useMpi
useOpenCL
useRocm
useVulkan
;
shell = mkShell {
name = "shell-${finalAttrs.finalPackage.name}";
description = "contains numpy and sentencepiece";
buildInputs = [ llama-python ];
inputsFrom = [ finalAttrs.finalPackage ];
shellHook = ''
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib effectiveStdenv.cc.cc}/lib"
'';
};
shell-extra = mkShell {
name = "shell-extra-${finalAttrs.finalPackage.name}";
description = "contains numpy, sentencepiece, torchWithoutCuda, and transformers";
buildInputs = [ llama-python-extra ];
inputsFrom = [ finalAttrs.finalPackage ];
};
};
meta = {
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`
mainProgram = "llama";
# These people might respond, on the best effort basis, if you ping them
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.
# Consider adding yourself to this list if you want to ensure this flake
# stays maintained and you're willing to invest your time. Do not add
# other people without their consent. Consider removing people after
# they've been unreachable for long periods of time.
# Note that lib.maintainers is defined in Nixpkgs, but you may just add
# an attrset following the same format as in
# https://github.com/NixOS/nixpkgs/blob/f36a80e54da29775c78d7eff0e628c2b4e34d1d7/maintainers/maintainer-list.nix
maintainers = with lib.maintainers; [
philiptaron
SomeoneSerge
];
# Extend `badPlatforms` instead
platforms = lib.platforms.all;
};
}
)

19
.devops/nix/scope.nix Normal file
View File

@@ -0,0 +1,19 @@
{
lib,
newScope,
llamaVersion ? "0.0.0",
}:
# We're using `makeScope` instead of just writing out an attrset
# because it allows users to apply overlays later using `overrideScope'`.
# Cf. https://noogle.dev/f/lib/makeScope
lib.makeScope newScope (
self: {
inherit llamaVersion;
llama-cpp = self.callPackage ./package.nix { };
docker = self.callPackage ./docker.nix { };
docker-min = self.callPackage ./docker.nix { interactive = false; };
sif = self.callPackage ./sif.nix { };
}
)

27
.devops/nix/sif.nix Normal file
View File

@@ -0,0 +1,27 @@
{
lib,
singularity-tools,
llama-cpp,
bashInteractive,
interactive ? false,
}:
let
optionalInt = cond: x: if cond then x else 0;
in
singularity-tools.buildImage rec {
inherit (llama-cpp) name;
contents = [ llama-cpp ] ++ lib.optionals interactive [ bashInteractive ];
# These are excessive (but safe) for most variants. Building singularity
# images requires superuser privileges, so we build them inside a VM in a
# writable image of pre-determined size.
#
# ROCm is currently affected by https://github.com/NixOS/nixpkgs/issues/276846
#
# Expected image sizes:
# - cpu/blas: 150M,
# - cuda, all gencodes: 560M,
diskSize = 4096 + optionalInt llama-cpp.useRocm 16384;
memSize = diskSize;
}

View File

@@ -0,0 +1,37 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/server /server
ENTRYPOINT [ "/server" ]

View File

@@ -0,0 +1,29 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target server
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/build/bin/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -0,0 +1,50 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
ENTRYPOINT [ "/app/server" ]

View File

@@ -0,0 +1,31 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Install cURL
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target server
# Clean up
WORKDIR /
RUN cp /app/build/bin/server /server && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

25
.devops/server.Dockerfile Normal file
View File

@@ -0,0 +1,25 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -13,6 +13,8 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./main "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@@ -34,6 +36,8 @@ else
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
echo " --finetune (-f): Run finetune command to create a lora finetune of the model"
echo " See documentation for finetune for command-line parameters"
echo " --all-in-one (-a): Execute --convert & --quantize"
echo " ex: \"/models/\" 7B"
echo " --server (-s): Run a model on the server"

1
.ecrc
View File

@@ -1,4 +1,5 @@
{
"Exclude": ["^\\.gitmodules$"],
"Disable": {
"IndentSize": true
}

View File

@@ -15,8 +15,14 @@ indent_size = 4
[Makefile]
indent_style = tab
[scripts/*.mk]
indent_style = tab
[prompts/*.txt]
insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab

View File

@@ -1,2 +1,3 @@
[flake8]
max-line-length = 125
ignore = W503

11
.github/ISSUE_TEMPLATE/bug.md vendored Normal file
View File

@@ -0,0 +1,11 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug-unconfirmed"]
assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).

View File

@@ -1,185 +0,0 @@
---
name: Issue and enhancement template
about: Used to report issues and request enhancements for llama.cpp
title: "[User] Insert summary of your issue or enhancement.."
labels: ''
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Expected Behavior
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do.
# Current Behavior
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
* Physical (or virtual) hardware you are using, e.g. for Linux:
`$ lscpu`
* Operating System, e.g. for Linux:
`$ uname -a`
* SDK version, e.g. for Linux:
```
$ python3 --version
$ make --version
$ g++ --version
```
# Failure Information (for bugs)
Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.
# Steps to Reproduce
Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.
1. step 1
2. step 2
3. step 3
4. etc.
# Failure Logs
Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.
Also, please try to **avoid using screenshots** if at all possible. Instead, copy/paste the console output and use [Github's markdown](https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax) to cleanly format your logs for easy readability.
Example environment info:
```
llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c
llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID: AuthenticAMD
Model name: AMD Ryzen Threadripper 1950X 16-Core Processor
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization: AMD-V
llama.cpp$ python3 --version
Python 3.10.9
llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy 1.24.2
numpydoc 1.5.0
sentencepiece 0.1.97
torch 1.13.1
torchvision 0.14.1
llama.cpp$ make --version | head -1
GNU Make 4.3
$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487 ./models/65B/ggml-model-q4_0.bin
```
Example run with the Linux command [perf](https://www.brendangregg.com/perf.html)
```
llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx = 512
llama_model_load: n_embd = 8192
llama_model_load: n_mult = 256
llama_model_load: n_head = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot = 128
llama_model_load: f16 = 2
llama_model_load: n_ff = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size = 2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
1 -> ''
12148 -> 'Please'
3802 -> ' close'
596 -> ' your'
2228 -> ' issue'
746 -> ' when'
372 -> ' it'
756 -> ' has'
1063 -> ' been'
7699 -> ' answered'
29889 -> '.'
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000
Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]
main: mem per token = 71159620 bytes
main: load time = 19309.95 ms
main: sample time = 168.62 ms
main: predict time = 223895.61 ms / 888.47 ms per token
main: total time = 246406.42 ms
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
13133115082869 cycles # 3.611 GHz (16.77%)
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
23479217109614 instructions # 1.79 insn per cycle
# 0.44 stalled cycles per insn (16.76%)
2353072268027 branches # 647.002 M/sec (16.77%)
1998682780 branch-misses # 0.08% of all branches (16.76%)
247.802177522 seconds time elapsed
3618.573072000 seconds user
18.491698000 seconds sys
```

28
.github/ISSUE_TEMPLATE/enhancement.md vendored Normal file
View File

@@ -0,0 +1,28 @@
---
name: Enhancement template
about: Used to request enhancements for llama.cpp
labels: ["enhancement"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Feature Description
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
# Motivation
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
# Possible Implementation
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.

298
.github/workflows/bench.yml vendored Normal file
View File

@@ -0,0 +1,298 @@
# Benchmark
name: Benchmark
on:
workflow_dispatch:
inputs:
gpu-series:
description: 'Azure GPU series to run with'
required: true
type: choice
options:
- Standard_NC4as_T4_v3
- Standard_NC24ads_A100_v4
- Standard_NC80adis_H100_v5
sha:
description: 'Commit SHA1 to build'
required: false
type: string
duration:
description: 'Duration of the bench'
type: string
default: 10m
push:
branches:
- master
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
schedule:
- cron: '04 2 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
cancel-in-progress: true
jobs:
bench-server-baseline:
runs-on: Standard_NC4as_T4_v3
env:
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
N_USERS: 8
DURATION: 10m
strategy:
matrix:
model: [phi-2]
ftype: [q4_0, q8_0, f16]
include:
- model: phi-2
ftype: q4_0
pr_comment_enabled: "true"
if: ${{ github.event.inputs.gpu-series == 'Standard_NC4as_T4_v3' || github.event.schedule || github.event.pull_request || github.head_ref == 'master' || github.ref_name == 'master' || github.event.push.ref == 'refs/heads/master' }}
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Install python env
id: pipenv
run: |
cd examples/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
- name: Prometheus
id: install_prometheus
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
sleep 0.1
done
- name: Set up Go
uses: actions/setup-go@v5
with:
go-version: '1.21'
- name: Install k6 and xk6-sse
id: k6_installation
run: |
cd examples/server/bench
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
--with github.com/phymbert/xk6-sse
- name: Build
id: cmake_build
run: |
set -eux
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
-DCMAKE_CUDA_ARCHITECTURES=75 \
-DLLAMA_FATAL_WARNINGS=OFF \
-DLLAMA_ALL_WARNINGS=OFF \
-DCMAKE_BUILD_TYPE=Release;
cmake --build build --config Release -j $(nproc) --target server
- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Server bench
id: server_bench
run: |
set -eux
cd examples/server/bench
source venv/bin/activate
python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
--name ${{ github.job }} \
--branch ${{ github.head_ref || github.ref_name }} \
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
--scenario script.js \
--duration ${{ github.event.inputs.duration || env.DURATION }} \
--hf-repo ggml-org/models \
--hf-file ${{ matrix.model }}/ggml-model-${{ matrix.ftype }}.gguf \
--model-path-prefix /models \
--parallel ${{ env.N_USERS }} \
-ngl 33 \
--batch-size 2048 \
--ubatch-size 256 \
--ctx-size 16384 \
--n-prompts 1000 \
--max-prompt-tokens 1024 \
--max-tokens 2048
cat results.github.env >> $GITHUB_ENV
# Remove dataset as we do not want it in the artefact
rm ShareGPT_V3_unfiltered_cleaned_split.json
- uses: actions/upload-artifact@v4
with:
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log
- name: Commit status
uses: Sibz/github-status-action@v1
with:
authToken: ${{secrets.GITHUB_TOKEN}}
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
context: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
description: |
${{ env.BENCH_RESULTS }}
state: 'success'
- name: Upload benchmark images
uses: devicons/public-upload-to-imgur@v2.2.2
continue-on-error: true # Important as it looks unstable: 503
id: imgur_step
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg
- name: Extract mermaid
id: set_mermaid
run: |
set -eux
cd examples/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
- name: Extract image url
id: extract_image_url
continue-on-error: true
run: |
set -eux
echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
- name: Comment PR
uses: mshick/add-pr-comment@v2
id: comment_pr
if: ${{ github.event.pull_request != '' && matrix.pr_comment_enabled == 'true' }}
with:
message-id: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
message: |
<p align="center">
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_ for `${{ matrix.model }}`-`${{ matrix.ftype }}`: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
</p>
<details>
<summary>Expand details for performance related PR only</summary>
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(95)=${{ env.HTTP_REQ_DURATION_P_95_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_P_95_ }}tk/s
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_TOKENS_SECOND_P_95_ }}tk/s
- ${{ env.BENCH_GRAPH_XLABEL }}
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
<details>
<summary>More</summary>
```mermaid
${{ env.PROMPT_TOKENS_SECONDS }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
<details>
<summary>More</summary>
```mermaid
${{ env.PREDICTED_TOKENS_SECONDS }}
```
</details>
</p>
<details>
<summary>Details</summary>
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
<details>
<summary>More</summary>
```mermaid
${{ env.KV_CACHE_USAGE_RATIO }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
<details>
<summary>More</summary>
```mermaid
${{ env.REQUESTS_PROCESSING }}
```
</details>
</p>
</details>
</details>

View File

@@ -15,19 +15,144 @@ on:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GGML_NLOOP: 3
GGML_N_THREADS: 1
jobs:
ubuntu-focal-make:
runs-on: ubuntu-20.04
macOS-latest-cmake-arm64:
runs-on: macos-14
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L 'main|curl' --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
macOS-latest-cmake-x64:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
ubuntu-focal-make:
runs-on: ubuntu-20.04
env:
LLAMA_NODE_AVAILABLE: true
LLAMA_PYTHON_AVAILABLE: true
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
@@ -35,8 +160,18 @@ jobs:
sudo apt-get update
sudo apt-get install build-essential gcc-8
- uses: actions/setup-node@v4
with:
node-version: "20"
- uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
run: |
CC=gcc-8 make -j $(nproc)
@@ -46,68 +181,130 @@ jobs:
CC=gcc-8 make tests -j $(nproc)
make test -j $(nproc)
ubuntu-focal-make-curl:
runs-on: ubuntu-20.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 libcurl4-openssl-dev
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
LLAMA_CURL: 1
run: |
CC=gcc-8 make -j $(nproc)
ubuntu-latest-cmake:
runs-on: ubuntu-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake ..
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON
cmake --build . --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose --timeout 900
ctest -L 'main|curl' --verbose --timeout 900
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
ctest --verbose --timeout 900
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
name: llama-bin-ubuntu-x64.zip
# ubuntu-latest-cmake-sanitizer:
# runs-on: ubuntu-latest
#
# continue-on-error: true
#
# strategy:
# matrix:
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
# build_type: [Debug, Release]
#
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
#
# - name: Dependencies
# id: depends
# run: |
# sudo apt-get update
# sudo apt-get install build-essential
#
# - name: Build
# id: cmake_build
# run: |
# mkdir build
# cd build
# cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
# cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
#
# - name: Test
# id: cmake_test
# run: |
# cd build
# ctest -L main --verbose --timeout 900
ubuntu-latest-cmake-mpi:
runs-on: ubuntu-latest
@@ -121,7 +318,7 @@ jobs:
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
id: depends
@@ -141,15 +338,122 @@ jobs:
id: cmake_test
run: |
cd build
ctest --verbose
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libvulkan-dev
- name: Build
id: cmake_build
run: |
mkdir build
cd build
cmake -DLLAMA_VULKAN=ON ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
continue-on-error: true
steps:
- uses: actions/checkout@v2
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
continue-on-error: true
steps:
- uses: actions/checkout@v2
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON ..
cmake --build . --config Release -j $(nproc)
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
macOS-latest-make:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
id: depends
@@ -159,22 +463,28 @@ jobs:
- name: Build
id: make_build
env:
LLAMA_FATAL_WARNINGS: 1
run: |
make -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
- name: Test
id: make_test
run: |
make tests -j $(sysctl -n hw.logicalcpu)
make test -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
# TODO: build with LLAMA_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
# would be great if we fix these
macOS-latest-cmake:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
id: depends
@@ -188,14 +498,14 @@ jobs:
sysctl -a
mkdir build
cd build
cmake ..
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
run: |
cd build
ctest --verbose --timeout 900
ctest -L main --verbose --timeout 900
macOS-latest-cmake-ios:
runs-on: macos-latest
@@ -218,6 +528,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -246,6 +557,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
@@ -276,6 +588,68 @@ jobs:
run: |
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
- name: Build Swift Example
id: make_build_swift_example
run: |
make swift
windows-msys2:
runs-on: windows-latest
strategy:
fail-fast: false
matrix:
include:
- { sys: UCRT64, env: ucrt-x86_64, build: Release }
- { sys: CLANG64, env: clang-x86_64, build: Release }
steps:
- name: Clone
uses: actions/checkout@v4
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
with:
update: true
msystem: ${{matrix.sys}}
install: >-
base-devel
mingw-w64-${{matrix.env}}-toolchain
mingw-w64-${{matrix.env}}-cmake
mingw-w64-${{matrix.env}}-openblas
- name: Build using make
shell: msys2 {0}
run: |
make -j $(nproc)
- name: Clean after building using make
shell: msys2 {0}
run: |
make clean
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make LLAMA_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
run: |
cmake -B build
cmake --build build --config ${{ matrix.build }} -j $(nproc)
- name: Clean after building using CMake
shell: msys2 {0}
run: |
rm -rf build
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows-latest-cmake:
runs-on: windows-latest
@@ -283,6 +657,8 @@ jobs:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.3.261.1
strategy:
matrix:
@@ -299,14 +675,26 @@ jobs:
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
- build: 'openblas'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
- build: 'vulkan'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
- build: 'arm64'
defines: '-A ARM64 -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Clone Kompute submodule
id: clone_kompute
if: ${{ matrix.build == 'kompute' }}
run: |
git submodule update --init kompute
- name: Download OpenCL SDK
id: get_opencl
if: ${{ matrix.build == 'clblast' }}
@@ -341,6 +729,15 @@ jobs:
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
- name: Build
id: cmake_build
run: |
@@ -378,10 +775,23 @@ jobs:
- name: Test
id: cmake_test
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
# not all machines have native AVX-512
if: ${{ matrix.build != 'arm64' && matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -C Release --verbose --timeout 900
ctest -L main -C Release --verbose --timeout 900
- name: Test (Intel SDE)
id: cmake_test_sde
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
run: |
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
# for some weird reason windows tar doesn't like sde tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
cd build
& $sde -future -- ctest -L main -C Release --verbose --timeout 900
- name: Determine tag name
id: tag
@@ -405,23 +815,23 @@ jobs:
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
path: |
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
name: llama-bin-win-${{ matrix.build }}-x64.zip
windows-latest-cmake-cublas:
windows-latest-cmake-cuda:
runs-on: windows-latest
strategy:
matrix:
cuda: ['12.2.0', '11.7.1']
build: ['cublas']
build: ['cuda']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
@@ -437,7 +847,7 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUDA=ON -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Determine tag name
@@ -461,10 +871,10 @@ jobs:
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
path: |
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cu${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
run: |
@@ -475,16 +885,101 @@ jobs:
- name: Upload Cuda runtime
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
path: |
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
path: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
windows-latest-cmake-sycl:
runs-on: windows-latest
defaults:
run:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install
run: scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
- name: Build
id: cmake_build
run: examples/sycl/win-build-sycl.bat
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
name: llama-bin-win-sycl-x64.zip
ios-xcode-build:
runs-on: macos-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
android-build:
runs-on: ubuntu-latest
steps:
- name: Clone
uses: actions/checkout@v4
- name: Set up JDK
uses: actions/setup-java@v3
with:
java-version: 17
distribution: zulu
- name: Setup Android SDK
uses: android-actions/setup-android@v3
with:
log-accepted-android-sdk-licenses: false
- name: Build
run: |
cd examples/llama.android
./gradlew build --no-daemon
# freeBSD-latest:
# runs-on: macos-12
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Build
# uses: cross-platform-actions/action@v0.19.0
@@ -508,12 +1003,14 @@ jobs:
- macOS-latest-make
- macOS-latest-cmake
- windows-latest-cmake
- windows-latest-cmake-cublas
- windows-latest-cmake-cuda
- macOS-latest-cmake-arm64
- macOS-latest-cmake-x64
steps:
- name: Clone
id: checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
with:
fetch-depth: 0
@@ -532,7 +1029,13 @@ jobs:
- name: Download artifacts
id: download-artifact
uses: actions/download-artifact@v3
uses: actions/download-artifact@v4
with:
path: ./artifact
- name: Move artifacts
id: move_artifacts
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
- name: Create release
id: create_release
@@ -551,7 +1054,7 @@ jobs:
const path = require('path');
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./artifact')) {
for (let file of await fs.readdirSync('./artifact/release')) {
if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
@@ -559,7 +1062,7 @@ jobs:
repo: context.repo.repo,
release_id: release_id,
name: file,
data: await fs.readFileSync(`./artifact/${file}`)
data: await fs.readFileSync(`./artifact/release/${file}`)
});
}
}
@@ -573,7 +1076,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Dependencies
# run: |
@@ -597,7 +1100,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Dependencies
# run: |
@@ -621,7 +1124,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Dependencies
# run: |
@@ -651,7 +1154,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
@@ -667,7 +1170,7 @@ jobs:
# msbuild ALL_BUILD.vcxproj -t:build -p:configuration=${{ matrix.build }} -p:platform=${{ matrix.arch }}
#
# - name: Upload binaries
# uses: actions/upload-artifact@v1
# uses: actions/upload-artifact@v4
# with:
# name: llama-bin-${{ matrix.arch }}
# path: build/bin/${{ matrix.build }}
@@ -690,7 +1193,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Add msbuild to PATH
# uses: microsoft/setup-msbuild@v1
@@ -722,7 +1225,7 @@ jobs:
#
# - name: Upload binaries
# if: matrix.blas == 'ON'
# uses: actions/upload-artifact@v1
# uses: actions/upload-artifact@v4
# with:
# name: llama-blas-bin-${{ matrix.arch }}
# path: build/bin/${{ matrix.build }}
@@ -736,7 +1239,7 @@ jobs:
#
# steps:
# - name: Clone
# uses: actions/checkout@v3
# uses: actions/checkout@v4
#
# - name: Dependencies
# run: |

23
.github/workflows/close-issue.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -5,12 +5,16 @@ env:
GGML_NLOOP: 3
GGML_N_THREADS: 1
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Dependencies
run: |

View File

@@ -15,6 +15,10 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
@@ -28,16 +32,21 @@ jobs:
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v3
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
@@ -52,6 +61,42 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
# https://github.com/jlumbroso/free-disk-space/tree/54081f138730dfa15788a46383842cd2f914a1be#example
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: true
dotnet: true
haskell: true
large-packages: true
docker-images: true
swap-storage: true
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Downcase github.repository_owner
run: |
echo "repository_owner_lowercase=${GITHUB_REPOSITORY_OWNER@L}" >> $GITHUB_ENV
env:
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
@@ -59,7 +104,7 @@ jobs:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
@@ -68,5 +113,5 @@ jobs:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
file: ${{ matrix.config.dockerfile }}

View File

@@ -1,6 +1,12 @@
name: EditorConfig Checker
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
@@ -8,10 +14,14 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
editorconfig:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- uses: editorconfig-checker/action-editorconfig-checker@main
- run: editorconfig-checker

View File

@@ -24,9 +24,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v2
uses: actions/setup-python@v5
with:
python-version: '3.9.x'
- name: Install dependencies

65
.github/workflows/nix-ci-aarch64.yml vendored Normal file
View File

@@ -0,0 +1,65 @@
name: Nix aarch64 builds
on:
workflow_dispatch: # allows manual triggering
schedule:
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
# 1.5h instead of minutes with the cold cache).
#
# randint(0, 59), randint(0, 23)
- cron: '26 12 * * *'
# But also rebuild if we touched any of the Nix expressions:
push:
branches:
- master
paths: ['**/*.nix', 'flake.lock']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/*.nix', 'flake.lock']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
nix-build-aarch64:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get update
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

72
.github/workflows/nix-ci.yml vendored Normal file
View File

@@ -0,0 +1,72 @@
name: Nix CI
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
pull_request:
types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
nix-eval:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: List all flake outputs
run: nix flake show --all-systems
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build:
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest, macos-latest ]
runs-on: ${{ matrix.os }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--flake
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"

22
.github/workflows/nix-flake-update.yml vendored Normal file
View File

@@ -0,0 +1,22 @@
name: update-flake-lock
on:
workflow_dispatch:
schedule:
- cron: '0 0 * * 0' # runs weekly on Sunday at 00:00
jobs:
lockfile:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@main
- name: Update flake.lock
uses: DeterminateSystems/update-flake-lock@main
with:
pr-title: "nix: update flake.lock"
pr-labels: |
nix
pr-reviewers: philiptaron,SomeoneSerge
token: ${{ secrets.FLAKE_TOKEN }}

36
.github/workflows/nix-publish-flake.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
# Make the flake discoverable on https://flakestry.dev and https://flakehub.com/flakes
name: "Publish a flake to flakestry & flakehub"
on:
push:
tags:
- "*"
workflow_dispatch:
inputs:
tag:
description: "The existing tag to publish"
type: "string"
required: true
jobs:
flakestry-publish:
runs-on: ubuntu-latest
permissions:
id-token: "write"
contents: "read"
steps:
- uses: flakestry/flakestry-publish@main
with:
version: "${{ inputs.tag || github.ref_name }}"
flakehub-publish:
runs-on: "ubuntu-latest"
permissions:
id-token: "write"
contents: "read"
steps:
- uses: "actions/checkout@v4"
with:
ref: "${{ (inputs.tag != null) && format('refs/tags/{0}', inputs.tag) || '' }}"
- uses: "DeterminateSystems/nix-installer-action@main"
- uses: "DeterminateSystems/flakehub-push@main"
with:
visibility: "public"
tag: "${{ inputs.tag }}"

View File

@@ -0,0 +1,35 @@
name: Python check requirements.txt
on:
push:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh

24
.github/workflows/python-lint.yml vendored Normal file
View File

@@ -0,0 +1,24 @@
name: flake8 Lint
on: [push, pull_request]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
flake8-lint:
runs-on: ubuntu-latest
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v4
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503"
exclude: "examples/*,examples/*/**,*/**/__init__.py,convert-hf-to-gguf-update.py"

175
.github/workflows/server.yml vendored Normal file
View File

@@ -0,0 +1,175 @@
# Server build and tests
name: Server
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
schedule:
- cron: '2 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
server:
runs-on: ubuntu-latest
strategy:
matrix:
# TODO: temporary disabled due to linux kernel issues
#sanitizer: [ADDRESS, THREAD, UNDEFINED]
sanitizer: [UNDEFINED]
build_type: [Debug]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Verify server deps
id: verify_server_deps
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server
git ls-files --others --modified
git status
./deps.sh
git status
not_ignored_files="$(git ls-files --others --modified)"
echo "Modified files: ${not_ignored_files}"
if [ -n "${not_ignored_files}" ]; then
echo "Repository is dirty or server deps are not built as expected"
echo "${not_ignored_files}"
exit 1
fi
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
server-windows:
runs-on: windows-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow

View File

@@ -1,20 +0,0 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

View File

@@ -1,23 +0,0 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

View File

@@ -6,6 +6,10 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
strategy:
@@ -14,7 +18,7 @@ jobs:
runs-on: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.runs-on }}
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
submodules: recursive
fetch-depth: 0

58
.gitignore vendored
View File

@@ -2,6 +2,7 @@
*.a
*.so
*.gguf
*.gguf.json
*.bin
*.exe
*.dll
@@ -10,10 +11,15 @@
*.gcno
*.gcda
*.dot
*.bat
*.tmp
*.metallib
*.etag
*.lastModified
.DS_Store
.build/
.cache/
.ccls-cache/
.direnv/
.envrc
.swiftpm
@@ -21,11 +27,16 @@
.clang-tidy
.vs/
.vscode/
.idea/
ggml-metal-embed.metal
lcov-report/
gcovr-report/
build*/
build*
!build.zig
cmake-build-*
out/
tmp/
@@ -39,13 +50,24 @@ models-mnt
/convert-llama2c-to-ggml
/embd-input-test
/embedding
/eval-callback
/gguf
/gguf-llama-simple
/gguf-split
/gritlm
/imatrix
/infill
/libllama.so
/llama-bench
/llava-cli
/lookahead
/lookup
/lookup-create
/lookup-merge
/lookup-stats
/main
/metal
/passkey
/perplexity
/q8dot
/quantize
@@ -55,13 +77,16 @@ models-mnt
/server
/simple
/batched
/batched-bench
/export-lora
/finetune
/retrieval
/speculative
/parallel
/train-text-from-scratch
/tokenize
/vdot
build-info.h
/common/build-info.cpp
arm_neon.h
compile_commands.json
CMakeSettings.json
@@ -77,20 +102,25 @@ qnt-*.txt
perf-*.txt
examples/jeopardy/results.txt
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
poetry.lock
poetry.toml
nppBackup
# Test binaries
tests/test-grammar-parser
tests/test-llama-grammar
tests/test-double-float
tests/test-grad0
tests/test-opt
tests/test-quantize-fns
tests/test-quantize-perf
tests/test-sampling
tests/test-tokenizer-0-llama
tests/test-tokenizer-0-falcon
tests/test-tokenizer-1-llama
tests/test-tokenizer-1-bpe
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-double-float
/tests/test-grad0
/tests/test-opt
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-sampling
/tests/test-tokenizer-0
/tests/test-tokenizer-1-spm
/tests/test-tokenizer-1-bpe
/tests/test-rope
/tests/test-backend-ops

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "kompute"]
path = kompute
url = https://github.com/nomic-ai/kompute.git

655
AUTHORS Normal file
View File

@@ -0,0 +1,655 @@
# date: Tue Apr 9 09:17:14 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
0xspringtime <110655352+0xspringtime@users.noreply.github.com>
2f38b454 <dxf@protonmail.com>
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abhishek Gopinath K <31348521+overtunned@users.noreply.github.com>
Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Aisuko <urakiny@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
Alex Petenchea <alex.petenchea@gmail.com>
Alex Renda <alexrenda@users.noreply.github.com>
Alex von Gluck IV <kallisti5@unixzen.com>
Alexey Parfenov <zxed@alkatrazstudio.net>
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
Ali Nehzat <ali.nehzat@thanks.dev>
Ali Tariq <ali.tariq@10xengineers.ai>
Alon <alonfaraj@gmail.com>
AlpinDale <52078762+AlpinDale@users.noreply.github.com>
AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Duffy <a10y@users.noreply.github.com>
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Artem <guinmoon@gmail.com>
Artyom Lebedev <vagran.ast@gmail.com>
Asbjørn Olling <asbjornolling@gmail.com>
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
Ashraful Islam <ashraful.meche@gmail.com>
Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
Behnam M <58621210+ibehnam@users.noreply.github.com>
Ben Garney <bengarney@users.noreply.github.com>
Ben Siraphob <bensiraphob@gmail.com>
Ben Williams <ben@719ben.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Bernat Vadell <hounter.caza@gmail.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Branden Butler <bwtbutler@hotmail.com>
Brian <mofosyne@gmail.com>
Bruce MacDonald <brucewmacdonald@gmail.com>
CJ Pais <cj@cjpais.com>
CRD716 <crd716@gmail.com>
Cameron <csteele@steelecameron.com>
Cameron Kaiser <classilla@users.noreply.github.com>
Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
Chad Brewbaker <crb002@gmail.com>
Cheng Shao <terrorjack@type.dance>
Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Kögler <ck3d@gmx.de>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clint Herron <hanclinto@gmail.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
DAN™ <dranger003@gmail.com>
Damian Stewart <d@damianstewart.com>
Dane Madsen <dane_madsen@hotmail.com>
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Drake <drake@endlessos.org>
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
David Sommers <12738+databyte@users.noreply.github.com>
David Yang <davidyang6us@gmail.com>
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
Dean <Dean.Sinaean@gmail.com>
Deins <deinsegle@gmail.com>
Didzis Gosko <didzis@users.noreply.github.com>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
Douglas Hanley <thesecretaryofwar@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Ebey Abraham <ebey97@gmail.com>
Ed Lee <edilee@mozilla.com>
Ed Lepedus <ed.lepedus@googlemail.com>
Edward Taylor <edeetee@gmail.com>
Elbios <141279586+Elbios@users.noreply.github.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Sommerlade <es0m@users.noreply.github.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Garrison <erik.garrison@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Ettore Di Giacinto <mudler@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Miller <emmiller@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kurnevsky <kurnevsky@gmail.com>
Ewout ter Hoeven <E.M.terHoeven@student.tudelft.nl>
ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
FK <sozforex@gmail.com>
Fabian <cmdrf@users.noreply.github.com>
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
Faez Shakil <faez.shakil@gmail.com>
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
Fattire <528174+fat-tire@users.noreply.github.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
FrankHB <frankhb1989@gmail.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
Gary Mulder <gjmulder@gmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <giladgd@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Govlzkoy <gotope@users.noreply.github.com>
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
Harald Fernengel <harald.fernengel@here.com>
Hatsune Miku <129688334+at8u@users.noreply.github.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
Hoang Nguyen <hugo53@users.noreply.github.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Howard Su <howard0su@gmail.com>
Hua Jiang <allenhjiang@outlook.com>
Huawei Lin <huaweilin.cs@gmail.com>
Ian Bull <irbull@eclipsesource.com>
Ian Bull <irbull@gmail.com>
Ian Scrivener <github@zilogy.asia>
Ido S <ido.pluto@gmail.com>
IgnacioFDM <ignaciofdm@gmail.com>
Igor Okulist <okigan@gmail.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Ionoclast Laboratories <brigham@ionoclast.com>
Isaac McFadyen <isaac@imcf.me>
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
James Reynolds <magnusviri@users.noreply.github.com>
Jan Boon <jan.boon@kaetemi.be>
Jan Boon <kaetemi@gmail.com>
Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason McCartney <jmac@theroot.org>
Jean-Christophe Hoelt <hoelt@fovea.cc>
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
Jed Fox <git@jedfox.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Johannes Gäßler <johannesg@5d6.de>
Johannes Rudolph <johannes.rudolph@gmail.com>
John <78893154+cmp-nct@users.noreply.github.com>
John Balis <phobossystems@gmail.com>
John Smith <67539080+kingsidelee@users.noreply.github.com>
JohnnyB <jboero@users.noreply.github.com>
Jonas Wunderlich <32615971+jonas-w@users.noreply.github.com>
Jorge A <161275481+jorgealias@users.noreply.github.com>
Jose Maldonado <63384398+yukiteruamano@users.noreply.github.com>
Joseph Stahl <1269177+josephst@users.noreply.github.com>
Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
Juraj Bednar <juraj@bednar.io>
Justin Parker <jparkerweb@gmail.com>
Justin Suess <justin.suess@westpoint.edu>
Justine Tunney <jtunney@gmail.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
Karthik Sethuraman <k.seth1993@gmail.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Keiichi Tabata <keiichi.tabata@outlook.com>
Kenvix ⭐ <kenvixzure@live.com>
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Kevin Ji <1146876+kevinji@users.noreply.github.com>
Kevin Kwok <antimatter15@gmail.com>
Kevin Lo <kevlo@kevlo.org>
Kolen Cheung <ickc@users.noreply.github.com>
Konstantin Herud <konstantin.herud@denkbares.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kunshang Ji <kunshang.ji@intel.com>
Kyle Liang <liangmanlai@gmail.com>
Kyle Mistele <kyle@mistele.com>
Kylin <56434533+KyL0N@users.noreply.github.com>
Lars Grammel <lars.grammel@gmail.com>
Laura <Tijntje_7@msn.com>
Lee <44310445+lx200916@users.noreply.github.com>
Lee Drake <b.lee.drake@gmail.com>
Leng Yue <lengyue@lengyue.me>
LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
Leonardo Neumann <leonardo@neumann.dev.br>
Li Tan <tanliboy@gmail.com>
Linwei Wang <wanix1988@gmail.com>
LoganDark <github@logandark.mozmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Maarten ter Huurne <maarten@treewalker.org>
Mack Straight <eiz@users.noreply.github.com>
Maël Kerbiriou <m431.kerbiriou@gmail.com>
MaggotHATE <clay1326@gmail.com>
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
Marco Matthies <71844+marcom@users.noreply.github.com>
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Marian Cepok <marian.cepok@gmail.com>
Mark Fairbairn <thebaron88@gmail.com>
Marko Tasic <mtasic85@gmail.com>
Martin Krasser <krasserm@googlemail.com>
Martin Schwaighofer <mschwaig@users.noreply.github.com>
Marvin Gießing <marvin.giessing@gmail.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
Matt Pulver <matt.pulver@heavy.ai>
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
Meng, Hengyu <hengyu.meng@intel.com>
Merrick Christensen <merrick.christensen@gmail.com>
Michael Coppola <m18coppola@gmail.com>
Michael Hueschen <m@mhueschen.dev>
Michael Kesper <mkesper@schokokeks.org>
Michael Klimenko <mklimenko29@gmail.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Mirko185 <mirkosig@gmail.com>
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
Nebula <infinitewormhole@gmail.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nigel Bosch <pnigelb@gmail.com>
Niklas Korz <niklas@niklaskorz.de>
Nindaleth <Nindaleth@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondřej Čertík <ondrej@certik.us>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavol Rusnak <pavol@rusnak.io>
Pedro Cuenca <pedro@huggingface.co>
Peter Sugihara <peter@campsh.com>
Phil H <5756783+phiharri@users.noreply.github.com>
Philip Taron <philip.taron@gmail.com>
Phillip Kravtsov <phillip@kravtsov.net>
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
Pierrick Hymbert <pierrick.hymbert@gmail.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
RJ Adriaansen <adriaansen@eshcc.eur.nl>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com>
Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Reinforce-II <fate@eastal.com>
Riceball LEE <snowyu.lee@gmail.com>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
Rickard Edén <rickardeden@gmail.com>
Rickard Hallerbäck <rickard.hallerback@gmail.com>
Rickey Bowers Jr <bitRAKE@gmail.com>
Riley Stewart <ristew@users.noreply.github.com>
Rinne <AsakusaRinne@gmail.com>
Rinne <liu_yaohui1998@126.com>
Robert Brisita <986796+rbrisita@users.noreply.github.com>
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain D <90720+Artefact2@users.noreply.github.com>
Romain Neutron <romain@neutron.io>
Roman Parykin <donderom@gmail.com>
Ron Evans <ron@hybridgroup.com>
Ron Jailall <rojailal@gmail.com>
Ronny Brendel <ronnybrendel@gmail.com>
Ronsor <ronsor@ronsor.pw>
Rowan Hart <rowanbhart@gmail.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SakuraUmi <yukinon244@gmail.com>
Salvador E. Tropea <stropea@inti.gob.ar>
Sam Spilsbury <smspillaz@gmail.com>
Sami Farin <3876865+Safari77@users.noreply.github.com>
Samuel Maynard <samwmaynard@gmail.com>
Sang-Kil Park <sang.park@42dot.ai>
Seb C <47074056+Sebby37@users.noreply.github.com>
Sebastián A <sebastian.aedo29@gmail.com>
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
Senemu <10880819+Senemu@users.noreply.github.com>
Sergey Alirzaev <zl29ah@gmail.com>
Sergio López <slp@sinrega.org>
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
ShadovvBeast <ShadovvBeast@gmail.com>
Shakhar Dasgupta <shakhardasgupta@gmail.com>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
Shouzheng Liu <lshzh.hi@gmail.com>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Willison <swillison@gmail.com>
Siwen Yu <yusiwen@gmail.com>
Sky Yan <skyan83@gmail.com>
Slaren <2141330+slaren@users.noreply.github.com>
Slava Primenko <primenko.s@gmail.com>
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
Someone <sergei.kozlukov@aalto.fi>
Someone Serge <sergei.kozlukov@aalto.fi>
Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Spencer Sutton <spencersutton@users.noreply.github.com>
Srinivas Billa <nivibilla@gmail.com>
Stefan Sydow <stefan@sydow.email>
Stephan Walter <stephan@walter.name>
Stephen Nichols <snichols@users.noreply.github.com>
Steve Grubb <ausearch.1@gmail.com>
Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
SuperUserNameMan <yoann@terminajones.com>
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
Taikono-Himazin <kazu@po.harenet.ne.jp>
Tameem <113388789+AhmadTameem@users.noreply.github.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
Thatcher Chamberlin <j.thatcher.c@gmail.com>
Theia Vogel <theia@vgel.me>
Thérence <13496987+Royalphax@users.noreply.github.com>
Thibault Terrasson <thibault.terrasson@gmail.com>
Thomas Klausner <wiz@gatalith.at>
Tim Miller <drasticactions@users.noreply.github.com>
Timmy Knight <r2d2fish@gmail.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Ting Lou <ting.lou@gmail.com>
Ting Sun <suntcrick@gmail.com>
Tobias Lütke <tobi@shopify.com>
Tom C <tom.corelis@gmail.com>
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Tomas <tom.tomas.36478119@gmail.com>
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
Tristan Ross <rosscomputerguy@protonmail.com>
Tungsten842 <886724vf@anonaddy.me>
Tungsten842 <quantmint@protonmail.com>
Tushar <ditsuke@protonmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Zorin <vladimir@deviant.guru>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
Willy Tarreau <w@1wt.eu>
Wu Jian Ping <wujjpp@hotmail.com>
Wu Jian Ping <wujp@greatld.com>
Xiake Sun <xiake.sun@intel.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xiaoyi Chen <cxychina@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yiming Cui <conandiy@vip.qq.com>
Yishuo Wang <MeouSker77@outlook.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
Yui <dev@sleepyyui.com>
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
ZHAOKAI WANG <sanxianwei@163.com>
Zane Shannon <z@zcs.me>
Zay <95888118+isaiahbjork@users.noreply.github.com>
Zenix <zenixls2@gmail.com>
Zhang Peiyuan <a1286225768@gmail.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
Zsapi <martin1.zsapka@gmail.com>
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
adel boussaken <netdur@gmail.com>
afrideva <95653597+afrideva@users.noreply.github.com>
akawrykow <142945436+akawrykow@users.noreply.github.com>
alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
andrijdavid <david@geek.mg>
anon998 <131767832+anon998@users.noreply.github.com>
anzz1 <anzz1@live.com>
apaz <aarpazdera@gmail.com>
apcameron <37645737+apcameron@users.noreply.github.com>
arcrank <arcrank@gmail.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
beiller <beiller@gmail.com>
bhubbb <79117352+bhubbb@users.noreply.github.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
bsilvereagle <bsilvereagle@users.noreply.github.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cebtenzzre <cebtenzzre@gmail.com>
chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
coezbek <c.oezbek@gmail.com>
comex <comexk@gmail.com>
compilade <113953597+compilade@users.noreply.github.com>
crasm <crasm@git.vczf.net>
crasm <crasm@git.vczf.us>
daboe01 <daboe01@googlemail.com>
david raistrick <keen99@users.noreply.github.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
divinity76 <divinity76@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
ds5t5 <145942675+ds5t5@users.noreply.github.com>
dylan <canardleteer@users.noreply.github.com>
eastriver <lee@eastriver.dev>
ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
goerch <jhr.walter@t-online.de>
grahameth <96447521+grahameth@users.noreply.github.com>
gwjr <502526+gwjr@users.noreply.github.com>
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
hankcs <cnhankmc@gmail.com>
hoangmit <hoangmit@users.noreply.github.com>
hongbo.mo <352280764@qq.com>
howlger <eclipse@voormann.de>
howlger <github@voormann.de>
hutli <6594598+hutli@users.noreply.github.com>
hutli <hutli@hutli.hu>
hutli <jensstaermose@hotmail.com>
hxer7963 <hxer7963@gmail.com>
hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
iohub <rickyang.pro@gmail.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jneem <joeneeman@gmail.com>
johnson442 <56517414+johnson442@users.noreply.github.com>
jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
kaizau <kaizau@users.noreply.github.com>
kalomaze <66376113+kalomaze@users.noreply.github.com>
kang <tpdns9032100@gmail.com>
katsu560 <118887472+katsu560@users.noreply.github.com>
kchro3 <62481661+kchro3@users.noreply.github.com>
khimaros <me@khimaros.com>
kiltyj <kiltyj@gmail.com>
klosax <131523366+klosax@users.noreply.github.com>
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
kunnis <kunnis@users.noreply.github.com>
kuronekosaiko <EvanChanJ@163.com>
kuvaus <22169537+kuvaus@users.noreply.github.com>
kwin1412 <42286931+kwin1412@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
momonga <115213907+mmnga@users.noreply.github.com>
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
mzcu <milos.cubrilo@gmail.com>
nanahi <130121847+na-na-hi@users.noreply.github.com>
ngc92 <7938269+ngc92@users.noreply.github.com>
nhamanasu <45545786+nhamanasu@users.noreply.github.com>
niansa/tuxifan <anton-sa@web.de>
niansa/tuxifan <tuxifan@posteo.de>
ningshanwutuobang <ningshanwutuobang@gmail.com>
nold <Nold360@users.noreply.github.com>
nopperl <54780682+nopperl@users.noreply.github.com>
nusu-github <29514220+nusu-github@users.noreply.github.com>
olexiyb <olexiyb@gmail.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
perserk <perserk@gmail.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
qouoq <qouoq@fastmail.com>
qunash <anzoria@gmail.com>
rabidcopy <rabidcopy@yahoo.com>
rankaiyx <rankaiyx@rankaiyx.com>
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
rhuddleston <ryan.huddleston@percona.com>
rimoliga <53384203+rimoliga@users.noreply.github.com>
runfuture <runfuture@users.noreply.github.com>
sandyiscool <sandyiscool@gmail.com>
semidark <me@semidark.net>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
swittk <switt1995@gmail.com>
takov751 <40316768+takov751@users.noreply.github.com>
tarcey <cey.tarik@gmail.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
tslmy <tslmy@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
valiray <133289098+valiray@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
whoreson <139810751+whoreson@users.noreply.github.com>
wonjun Jang <strutive07@gmail.com>
wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
yuiseki <yuiseki@gmail.com>
zakkor <edward.partenie@gmail.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zrm <trustiosity.zrm@gmail.com>
源文雨 <41315874+fumiama@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Georgi Gerganov
Copyright (c) 2023-2024 The ggml authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

735
Makefile

File diff suppressed because it is too large Load Diff

View File

@@ -1,34 +1,54 @@
// swift-tools-version:5.3
// swift-tools-version:5.5
import PackageDescription
#if arch(arm) || arch(arm64)
let platforms: [SupportedPlatform]? = [
.macOS(.v11),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
var sources = [
"ggml.c",
"sgemm.cpp",
"llama.cpp",
"unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
]
let exclude: [String] = []
let resources: [Resource] = [
.process("ggml-metal.metal")
]
let additionalSources: [String] = ["ggml-metal.m"]
let additionalSettings: [CSetting] = [
var resources: [Resource] = []
var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
]
#else
let platforms: [SupportedPlatform]? = nil
let exclude: [String] = ["ggml-metal.metal"]
let resources: [Resource] = []
let additionalSources: [String] = []
let additionalSettings: [CSetting] = []
#if canImport(Darwin)
sources.append("ggml-metal.m")
resources.append(.process("ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
.define("GGML_USE_ACCELERATE"),
.define("GGML_USE_METAL")
]
)
#endif
#if os(Linux)
cSettings.append(.define("_GNU_SOURCE"))
#endif
let package = Package(
name: "llama",
platforms: platforms,
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "llama", targets: ["llama"]),
],
@@ -36,28 +56,22 @@ let package = Package(
.target(
name: "llama",
path: ".",
exclude: exclude,
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"k_quants.c",
] + additionalSources,
exclude: [
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: sources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
] + additionalSettings,
linkerSettings: [
.linkedFramework("Accelerate")
]
cSettings: cSettings,
linkerSettings: linkerSettings
)
],
cxxLanguageStandard: .cxx11

568
README-sycl.md Normal file
View File

@@ -0,0 +1,568 @@
# llama.cpp for SYCL
- [Background](#background)
- [News](#news)
- [OS](#os)
- [Hardware](#hardware)
- [Docker](#docker)
- [Linux](#linux)
- [Windows](#windows)
- [Environment Variable](#environment-variable)
- [Known Issue](#known-issues)
- [Q&A](#qa)
- [TODO](#todo)
## Background
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## News
- 2024.4
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
- 2024.3
- Release binary files of Windows.
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
- Support OPs
- hardsigmoid
- hardswish
- pool2d
- 2024.1
- Create SYCL backend for Intel GPU.
- Support Windows build
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
| Windows | Support | Windows 11 |
## Hardware
### Intel GPU
**Verified devices**
| Intel GPU | Status | Verified Model |
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
- **Memory**
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`.
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
- **Execution Unit (EU)**
- If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.
### Other Vendor GPU
**Verified devices**
| Nvidia GPU | Status | Verified Model |
|--------------------------|---------|----------------|
| Ampere Series | Support | A100, A4000 |
| Ampere Series *(Mobile)* | Support | RTX 40 Series |
## Docker
The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command.
You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative.
### Run container
```sh
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
*Notes:*
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.
## Linux
### I. Setup Environment
1. **Install GPU drivers**
- **Intel GPU**
Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).
*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).
Once installed, add the user(s) to the `video` and `render` groups.
```sh
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
*Note*: logout/re-login for the changes to take effect.
Verify installation through `clinfo`:
```sh
sudo apt install clinfo
sudo clinfo -l
```
Sample output:
```sh
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
- **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
2. **Install Intel® oneAPI Base toolkit**
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
- **Intel GPU**
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
- **Nvidia GPU**
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
```
### II. Build llama.cpp
#### Intel GPU
```sh
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
```sh
source /opt/intel/oneapi/setvars.sh
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```sh
./build/bin/ls-sycl-device
```
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
```
found 6 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
```
| Attribute | Note |
|------------------------|-------------------------------------------------------------|
| compute capability 1.3 | Level-zero driver/runtime, recommended |
| compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases |
4. Launch inference
There are two device selection modes:
- Single device: Use one device target specified by the user.
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
```sh
./examples/sycl/run_llama2.sh 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
Otherwise, you can run the script:
```sh
./examples/sycl/run_llama2.sh
```
*Notes:*
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Windows
### I. Setup Environment
1. Install GPU driver
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
2. Install Visual Studio
If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
b. Enable oneAPI running environment:
- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.
- On the command prompt, enable the runtime environment with the following:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
```
sycl-ls
```
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
```
4. Install build tools
a. Download & install cmake for Windows: https://cmake.org/download/
b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
- Extract `w64devkit` on your pc.
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
### II. Build llama.cpp
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
```
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
cmake --build build --config Release -j
```
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
```sh
.\examples\sycl\win-build-sycl.bat
```
*Notes:*
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`.
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
On the oneAPI command line window, run the following and step into the llama.cpp directory:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```
build\bin\ls-sycl-device.exe
```
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
```
found 6 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
```
| Attribute | Note |
|------------------------|-----------------------------------------------------------|
| compute capability 1.3 | Level-zero running time, recommended |
| compute capability 3.0 | OpenCL running time, slower than level-zero in most cases |
4. Launch inference
There are two device selection modes:
- Single device: Use one device assigned by user.
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
Otherwise, run the following wrapper script:
```
.\examples\sycl\win-run-llama2.bat
```
Note:
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Environment Variable
#### Build
| Name | Value | Function |
|--------------------|-----------------------------------|---------------------------------------------|
| LLAMA_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
| LLAMA_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
#### Runtime
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues
- `Split-mode:[row]` is not supported.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
- General compiler error:
- Remove **build** folder or try a clean-build.
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
Please double-check with `sudo sycl-ls`.
If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:
```
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
Otherwise, please double-check the GPU driver installation steps.
### **GitHub contribution**:
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
## TODO
- Support row layer split for multiple card runs.

592
README.md
View File

@@ -2,21 +2,32 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
### Recent API changes
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
- [2024 Mar 13] Add `llama_synchronize()` + `llama_context_params.n_ubatch` https://github.com/ggerganov/llama.cpp/pull/6017
- [2024 Mar 8] `llama_kv_cache_seq_rm()` returns a `bool` instead of `void`, and new `llama_n_seq_max()` returns the upper limit of acceptable `seq_id` in batches (relevant when dealing with multiple sequences) https://github.com/ggerganov/llama.cpp/pull/5328
- [2024 Mar 4] Embeddings API updated https://github.com/ggerganov/llama.cpp/pull/5796
- [2024 Mar 3] `struct llama_context_params` https://github.com/ggerganov/llama.cpp/pull/5849
### Hot topics
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
**Devs should become familiar with the new API**
- Local Falcon 180B inference on Mac Studio
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
- **BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920**
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
- Fix major bug in Metal batched inference https://github.com/ggerganov/llama.cpp/pull/6225
- Multi-GPU pipeline parallelism support https://github.com/ggerganov/llama.cpp/pull/6017
- Looking for contributions to add Deepseek support: https://github.com/ggerganov/llama.cpp/issues/5981
- Quantization blind testing: https://github.com/ggerganov/llama.cpp/discussions/5962
- Initial Mamba support has been added: https://github.com/ggerganov/llama.cpp/pull/5328
----
@@ -32,17 +43,14 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
<li><a href="#get-the-code">Get the Code</a></li>
<li><a href="#build">Build</a></li>
<li><a href="#blas-build">BLAS Build</a></li>
<li><a href="#prepare-data--run">Prepare Data & Run</a></li>
<li><a href="#prepare-and-quantize">Prepare and Quantize</a></li>
<li><a href="#run-the-quantized-model">Run the quantized model</a></li>
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
<li><a href="#quantization">Quantization</a></li>
<li><a href="#interactive-mode">Interactive mode</a></li>
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
<li><a href="#using-gpt4all">Using GPT4All</a></li>
<li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
<li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
<li><a href="#verifying-the-model-files">Verifying the model files</a></li>
<li><a href="#instruct-mode">Instruct mode</a></li>
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
<li><a href="#android">Android</a></li>
@@ -57,18 +65,20 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
## Description
The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
variety of hardware - locally and in the cloud.
- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
- CUDA, Metal and OpenCL GPU backend support
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
- Vulkan, SYCL, and (partial) OpenCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
improved significantly thanks to many contributions. It is the main playground for developing new features for the
[ggml](https://github.com/ggerganov/ggml) library.
**Supported platforms:**
@@ -76,51 +86,125 @@ as the main playground for developing new features for the [ggml](https://github
- [X] Linux
- [X] Windows (via CMake)
- [X] Docker
- [X] FreeBSD
**Supported models:**
Typically finetunes of the base models below are supported as well.
- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [X] Falcon
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [x] LLaMA 3 🦙🦙🦙
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
- [X] [StableLM models](https://huggingface.co/stabilityai)
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
- [x] [GPT-2](https://huggingface.co/gpt2)
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
- [x] [Mamba](https://github.com/state-spaces/mamba)
- [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf)
- [x] [Xverse](https://huggingface.co/models?search=xverse)
- [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r)
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
- [x] [OLMo](https://allenai.org/olmo)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
**Multimodal models:**
- [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d994e992e2677a7e), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155f60fd046a5ccf2)
- [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava)
- [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5)
- [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V)
- [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM)
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
**HTTP server**
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
**Bindings:**
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp), [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
- JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp)
- JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm)
- Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
**UI:**
Unless otherwise noted these projects are open-source with permissive licensing:
- [iohub/collama](https://github.com/iohub/coLLaMA)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
- [Faraday](https://faraday.dev/) (proprietary)
- [LMStudio](https://lmstudio.ai/) (proprietary)
- [LocalAI](https://github.com/mudler/LocalAI) (MIT)
- [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL)
- [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile)
- [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all)
- [ollama/ollama](https://github.com/ollama/ollama)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [RecurseChat](https://recurse.chat/) (proprietary)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
- [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT)
- [Msty](https://msty.app) (proprietary)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file)(Apachev2.0 or later)
- [Dot](https://github.com/alexpinel/Dot) (GPL)
- [MindMac](https://mindmac.app) (proprietary)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
---
Here is a typical run using LLaMA v2 13B on M2 Ultra:
```java
```
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
@@ -204,7 +288,7 @@ https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8
## Usage
Here are the steps for the LLaMA-7B model.
Here are the end-to-end binary build and model conversion steps for most supported models.
### Get the Code
@@ -224,6 +308,8 @@ In order to build llama.cpp you have three different options.
make
```
**Note**: for `Debug` builds, run `make LLAMA_DEBUG=1`
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
@@ -238,12 +324,26 @@ In order to build llama.cpp you have three different options.
- Using `CMake`:
```bash
mkdir build
cd build
cmake ..
cmake --build . --config Release
cmake -B build
cmake --build build --config Release
```
**Note**: for `Debug` builds, there are two cases:
- Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
- Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Using `Zig` (version 0.11 or later):
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
@@ -265,7 +365,7 @@ In order to build llama.cpp you have three different options.
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
opencl clblast openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
@@ -277,7 +377,7 @@ In order to build llama.cpp you have three different options.
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
### MPI Build
@@ -321,7 +421,7 @@ mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
- #### Accelerate Framework:
@@ -355,92 +455,117 @@ Building the program with BLAS support may lead to some performance improvements
- Using `CMake` on Linux:
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake --build . --config Release
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release
```
- #### BLIS
Check [BLIS.md](docs/BLIS.md) for more information.
- #### Intel MKL
- #### SYCL
SYCL is a higher-level programming model to improve programming productivity on various hardware accelerators.
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
llama.cpp based on SYCL is used to **support Intel GPU** (Data Center Max series, Flex series, Arc series, Built-in GPU and iGPU).
```bash
mkdir build
cd build
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build . --config Release
```
For detailed info, please refer to [llama.cpp for SYCL](README-sycl.md).
- #### cuBLAS
- #### Intel oneMKL
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake --build build --config Release
```
- Using oneAPI docker image:
If you do not want to source the environment vars and install oneAPI manually, you can also build the code using intel docker container: [oneAPI-basekit](https://hub.docker.com/r/intel/oneapi-basekit). Then, you can use the commands given above.
Check [Optimizing and Running LLaMA2 on Intel® CPU](https://www.intel.com/content/www/us/en/content-details/791610/optimizing-and-running-llama2-on-intel-cpu.html) for more information.
- #### CUDA
This provides GPU acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
For Jetson user, if you have Jetson Orin, you can try this: [Offical Support](https://www.jetson-ai-lab.com/tutorial_text-generation.html). If you are using an old model(nano/TX2), need some additional operations before compiling.
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
- Using `make`:
```bash
make LLAMA_CUBLAS=1
make LLAMA_CUDA=1
```
- Using `CMake`:
```bash
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release
cmake -B build -DLLAMA_CUDA=ON
cmake --build build --config Release
```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
<!---
| LLAMA_CUDA_CUBLAS | Boolean | false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
--->
| Option | Legal values | Default | Description |
|--------------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| Option | Legal values | Default | Description |
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
- #### hipBLAS
This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
Windows support is coming soon...
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html#rocm-install-quick).
- Using `make`:
```bash
make LLAMA_HIPBLAS=1
```
- Using `CMake`:
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
mkdir build
cd build
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
cmake --build .
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
cmake -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
mkdir build
cd build
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release ..
cmake --build .
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|-------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### CLBlast
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
@@ -449,15 +574,14 @@ Building the program with BLAS support may lead to some performance improvements
```sh
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
mkdir OpenCL-SDK/build
cd OpenCL-SDK/build
cmake .. -DBUILD_DOCS=OFF \
cd OpenCL-SDK
cmake -B build -DBUILD_DOCS=OFF \
-DBUILD_EXAMPLES=OFF \
-DBUILD_TESTING=OFF \
-DOPENCL_SDK_BUILD_SAMPLES=OFF \
-DOPENCL_SDK_TEST_SAMPLES=OFF
cmake --build . --config Release
cmake --install . --prefix /some/path
cmake --build build
cmake --install build --prefix /some/path
```
</details>
@@ -465,6 +589,12 @@ Building the program with BLAS support may lead to some performance improvements
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
Linux packaging:
Fedora Linux:
```bash
sudo dnf install clblast
```
Alternatively, they may be built from source.
- <details>
@@ -473,23 +603,23 @@ Building the program with BLAS support may lead to some performance improvements
```cmd
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
git clone https://github.com/CNugteren/CLBlast.git
mkdir CLBlast\build
cd CLBlast\build
cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
cmake --build . --config Release
cmake --install . --prefix C:/CLBlast
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/CLBlast
```
(note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds)
- <details>
<summary>Unix:</summary>
```sh
git clone https://github.com/CNugteren/CLBlast.git
mkdir CLBlast/build
cd CLBlast/build
cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
cmake --build . --config Release
cmake --install . --prefix /some/path
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
cmake --build build --config Release
cmake --install build --prefix /some/path
```
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
@@ -503,21 +633,17 @@ Building the program with BLAS support may lead to some performance improvements
```
- CMake (Unix):
```sh
mkdir build
cd build
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
cmake --build . --config Release
cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
cmake --build build --config Release
```
- CMake (Windows):
```cmd
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
mkdir build
cd build
cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
cmake --build . --config Release
cmake --install . --prefix C:/LlamaCPP
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/LlamaCPP
```
##### Running Llama with CLBlast
@@ -539,48 +665,111 @@ Building the program with BLAS support may lead to some performance improvements
You can get a list of platforms and devices from the `clinfo -l` command, etc.
### Prepare Data & Run
- #### Vulkan
**With docker**:
You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
**Without docker**:
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
For example, on Ubuntu 22.04 (jammy), use the command below:
```bash
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
apt update -y
apt-get install -y vulkan-sdk
# To verify the installation, use the command below:
vulkaninfo
```
Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
Then, build llama.cpp using the cmake command below:
```bash
cmake -B build -DLLAMA_VULKAN=1
cmake --build build --config Release
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
# You should see in the output, ggml_vulkan detected your GPU. For example:
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### Prepare and Quantize
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
```bash
# obtain the original LLaMA model weights and place them in ./models
# obtain the official LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
65B 30B 13B 7B vocab.json
llama-2-7b tokenizer_checklist.chk tokenizer.model
# [Optional] for models using BPE tokenizers
ls ./models
<folder containing weights and tokenizer json> vocab.json
# [Optional] for PyTorch .bin models like Mistral-7B
ls ./models
<folder containing weights and tokenizer json>
# install Python dependencies
python3 -m pip install -r requirements.txt
# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/
# convert the model to ggml FP16 format
python3 convert.py models/mymodel/
# [Optional] for models using BPE tokenizers
python convert.py models/7B/ --vocabtype bpe
# [Optional] for models using BPE tokenizers
python convert.py models/mymodel/ --vocab-type bpe
# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
# update the gguf filetype to current if older version is unsupported by another application
./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY
# update the gguf filetype to current version if older version is now unsupported
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
```
### Run the quantized model
# run the inference
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
```bash
# start inference on a gguf model
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
```
When running the larger models, make sure you have enough disk space to store all the intermediate files.
### Running on Windows with prebuilt binaries
You will find prebuilt Windows binaries on the release page.
Simply download and extract the latest zip package of choice: (e.g. `llama-b1380-bin-win-avx2-x64.zip`)
From the unzipped folder, open a terminal/cmd window here and place a pre-converted `.gguf` model file. Test out the main example like so:
```
.\main -m llama-2-7b.Q4_0.gguf -n 128
```
### Memory/Disk Requirements
As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.
| Model | Original size | Quantized size (4-bit) |
|------:|--------------:|-----------------------:|
| 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB |
| 30B | 60 GB | 19.5 GB |
| 65B | 120 GB | 38.5 GB |
| Model | Original size | Quantized size (Q4_0) |
|------:|--------------:|----------------------:|
| 7B | 13 GB | 3.9 GB |
| 13B | 24 GB | 7.8 GB |
| 30B | 60 GB | 19.5 GB |
| 65B | 120 GB | 38.5 GB |
### Quantization
@@ -588,7 +777,7 @@ Several quantization methods are supported. They differ in the resulting model d
*(outdated)*
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
@@ -602,9 +791,21 @@ Several quantization methods are supported. They differ in the resulting model d
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
- recent k-quants improvements
- recent k-quants improvements and new i-quants
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
- [#4773 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4773)
- [#4856 - 2-bit i-quants (inference)](https://github.com/ggerganov/llama.cpp/pull/4856)
- [#4861 - importance matrix](https://github.com/ggerganov/llama.cpp/pull/4861)
- [#4872 - MoE models](https://github.com/ggerganov/llama.cpp/pull/4872)
- [#4897 - 2-bit quantization](https://github.com/ggerganov/llama.cpp/pull/4897)
- [#4930 - imatrix for all k-quants](https://github.com/ggerganov/llama.cpp/pull/4930)
- [#4951 - imatrix on the GPU](https://github.com/ggerganov/llama.cpp/pull/4957)
- [#4969 - imatrix for legacy quants](https://github.com/ggerganov/llama.cpp/pull/4969)
- [#4996 - k-qunats tuning](https://github.com/ggerganov/llama.cpp/pull/4996)
- [#5060 - Q3_K_XS](https://github.com/ggerganov/llama.cpp/pull/5060)
- [#5196 - 3-bit i-quants](https://github.com/ggerganov/llama.cpp/pull/5196)
- [quantization tuning](https://github.com/ggerganov/llama.cpp/pull/5320), [another one](https://github.com/ggerganov/llama.cpp/pull/5334), and [another one](https://github.com/ggerganov/llama.cpp/pull/5361)
### Perplexity (measuring model quality)
@@ -616,7 +817,7 @@ The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 thread
#### How to run
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
1. Download/extract: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
3. Output:
```
@@ -629,7 +830,7 @@ And after 4.45 hours, you will have the final perplexity.
### Interactive mode
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMA emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.
Here is an example of a few-shot interaction, invoked with the command
@@ -679,9 +880,9 @@ The `grammars/` folder contains a handful of sample grammars. To write your own,
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
### Instruction mode with Alpaca
### Instruct mode
1. First, download the `ggml` Alpaca model into the `./models` folder
1. First, download and place the `ggml` model into the `./models` folder
2. Run the `main` tool like this:
```
@@ -693,7 +894,7 @@ Sample run:
```
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMa.
- Press Return to return control to LLaMA.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
@@ -707,50 +908,6 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
```
### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
*Note: these instructions are likely obsoleted by the GGUF update*
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
- It is distributed in the old `ggml` format which is now obsoleted
- You have to convert it to the new format using `convert.py`:
```bash
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
```
- You can now use the newly generated `models/gpt4all-7B/ggml-model-q4_0.bin` model in exactly the same way as all other models
- The newer GPT4All-J model is not yet supported!
### Using Pygmalion 7B & Metharme 7B
- Obtain the [LLaMA weights](#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data)
- Obtain the [Pygmalion 7B](https://huggingface.co/PygmalionAI/pygmalion-7b/) or [Metharme 7B](https://huggingface.co/PygmalionAI/metharme-7b) XOR encoded weights
- Convert the LLaMA model with [the latest HF convert script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
- Merge the XOR files with the converted LLaMA weights by running the [xor_codec](https://huggingface.co/PygmalionAI/pygmalion-7b/blob/main/xor_codec.py) script
- Convert to `ggml` format using the `convert.py` script in this repo:
```bash
python3 convert.py pygmalion-7b/ --outtype q4_1
```
> The Pygmalion 7B & Metharme 7B weights are saved in [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format) precision. If you wish to convert to `ggml` without quantizating, please specify the `--outtype` as `f32` instead of `f16`.
### Obtaining the Facebook LLaMA original model and Stanford Alpaca model data
- **Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.**
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
### Obtaining and using the Facebook LLaMA 2 model
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
@@ -762,20 +919,6 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
### Verifying the model files
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- The following python script will verify if you have all possible latest files in your self-installed `./models` subdirectory:
```bash
# run the verification script
./scripts/verify-checksum-models.py
```
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
- On Linux: `sha256sum --ignore-missing -c SHA256SUMS`
- on macOS: `shasum -a 256 --ignore-missing -c SHA256SUMS`
### Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
@@ -798,6 +941,9 @@ First, install the essential packages for termux:
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
You can execute the following commands on your computer to avoid downloading the NDK to your mobile. Of course, you can also do this in Termux.
```
$ mkdir build-android
$ cd build-android
@@ -806,7 +952,28 @@ $ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROI
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download model [llama-2-7b-chat.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q4_K_M.gguf), and push it to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
@@ -860,19 +1027,22 @@ Place your desired model into the `~/llama.cpp/models/` directory and execute th
* Create a folder to store big models & intermediate files (ex. /llama/models)
#### Images
We have two Docker images available for this project:
We have three Docker images available for this project:
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the Gitlab Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
#### Usage
@@ -896,6 +1066,12 @@ or with a light image:
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a server image:
```bash
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
```
### Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
@@ -905,6 +1081,7 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
@@ -918,6 +1095,7 @@ The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
#### Usage
@@ -926,6 +1104,7 @@ After building locally, Usage is similar to the non-CUDA examples, but you'll ne
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```
### Contributing
@@ -945,12 +1124,15 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
![matmul](media/matmul.png)
### Docs
- [main](./examples/main/README.md)
- [server](./examples/server/README.md)
- [embd-input](./examples/embd-input/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [BLIS](./docs/BLIS.md)
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)

67
SECURITY.md Normal file
View File

@@ -0,0 +1,67 @@
# Security Policy
- [**Using llama.cpp securely**](#using-llamacpp-securely)
- [Untrusted models](#untrusted-models)
- [Untrusted inputs](#untrusted-inputs)
- [Data privacy](#data-privacy)
- [Untrusted environments or networks](#untrusted-environments-or-networks)
- [Multi-Tenant environments](#multi-tenant-environments)
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
## Using llama.cpp securely
### Untrusted models
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources.
*Always execute untrusted models within a secure, isolated environment such as a sandbox* (e.g., containers, virtual machines). This helps protect your system from potentially malicious code.
> [!NOTE]
> The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
### Untrusted inputs
Some models accept various input formats (text, images, audio, etc.). The libraries converting these inputs have varying security levels, so it's crucial to isolate the model and carefully pre-process inputs to mitigate script injection risks.
For maximum security when handling untrusted inputs, you may need to employ the following:
* Sandboxing: Isolate the environment where the inference happens.
* Pre-analysis: Check how the model performs by default when exposed to prompt injection (e.g. using [fuzzing for prompt injection](https://github.com/FonduAI/awesome-prompt-injection?tab=readme-ov-file#tools)). This will give you leads on how hard you will have to work on the next topics.
* Updates: Keep both LLaMA C++ and your libraries updated with the latest security patches.
* Input Sanitation: Before feeding data to the model, sanitize inputs rigorously. This involves techniques such as:
* Validation: Enforce strict rules on allowed characters and data types.
* Filtering: Remove potentially malicious scripts or code fragments.
* Encoding: Convert special characters into safe representations.
* Verification: Run tooling that identifies potential script injections (e.g. [models that detect prompt injection attempts](https://python.langchain.com/docs/guides/safety/hugging_face_prompt_injection)).
### Data privacy
To protect sensitive data from potential leaks or unauthorized access, it is crucial to sandbox the model execution. This means running the model in a secure, isolated environment, which helps mitigate many attack vectors.
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
* Encrypt your data if sending it over the network.
### Multi-Tenant environments
If you intend to run multiple models in parallel with shared memory, it is your responsibility to ensure the models do not interact or access each other's data. The primary areas of concern are tenant isolation, resource allocation, model sharing and hardware attacks.
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
2. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
3. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
4. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
## Reporting a vulnerability
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
<!-- normal version -->
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

View File

@@ -1,40 +0,0 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

View File

@@ -10,7 +10,6 @@ const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
config_header: *ConfigHeader,
enable_lto: bool,
include_dirs: ArrayList([]const u8),
@@ -41,26 +40,24 @@ const Maker = struct {
const commit_hash = try std.ChildProcess.exec(
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
);
const config_header = builder.addConfigHeader(
.{ .style = .blank, .include_path = "build-info.h" },
.{
.BUILD_NUMBER = 0,
.BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline
.BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}),
.BUILD_TARGET = try target.allocDescription(builder.allocator),
},
);
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
\\int LLAMA_BUILD_NUMBER = {};
\\char const *LLAMA_COMMIT = "{s}";
\\char const *LLAMA_COMPILER = "Zig {s}";
\\char const *LLAMA_BUILD_TARGET = "{s}";
\\
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
var m = Maker{
.builder = builder,
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.config_header = config_header,
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
@@ -72,7 +69,7 @@ const Maker = struct {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (o.target.getAbi() != .msvc)
o.defineCMacro("_GNU_SOURCE", null);
o.addConfigHeader(m.config_header);
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
@@ -85,7 +82,6 @@ const Maker = struct {
o.linkLibCpp();
}
}
o.addConfigHeader(m.config_header);
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
@@ -105,7 +101,6 @@ const Maker = struct {
// linkLibCpp already add (libc++ + libunwind + libc)
e.linkLibCpp();
}
e.addConfigHeader(m.config_header);
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
@@ -116,30 +111,62 @@ pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
try make.addFlag("-DGGML_USE_K_QUANTS");
const k_quants = make.obj("k_quants", "k_quants.c");
try make.objs.append(k_quants);
}
const ggml = make.obj("ggml", "ggml.c");
const sgemm = make.obj("sgemm", "sgemm.cpp");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const unicode = make.obj("unicode", "unicode.cpp");
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
for (server_assets) |asset| {
const input_path = b.fmt("examples/server/public/{s}", .{asset});
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
defer b.allocator.free(input);
var buf = std.ArrayList(u8).init(b.allocator);
defer buf.deinit();
for (input) |byte| {
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
}
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
defer b.allocator.free(name);
std.mem.replaceScalar(u8, name, '.', '_');
try std.fs.cwd().writeFile(output_path, b.fmt(
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
.{ name, buf.items, name, input.len },
));
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
}
}

View File

@@ -22,4 +22,8 @@ bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```

286
ci/run.sh
View File

@@ -10,6 +10,9 @@
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -22,14 +25,33 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -v $OUT/*.log
rm -v $OUT/*.exit
rm -v $OUT/*.md
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUDA=1"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -81,10 +103,10 @@ function gg_run_ctest_debug {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
@@ -109,13 +131,13 @@ function gg_run_ctest_release {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
else
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
fi
set +e
@@ -131,6 +153,110 @@ function gg_sum_ctest_release {
gg_printf '```\n'
}
# test_scripts_debug
function gg_run_test_scripts_debug {
cd ${SRC}
set -e
# TODO: too slow, run on dedicated node
#(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
#(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
cd ${SRC}
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
function gg_get_model {
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf"
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_3b ]]; then
echo -n "$gguf_3b"
elif [[ -s $gguf_7b ]]; then
echo -n "$gguf_7b"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
fi
}
function gg_run_ctest_with_model_debug {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_run_ctest_with_model_release {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_sum_ctest_with_model_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
function gg_sum_ctest_with_model_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
# open_llama_3b_v2
function gg_run_open_llama_3b_v2 {
@@ -143,7 +269,7 @@ function gg_run_open_llama_3b_v2 {
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
@@ -154,8 +280,8 @@ function gg_run_open_llama_3b_v2 {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models}
@@ -196,17 +322,22 @@ function gg_run_open_llama_3b_v2 {
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -233,6 +364,8 @@ function gg_run_open_llama_3b_v2 {
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
# lora
function compare_ppl {
qnt="$1"
@@ -261,20 +394,19 @@ function gg_run_open_llama_3b_v2 {
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e
}
@@ -284,6 +416,7 @@ function gg_sum_open_llama_3b_v2 {
gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
@@ -296,6 +429,7 @@ function gg_sum_open_llama_3b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
@@ -318,7 +452,7 @@ function gg_run_open_llama_7b_v2 {
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/open-llama/7B-v2"
@@ -328,8 +462,8 @@ function gg_run_open_llama_7b_v2 {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models}
@@ -382,6 +516,13 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
@@ -407,6 +548,8 @@ function gg_run_open_llama_7b_v2 {
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
# lora
function compare_ppl {
qnt="$1"
@@ -458,6 +601,7 @@ function gg_sum_open_llama_7b_v2 {
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
@@ -470,6 +614,7 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
@@ -477,17 +622,69 @@ function gg_sum_open_llama_7b_v2 {
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# bge-small
function gg_run_embd_bge_small {
cd ${SRC}
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/sentence_bert_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/vocab.txt
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/modules.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/1_Pooling https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/1_Pooling/config.json
path_models="../models-mnt/bge-small"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
}
## main
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
ln -sfn ${mnt_models} ${SRC}/models-mnt
python3 -m pip install -r ${SRC}/requirements.txt
python3 -m pip install --editable gguf-py
# Create a fresh python3 venv and enter it
python3 -m venv "$MNT/venv"
source "$MNT/venv/bin/activate"
pip install -r ${SRC}/requirements.txt --disable-pip-version-check
pip install --editable gguf-py --disable-pip-version-check
fi
ret=0
@@ -496,10 +693,19 @@ test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2
else
test $ret -eq 0 && gg_run open_llama_7b_v2
test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2
else
test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

100
cmake/FindSIMD.cmake Normal file
View File

@@ -0,0 +1,100 @@
include(CheckCSourceRuns)
set(AVX_CODE "
#include <immintrin.h>
int main()
{
__m256 a;
a = _mm256_set1_ps(0);
return 0;
}
")
set(AVX512_CODE "
#include <immintrin.h>
int main()
{
__m512i a = _mm512_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0);
__m512i b = a;
__mmask64 equality_mask = _mm512_cmp_epi8_mask(a, b, _MM_CMPINT_EQ);
return 0;
}
")
set(AVX2_CODE "
#include <immintrin.h>
int main()
{
__m256i a = {0};
a = _mm256_abs_epi16(a);
__m256i x;
_mm256_extract_epi64(x, 0); // we rely on this in our AVX2 code
return 0;
}
")
set(FMA_CODE "
#include <immintrin.h>
int main()
{
__m256 acc = _mm256_setzero_ps();
const __m256 d = _mm256_setzero_ps();
const __m256 p = _mm256_setzero_ps();
acc = _mm256_fmadd_ps( d, p, acc );
return 0;
}
")
macro(check_sse type flags)
set(__FLAG_I 1)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
foreach (__FLAG ${flags})
if (NOT ${type}_FOUND)
set(CMAKE_REQUIRED_FLAGS ${__FLAG})
check_c_source_runs("${${type}_CODE}" HAS_${type}_${__FLAG_I})
if (HAS_${type}_${__FLAG_I})
set(${type}_FOUND TRUE CACHE BOOL "${type} support")
set(${type}_FLAGS "${__FLAG}" CACHE STRING "${type} flags")
endif()
math(EXPR __FLAG_I "${__FLAG_I}+1")
endif()
endforeach()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
if (NOT ${type}_FOUND)
set(${type}_FOUND FALSE CACHE BOOL "${type} support")
set(${type}_FLAGS "" CACHE STRING "${type} flags")
endif()
mark_as_advanced(${type}_FOUND ${type}_FLAGS)
endmacro()
# flags are for MSVC only!
check_sse("AVX" " ;/arch:AVX")
if (NOT ${AVX_FOUND})
set(LLAMA_AVX OFF)
else()
set(LLAMA_AVX ON)
endif()
check_sse("AVX2" " ;/arch:AVX2")
check_sse("FMA" " ;/arch:AVX2")
if ((NOT ${AVX2_FOUND}) OR (NOT ${FMA_FOUND}))
set(LLAMA_AVX2 OFF)
else()
set(LLAMA_AVX2 ON)
endif()
check_sse("AVX512" " ;/arch:AVX512")
if (NOT ${AVX512_FOUND})
set(LLAMA_AVX512 OFF)
else()
set(LLAMA_AVX512 ON)
endif()

View File

@@ -1,22 +1,87 @@
# common
# Build info header
#
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
# Is git submodule
if(NOT IS_DIRECTORY "${GIT_DIR}")
file(READ ${GIT_DIR} REAL_GIT_DIR_LINK)
string(REGEX REPLACE "gitdir: (.*)\n$" "\\1" REAL_GIT_DIR ${REAL_GIT_DIR_LINK})
string(FIND "${REAL_GIT_DIR}" "/" SLASH_POS)
if (SLASH_POS EQUAL 0)
set(GIT_DIR "${REAL_GIT_DIR}")
else()
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
endif()
# Add a custom command to rebuild build-info.cpp when .git/index changes
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/gen-build-info-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
)
set(TARGET build_info)
add_library(${TARGET} OBJECT build-info.cpp)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(TARGET common)
add_library(${TARGET} OBJECT
add_library(${TARGET} STATIC
base64.hpp
common.h
common.cpp
sampling.h
sampling.cpp
console.h
console.cpp
grammar-parser.h
grammar-parser.cpp
json.hpp
json-schema-to-grammar.cpp
train.h
train.cpp
ngram-cache.h
ngram-cache.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE llama)
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama)

392
common/base64.hpp Normal file
View File

@@ -0,0 +1,392 @@
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org>
*/
#ifndef PUBLIC_DOMAIN_BASE64_HPP_
#define PUBLIC_DOMAIN_BASE64_HPP_
#include <cstdint>
#include <iterator>
#include <stdexcept>
#include <string>
class base64_error : public std::runtime_error
{
public:
using std::runtime_error::runtime_error;
};
class base64
{
public:
enum class alphabet
{
/** the alphabet is detected automatically */
auto_,
/** the standard base64 alphabet is used */
standard,
/** like `standard` except that the characters `+` and `/` are replaced by `-` and `_` respectively*/
url_filename_safe
};
enum class decoding_behavior
{
/** if the input is not padded, the remaining bits are ignored */
moderate,
/** if a padding character is encounter decoding is finished */
loose
};
/**
Encodes all the elements from `in_begin` to `in_end` to `out`.
@warning The source and destination cannot overlap. The destination must be able to hold at least
`required_encode_size(std::distance(in_begin, in_end))`, otherwise the behavior depends on the output iterator.
@tparam Input_iterator the source; the returned elements are cast to `std::uint8_t` and should not be greater than
8 bits
@tparam Output_iterator the destination; the elements written to it are from the type `char`
@param in_begin the beginning of the source
@param in_end the ending of the source
@param out the destination iterator
@param alphabet which alphabet should be used
@returns the iterator to the next element past the last element copied
@throws see `Input_iterator` and `Output_iterator`
*/
template<typename Input_iterator, typename Output_iterator>
static Output_iterator encode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
alphabet alphabet = alphabet::standard)
{
constexpr auto pad = '=';
const char* alpha = alphabet == alphabet::url_filename_safe
? "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
while (in_begin != in_end) {
std::uint8_t i0 = 0, i1 = 0, i2 = 0;
// first character
i0 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[i0 >> 2 & 0x3f];
++out;
// part of first character and second
if (in_begin != in_end) {
i1 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[((i0 & 0x3) << 4) | (i1 >> 4 & 0x0f)];
++out;
} else {
*out = alpha[(i0 & 0x3) << 4];
++out;
// last padding
*out = pad;
++out;
// last padding
*out = pad;
++out;
break;
}
// part of second character and third
if (in_begin != in_end) {
i2 = static_cast<std::uint8_t>(*in_begin);
++in_begin;
*out = alpha[((i1 & 0xf) << 2) | (i2 >> 6 & 0x03)];
++out;
} else {
*out = alpha[(i1 & 0xf) << 2];
++out;
// last padding
*out = pad;
++out;
break;
}
// rest of third
*out = alpha[i2 & 0x3f];
++out;
}
return out;
}
/**
Encodes a string.
@param str the string that should be encoded
@param alphabet which alphabet should be used
@returns the encoded base64 string
@throws see base64::encode()
*/
static std::string encode(const std::string& str, alphabet alphabet = alphabet::standard)
{
std::string result;
result.reserve(required_encode_size(str.length()) + 1);
encode(str.begin(), str.end(), std::back_inserter(result), alphabet);
return result;
}
/**
Encodes a char array.
@param buffer the char array
@param size the size of the array
@param alphabet which alphabet should be used
@returns the encoded string
*/
static std::string encode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::standard)
{
std::string result;
result.reserve(required_encode_size(size) + 1);
encode(buffer, buffer + size, std::back_inserter(result), alphabet);
return result;
}
/**
Decodes all the elements from `in_begin` to `in_end` to `out`. `in_begin` may point to the same location as `out`,
in other words: inplace decoding is possible.
@warning The destination must be able to hold at least `required_decode_size(std::distance(in_begin, in_end))`,
otherwise the behavior depends on the output iterator.
@tparam Input_iterator the source; the returned elements are cast to `char`
@tparam Output_iterator the destination; the elements written to it are from the type `std::uint8_t`
@param in_begin the beginning of the source
@param in_end the ending of the source
@param out the destination iterator
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the iterator to the next element past the last element copied
@throws base64_error depending on the set behavior
@throws see `Input_iterator` and `Output_iterator`
*/
template<typename Input_iterator, typename Output_iterator>
static Output_iterator decode(Input_iterator in_begin, Input_iterator in_end, Output_iterator out,
alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
//constexpr auto pad = '=';
std::uint8_t last = 0;
auto bits = 0;
while (in_begin != in_end) {
auto c = *in_begin;
++in_begin;
if (c == '=') {
break;
}
auto part = _base64_value(alphabet, c);
// enough bits for one byte
if (bits + 6 >= 8) {
*out = (last << (8 - bits)) | (part >> (bits - 2));
++out;
bits -= 2;
} else {
bits += 6;
}
last = part;
}
// check padding
if (behavior != decoding_behavior::loose) {
while (in_begin != in_end) {
auto c = *in_begin;
++in_begin;
if (c != '=') {
throw base64_error("invalid base64 character.");
}
}
}
return out;
}
/**
Decodes a string.
@param str the base64 encoded string
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the decoded string
@throws see base64::decode()
*/
static std::string decode(const std::string& str, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
std::string result;
result.reserve(max_decode_size(str.length()));
decode(str.begin(), str.end(), std::back_inserter(result), alphabet, behavior);
return result;
}
/**
Decodes a string.
@param buffer the base64 encoded buffer
@param size the size of the buffer
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the decoded string
@throws see base64::decode()
*/
static std::string decode(const char* buffer, std::size_t size, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
std::string result;
result.reserve(max_decode_size(size));
decode(buffer, buffer + size, std::back_inserter(result), alphabet, behavior);
return result;
}
/**
Decodes a string inplace.
@param[in,out] str the base64 encoded string
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@throws base64::decode_inplace()
*/
static void decode_inplace(std::string& str, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
str.resize(decode(str.begin(), str.end(), str.begin(), alphabet, behavior) - str.begin());
}
/**
Decodes a char array inplace.
@param[in,out] str the string array
@param size the length of the array
@param alphabet which alphabet should be used
@param behavior the behavior when an error was detected
@returns the pointer to the next element past the last element decoded
@throws base64::decode_inplace()
*/
static char* decode_inplace(char* str, std::size_t size, alphabet alphabet = alphabet::auto_,
decoding_behavior behavior = decoding_behavior::moderate)
{
return decode(str, str + size, str, alphabet, behavior);
}
/**
Returns the required decoding size for a given size. The value is calculated with the following formula:
$$
\lceil \frac{size}{4} \rceil \cdot 3
$$
@param size the size of the encoded input
@returns the size of the resulting decoded buffer; this the absolute maximum
*/
static std::size_t max_decode_size(std::size_t size) noexcept
{
return (size / 4 + (size % 4 ? 1 : 0)) * 3;
}
/**
Returns the required encoding size for a given size. The value is calculated with the following formula:
$$
\lceil \frac{size}{3} \rceil \cdot 4
$$
@param size the size of the decoded input
@returns the size of the resulting encoded buffer
*/
static std::size_t required_encode_size(std::size_t size) noexcept
{
return (size / 3 + (size % 3 ? 1 : 0)) * 4;
}
private:
static std::uint8_t _base64_value(alphabet& alphabet, char c)
{
if (c >= 'A' && c <= 'Z') {
return c - 'A';
} else if (c >= 'a' && c <= 'z') {
return c - 'a' + 26;
} else if (c >= '0' && c <= '9') {
return c - '0' + 52;
}
// comes down to alphabet
if (alphabet == alphabet::standard) {
if (c == '+') {
return 62;
} else if (c == '/') {
return 63;
}
} else if (alphabet == alphabet::url_filename_safe) {
if (c == '-') {
return 62;
} else if (c == '_') {
return 63;
}
} // auto detect
else {
if (c == '+') {
alphabet = alphabet::standard;
return 62;
} else if (c == '/') {
alphabet = alphabet::standard;
return 63;
} else if (c == '-') {
alphabet = alphabet::url_filename_safe;
return 62;
} else if (c == '_') {
alphabet = alphabet::url_filename_safe;
return 63;
}
}
throw base64_error("invalid base64 character.");
}
};
#endif // !PUBLIC_DOMAIN_BASE64_HPP_

4
common/build-info.cpp.in Normal file
View File

@@ -0,0 +1,4 @@
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";

File diff suppressed because it is too large Load Diff

View File

@@ -4,9 +4,12 @@
#include "llama.h"
#include "sampling.h"
#define LOG_NO_FILE_LINE_FUNCTION
#include "log.h"
#include <cmath>
#include <string>
#include <vector>
#include <random>
@@ -23,85 +26,121 @@
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info;
int get_math_cpu_count();
int32_t get_num_physical_cores();
//
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
// sampling parameters
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
float repeat_penalty = 1.10f; // 1.0 = disabled
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float frequency_penalty = 0.00f; // 0.0 = disabled
float presence_penalty = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
int32_t n_threads = get_math_cpu_count();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // How strong is guidance
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool memory_f16 = true; // use f16 instead of f32 for memory kv
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false; // compute KL-divergence
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@@ -110,38 +149,85 @@ struct gpt_params {
bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = false; // insert new sequences for decoding on-the-fly
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
};
void gpt_params_handle_model_default(gpt_params & params);
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
std::string get_system_info(const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input);
bool validate_file_name(const std::string & filename);
//
// String utils
//
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
//
// Model utils
//
// TODO: avoid tuplue, use struct
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
// Batch utils
void llama_batch_clear(struct llama_batch & batch);
void llama_batch_add(
struct llama_batch & batch,
llama_token id,
llama_pos pos,
const std::vector<llama_seq_id> & seq_ids,
bool logits);
//
// Vocab utils
//
@@ -151,18 +237,21 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_bos);
bool add_special,
bool parse_special = false);
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_bos);
bool add_special,
bool parse_special = false);
// tokenizes a token into a piece
// tokenizes a token into a piece, optionally renders special/control tokens
// should work similar to Python's `tokenizer.id_to_piece`
std::string llama_token_to_piece(
const struct llama_context * ctx,
llama_token token);
llama_token token,
bool special = true);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
@@ -180,35 +269,9 @@ std::string llama_detokenize_bpe(
llama_context * ctx,
const std::vector<llama_token> & tokens);
//
// Sampling utils
//
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
//
// required:
// - ctx: context to use for sampling
// - params: sampling parameters
//
// optional:
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
// - grammar: grammar to use for sampling, ignore if NULL
// - last_tokens: needed for repetition penalty, ignore if empty
// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sample_token(
struct llama_context * ctx,
struct llama_context * ctx_guidance,
struct llama_grammar * grammar,
const struct gpt_params & params,
const std::vector<llama_token> & last_tokens,
std::vector<llama_token_data> & candidates,
int idx = 0);
// Uses the value from the model metadata if possible, otherwise
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// YAML utils
@@ -223,3 +286,49 @@ std::string get_sortable_timestamp();
void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct llama_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct llama_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";

View File

@@ -190,7 +190,7 @@ namespace grammar_parser {
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
@@ -278,6 +278,22 @@ namespace grammar_parser {
while (*pos) {
pos = parse_rule(state, pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : state.symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
@@ -399,7 +415,7 @@ namespace grammar_parser {
void print_grammar(FILE * file, const parse_state & state) {
try {
std::map<uint32_t, std::string> symbol_id_names;
for (auto kv : state.symbol_ids) {
for (const auto & kv : state.symbol_ids) {
symbol_id_names[kv.second] = kv.first;
}
for (size_t i = 0, end = state.rules.size(); i < end; i++) {

View File

@@ -0,0 +1,764 @@
#include "json-schema-to-grammar.h"
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "", bool item_rule_is_literal = false) {
if (separator_rule.empty()) {
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
} else if (min_items == 1 && max_items == std::numeric_limits<int>::max()) {
return item_rule + "+";
}
}
std::string result;
if (min_items > 0) {
if (item_rule_is_literal && separator_rule.empty()) {
result = "\"" + repeat(std::string(item_rule.begin() + 1, item_rule.end() - 1), min_items) + "\"";
} else {
std::vector<std::string> items(min_items, item_rule);
result = join(items.begin(), items.end(), separator_rule.empty() ? " " : " " + separator_rule + " ");
}
}
std::function<std::string(int, bool)> opt_repetitions = [&](int up_to_n, bool prefix_with_sep) -> std::string {
auto content = prefix_with_sep && !separator_rule.empty() ? separator_rule + " " + item_rule : item_rule;
if (up_to_n == 0) {
return "";
} else if (up_to_n == 1) {
return "(" + content + ")?";
} else if (!separator_rule.empty() && !prefix_with_sep) {
return "(" + content + " " + opt_repetitions(up_to_n - 1, true) + ")?";
} else {
std::string res = repeat("(" + content + " ", up_to_n);
// strip trailing space
res = res.substr(0, res.length() - 1);
res += repeat(")?", up_to_n);
return res;
}
};
if (min_items > 0 && max_items != min_items) {
result += " ";
}
if (max_items != std::numeric_limits<int>::max()) {
result += opt_repetitions(max_items - min_items, min_items > 0);
} else {
std::string item_operator = "(" + (separator_rule.empty() ? "" : separator_rule + " ") + item_rule + ")";
if (min_items == 0 && !separator_rule.empty()) {
result = "(" + item_rule + " " + item_operator + "*)?";
} else {
result += item_operator + "*";
}
}
return result;
}
const std::string SPACE_RULE = "\" \"?";
struct BuiltinRule {
std::string content;
std::vector<std::string> deps;
};
const std::string _up_to_15_digits = build_repetition("[0-9]", 0, 15);
std::unordered_map<std::string, BuiltinRule> PRIMITIVE_RULES = {
{"boolean", {"(\"true\" | \"false\") space", {}}},
{"decimal-part", {"[0-9] " + _up_to_15_digits, {}}},
{"integral-part", {"[0-9] | [1-9] " + _up_to_15_digits, {}}},
{"number", {"(\"-\"? integral-part) (\".\" decimal-part)? ([eE] [-+]? integral-part)? space", {"integral-part", "decimal-part"}}},
{"integer", {"(\"-\"? integral-part) space", {"integral-part"}}},
{"value", {"object | array | string | number | boolean | null", {"object", "array", "string", "number", "boolean", "null"}}},
{"object", {"\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space", {"string", "value"}}},
{"array", {"\"[\" space ( value (\",\" space value)* )? \"]\" space", {"value"}}},
{"uuid", {"\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space", {}}},
{"char", {"[^\"\\\\] | \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])", {}}},
{"string", {"\"\\\"\" char* \"\\\"\" space", {"char"}}},
{"null", {"\"null\" space", {}}},
};
std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
{"date", {"[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}},
{"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}},
{"date-time", {"date \"T\" time", {"date", "time"}}},
{"date-string", {"\"\\\"\" date \"\\\"\" space", {"date"}}},
{"time-string", {"\"\\\"\" time \"\\\"\" space", {"time"}}},
{"date-time-string", {"\"\\\"\" date-time \"\\\"\" space", {"date-time"}}}
};
static bool is_reserved_name(const std::string & name) {
static std::unordered_set<std::string> RESERVED_NAMES;
if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : STRING_FORMAT_RULES) RESERVED_NAMES.insert(p.first);
}
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
std::string::const_iterator searchStart(input.cbegin());
std::string::const_iterator searchEnd(input.cend());
while (std::regex_search(searchStart, searchEnd, match, regex)) {
result.append(searchStart, searchStart + match.position());
result.append(replacement(match));
searchStart = match.suffix().first;
}
result.append(searchStart, searchEnd);
return result;
}
static std::string format_literal(const std::string & literal) {
std::string escaped = replacePattern(literal, GRAMMAR_LITERAL_ESCAPE_RE, [&](const std::smatch & match) {
char c = match.str()[0];
return GRAMMAR_LITERAL_ESCAPES.at(c);
});
return "\"" + escaped + "\"";
}
class SchemaConverter {
private:
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
std::unordered_map<std::string, json> _refs;
std::unordered_set<std::string> _refs_being_resolved;
std::vector<std::string> _errors;
std::vector<std::string> _warnings;
std::string _add_rule(const std::string & name, const std::string & rule) {
std::string esc_name = regex_replace(name, INVALID_RULE_CHARS_RE, "-");
if (_rules.find(esc_name) == _rules.end() || _rules[esc_name] == rule) {
_rules[esc_name] = rule;
return esc_name;
} else {
int i = 0;
while (_rules.find(esc_name + std::to_string(i)) != _rules.end() && _rules[esc_name + std::to_string(i)] != rule) {
i++;
}
std::string key = esc_name + std::to_string(i);
_rules[key] = rule;
return key;
}
}
std::string _generate_union_rule(const std::string & name, const std::vector<json> & alt_schemas) {
std::vector<std::string> rules;
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
if (!(pattern.front() == '^' && pattern.back() == '$')) {
_errors.push_back("Pattern must start with '^' and end with '$'");
return "";
}
std::string sub_pattern = pattern.substr(1, pattern.length() - 2);
std::unordered_map<std::string, std::string> sub_rule_ids;
size_t i = 0;
size_t length = sub_pattern.length();
using literal_or_rule = std::pair<std::string, bool>;
auto to_rule = [&](const literal_or_rule & ls) {
auto is_literal = ls.second;
auto s = ls.first;
return is_literal ? "\"" + s + "\"" : s;
};
std::function<literal_or_rule()> transform = [&]() -> literal_or_rule {
size_t start = i;
std::vector<literal_or_rule> seq;
auto get_dot = [&]() {
std::string rule;
if (_dotall) {
rule = "[\\U00000000-\\U0010FFFF]";
} else {
rule = "[^\\x0A\\x0D]";
}
return _add_rule("dot", rule);
};
// Joins the sequence, merging consecutive literals together.
auto join_seq = [&]() {
std::vector<literal_or_rule> ret;
std::string literal;
auto flush_literal = [&]() {
if (literal.empty()) {
return false;
}
ret.push_back(std::make_pair(literal, true));
literal.clear();
return true;
};
for (const auto & item : seq) {
auto is_literal = item.second;
if (is_literal) {
literal += item.first;
} else {
flush_literal();
ret.push_back(item);
}
}
flush_literal();
std::vector<std::string> results;
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
};
while (i < length) {
char c = sub_pattern[i];
if (c == '.') {
seq.push_back(std::make_pair(get_dot(), false));
i++;
} else if (c == '(') {
i++;
if (i < length) {
if (sub_pattern[i] == '?') {
_warnings.push_back("Unsupported pattern syntax");
}
}
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
} else if (c == ')') {
i++;
if (start > 0 && sub_pattern[start - 1] != '(') {
_errors.push_back("Unbalanced parentheses");
}
return join_seq();
} else if (c == '[') {
std::string square_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != ']') {
if (sub_pattern[i] == '\\') {
square_brackets += sub_pattern.substr(i, 2);
i += 2;
} else {
square_brackets += sub_pattern[i];
i++;
}
}
if (i >= length) {
_errors.push_back("Unbalanced square brackets");
}
square_brackets += ']';
i++;
seq.push_back(std::make_pair(square_brackets, false));
} else if (c == '|') {
seq.push_back(std::make_pair("|", false));
i++;
} else if (c == '*' || c == '+' || c == '?') {
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
i++;
} else if (c == '{') {
std::string curly_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != '}') {
curly_brackets += sub_pattern[i];
i++;
}
if (i >= length) {
_errors.push_back("Unbalanced curly brackets");
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
if (nums.size() == 1) {
min_times = max_times = std::stoi(nums[0]);
} else if (nums.size() != 2) {
_errors.push_back("Wrong number of values in curly brackets");
} else {
if (!nums[0].empty()) {
min_times = std::stoi(nums[0]);
}
if (!nums[1].empty()) {
max_times = std::stoi(nums[1]);
}
}
} catch (const std::invalid_argument & e) {
_errors.push_back("Invalid number in curly brackets");
return std::make_pair("", false);
}
auto &last = seq.back();
auto &sub = last.first;
auto sub_is_literal = last.second;
if (!sub_is_literal) {
std::string & sub_id = sub_rule_ids[sub];
if (sub_id.empty()) {
sub_id = _add_rule(name + "-" + std::to_string(sub_rule_ids.size()), sub);
}
sub = sub_id;
}
seq.back().first = build_repetition(
sub_is_literal ? "\"" + sub + "\"" : sub,
min_times,
max_times,
"",
sub_is_literal
);
seq.back().second = false;
} else {
std::string literal;
auto is_non_literal = [&](char c) {
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
};
while (i < length) {
if (sub_pattern[i] == '\\' && i < length - 1) {
char next = sub_pattern[i + 1];
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.find(next) != ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.end()) {
i++;
literal += sub_pattern[i];
i++;
} else {
literal += sub_pattern.substr(i, 2);
i += 2;
}
} else if (sub_pattern[i] == '"') {
literal += "\\\"";
i++;
} else if (!is_non_literal(sub_pattern[i]) &&
(i == length - 1 || literal.empty() || sub_pattern[i + 1] == '.' || !is_non_literal(sub_pattern[i + 1]))) {
literal += sub_pattern[i];
i++;
} else {
break;
}
}
if (!literal.empty()) {
seq.push_back(std::make_pair(literal, true));
}
}
}
return join_seq();
};
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
ref_name = visit(resolved, ref_name);
_refs_being_resolved.erase(ref);
}
return ref_name;
}
std::string _build_object_rule(
const std::vector<std::pair<std::string, json>> & properties,
const std::unordered_set<std::string> & required,
const std::string & name,
const json & additional_properties)
{
std::vector<std::string> required_props;
std::vector<std::string> optional_props;
std::unordered_map<std::string, std::string> prop_kv_rule_names;
for (const auto & kv : properties) {
const auto &prop_name = kv.first;
const auto &prop_schema = kv.second;
std::string prop_rule_name = visit(prop_schema, name + (name.empty() ? "" : "-") + prop_name);
prop_kv_rule_names[prop_name] = _add_rule(
name + (name.empty() ? "" : "-") + prop_name + "-kv",
format_literal(json(prop_name).dump()) + " space \":\" space " + prop_rule_name
);
if (required.find(prop_name) != required.end()) {
required_props.push_back(prop_name);
} else {
optional_props.push_back(prop_name);
}
}
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
std::string kv_rule = _add_rule(sub_name + "-kv", _add_primitive("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
prop_kv_rule_names["*"] = kv_rule;
optional_props.push_back("*");
}
std::string rule = "\"{\" space ";
for (size_t i = 0; i < required_props.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += prop_kv_rule_names[required_props[i]];
}
if (!optional_props.empty()) {
rule += " (";
if (!required_props.empty()) {
rule += " \",\" space ( ";
}
std::function<std::string(const std::vector<std::string> &, bool)> get_recursive_refs = [&](const std::vector<std::string> & ks, bool first_is_optional) {
std::string res;
if (ks.empty()) {
return res;
}
std::string k = ks[0];
std::string kv_rule_name = prop_kv_rule_names[k];
if (k == "*") {
res = _add_rule(
name + (name.empty() ? "" : "-") + "additional-kvs",
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
);
} else if (first_is_optional) {
res = "( \",\" space " + kv_rule_name + " )?";
} else {
res = kv_rule_name;
}
if (ks.size() > 1) {
res += " " + _add_rule(
name + (name.empty() ? "" : "-") + k + "-rest",
get_recursive_refs(std::vector<std::string>(ks.begin() + 1, ks.end()), true)
);
}
return res;
};
for (size_t i = 0; i < optional_props.size(); i++) {
if (i > 0) {
rule += " | ";
}
rule += get_recursive_refs(std::vector<std::string>(optional_props.begin() + i, optional_props.end()), false);
}
if (!required_props.empty()) {
rule += " )";
}
rule += " )?";
}
rule += " \"}\" space";
return rule;
}
std::string _add_primitive(const std::string & name, const BuiltinRule & rule) {
auto n = _add_rule(name, rule.content);
for (const auto & dep : rule.deps) {
BuiltinRule dep_rule;
auto it = PRIMITIVE_RULES.find(dep);
if (it == PRIMITIVE_RULES.end()) {
it = STRING_FORMAT_RULES.find(dep);
if (it == STRING_FORMAT_RULES.end()) {
_errors.push_back("Rule " + dep + " not known");
continue;
}
}
if (_rules.find(dep) == _rules.end()) {
_add_primitive(dep, it->second);
}
}
return n;
}
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
/*
* Resolves all $ref fields in the given schema, fetching any remote schemas,
* replacing each $ref with absolute reference URL and populates _refs with the
* respective referenced (sub)schema dictionaries.
*/
std::function<void(json &)> visit_refs = [&](json & n) {
if (n.is_array()) {
for (auto & x : n) {
visit_refs(x);
}
} else if (n.is_object()) {
if (n.contains("$ref")) {
std::string ref = n["$ref"];
if (_refs.find(ref) == _refs.end()) {
json target;
if (ref.find("https://") == 0) {
std::string base_url = ref.substr(0, ref.find('#'));
auto it = _refs.find(base_url);
if (it != _refs.end()) {
target = it->second;
} else {
// Fetch the referenced schema and resolve its refs
auto referenced = _fetch_json(ref);
resolve_refs(referenced, base_url);
_refs[base_url] = referenced;
}
if (ref.find('#') == std::string::npos || ref.substr(ref.find('#') + 1).empty()) {
return;
}
} else if (ref.find("#/") == 0) {
target = schema;
n["$ref"] = url + ref;
ref = url + ref;
} else {
_errors.push_back("Unsupported ref: " + ref);
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
} else {
for (auto & kv : n.items()) {
visit_refs(kv.value());
}
}
}
};
visit_refs(schema);
}
std::string _generate_constant_rule(const json & value) {
return format_literal(value.dump());
}
std::string visit(const json & schema, const std::string & name) {
json schema_type = schema.contains("type") ? schema["type"] : json();
std::string schema_format = schema.contains("format") ? schema["format"].get<std::string>() : "";
std::string rule_name = is_reserved_name(name) ? name + "-" : name.empty() ? "root" : name;
if (schema.contains("$ref")) {
return _add_rule(rule_name, _resolve_ref(schema["$ref"]));
} else if (schema.contains("oneOf") || schema.contains("anyOf")) {
std::vector<json> alt_schemas = schema.contains("oneOf") ? schema["oneOf"].get<std::vector<json>>() : schema["anyOf"].get<std::vector<json>>();
return _add_rule(rule_name, _generate_union_rule(name, alt_schemas));
} else if (schema_type.is_array()) {
std::vector<json> schema_types;
for (const auto & t : schema_type) {
schema_types.push_back({{"type", t}});
}
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
} else if (schema.contains("const")) {
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
} else if (schema.contains("enum")) {
std::vector<std::string> enum_values;
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
std::unordered_set<std::string> required;
if (schema.contains("required") && schema["required"].is_array()) {
for (const auto & item : schema["required"]) {
if (item.is_string()) {
required.insert(item.get<std::string>());
}
}
}
std::vector<std::pair<std::string, json>> properties;
if (schema.contains("properties")) {
for (const auto & prop : schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
}
}
return _add_rule(rule_name,
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
add_component(_refs[comp_schema["$ref"]], is_required);
} else if (comp_schema.contains("properties")) {
for (const auto & prop : comp_schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
if (is_required) {
required.insert(prop.key());
}
}
} else {
// todo warning
}
};
for (auto & t : schema["allOf"]) {
if (t.contains("anyOf")) {
for (auto & tt : t["anyOf"]) {
add_component(tt, false);
}
} else {
add_component(t, true);
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
if (items.is_array()) {
std::string rule = "\"[\" space ";
for (size_t i = 0; i < items.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += visit(items[i], name + (name.empty() ? "" : "-") + "tuple-" + std::to_string(i));
}
rule += " \"]\" space";
return _add_rule(rule_name, rule);
} else {
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"[\" space " + build_repetition(item_rule_name, min_items, max_items, "\",\" space") + " \"]\" space");
}
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
return _visit_pattern(schema["pattern"], rule_name);
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
return _add_primitive(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
} else if ((schema_type.is_null() || schema_type == "string") && STRING_FORMAT_RULES.find(schema_format + "-string") != STRING_FORMAT_RULES.end()) {
auto prim_name = schema_format + "-string";
return _add_rule(rule_name, _add_primitive(prim_name, STRING_FORMAT_RULES.at(prim_name)));
} else if (schema_type == "string" && (schema.contains("minLength") || schema.contains("maxLength"))) {
std::string char_rule = _add_primitive("char", PRIMITIVE_RULES.at("char"));
int min_len = schema.contains("minLength") ? schema["minLength"].get<int>() : 0;
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema.empty() || schema_type == "object") {
return _add_rule(rule_name, _add_primitive("object", PRIMITIVE_RULES.at("object")));
} else {
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
_errors.push_back("Unrecognized schema: " + schema.dump());
return "";
}
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return _add_primitive(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
}
}
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
}
}
std::string format_grammar() {
std::stringstream ss;
for (const auto & kv : _rules) {
ss << kv.first << " ::= " << kv.second << std::endl;
}
return ss.str();
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
converter.check_errors();
return converter.format_grammar();
}

View File

@@ -0,0 +1,4 @@
#pragma once
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);

File diff suppressed because it is too large Load Diff

View File

@@ -61,13 +61,13 @@
// #define LOG_TARGET stderr
// #include "log.h"
//
// The log target can also be redirected to a diffrent function
// The log target can also be redirected to a different function
// like so:
//
// #define LOG_TARGET log_handler_diffrent()
// #define LOG_TARGET log_handler_different()
// #include "log.h"
//
// FILE* log_handler_diffrent()
// FILE* log_handler_different()
// {
// return stderr;
// }
@@ -97,37 +97,56 @@
#define LOG_TEE_TARGET stderr
#endif
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// Utility to obtain "pid" like unique process id and use it when creating log files.
inline std::string log_get_pid()
{
static std::string pid;
if (pid.empty())
{
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
// it's not the same as "pid" but is unique enough to solve multiple instances
// trying to write to the same log.
std::stringstream ss;
ss << std::this_thread::get_id();
pid = ss.str();
}
static std::string pid;
if (pid.empty())
{
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
// it's not the same as "pid" but is unique enough to solve multiple instances
// trying to write to the same log.
std::stringstream ss;
ss << std::this_thread::get_id();
pid = ss.str();
}
return pid;
return pid;
}
// Utility function for generating log file names with unique id based on thread id.
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
// where the number is a runtime id of the current thread.
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(log_file_basename, log_file_extension)
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(LogTriStateSame, log_file_basename, log_file_extension)
// INTERNAL, DO NOT USE
inline std::string log_filename_generator_impl(const std::string & log_file_basename, const std::string & log_file_extension)
inline std::string log_filename_generator_impl(LogTriState multilog, const std::string & log_file_basename, const std::string & log_file_extension)
{
static bool _multilog = false;
if (multilog != LogTriStateSame)
{
_multilog = multilog == LogTriStateTrue;
}
std::stringstream buf;
buf << log_file_basename;
buf << ".";
buf << log_get_pid();
if (_multilog)
{
buf << ".";
buf << log_get_pid();
}
buf << ".";
buf << log_file_extension;
@@ -212,19 +231,10 @@ inline std::string log_filename_generator_impl(const std::string & log_file_base
#define LOG_TEE_FLF_VAL ,""
#endif
// Utility for synchronizing log configuration state
// since std::optional was introduced only in c++17
enum LogTriState
{
LogTriStateSame,
LogTriStateFalse,
LogTriStateTrue
};
// INTERNAL, DO NOT USE
// USE LOG() INSTEAD
//
#ifndef _MSC_VER
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
#define LOG_IMPL(str, ...) \
do { \
if (LOG_TARGET != nullptr) \
@@ -247,7 +257,7 @@ enum LogTriState
// INTERNAL, DO NOT USE
// USE LOG_TEE() INSTEAD
//
#ifndef _MSC_VER
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER)
#define LOG_TEE_IMPL(str, ...) \
do { \
if (LOG_TARGET != nullptr) \
@@ -287,7 +297,7 @@ enum LogTriState
#ifndef _MSC_VER
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
#else
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
#endif
// Main TEE macro.
@@ -301,7 +311,7 @@ enum LogTriState
#ifndef _MSC_VER
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
#else
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
#endif
// LOG macro variants with auto endline.
@@ -309,21 +319,28 @@ enum LogTriState
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
#else
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#endif
// INTERNAL, DO NOT USE
inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
inline FILE *log_handler1_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
{
static bool _initialized{false};
static bool _disabled{(filename.empty() && target == nullptr)};
static bool _initialized = false;
static bool _append = false;
static bool _disabled = filename.empty() && target == nullptr;
static std::string log_current_filename{filename};
static FILE *log_current_target{target};
static FILE *logfile = nullptr;
if (change)
{
if (append != LogTriStateSame)
{
_append = append == LogTriStateTrue;
return logfile;
}
if (disable == LogTriStateTrue)
{
// Disable primary target
@@ -376,7 +393,7 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
}
logfile = fopen(filename.c_str(), "w");
logfile = fopen(filename.c_str(), _append ? "a" : "w");
}
if (!logfile)
@@ -397,20 +414,20 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
}
// INTERNAL, DO NOT USE
inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
inline FILE *log_handler2_impl(bool change = false, LogTriState append = LogTriStateSame, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
{
return log_handler1_impl(change, disable, filename, target);
return log_handler1_impl(change, append, disable, filename, target);
}
// Disables logs entirely at runtime.
// Makes LOG() and LOG_TEE() produce no output,
// untill enabled back.
// until enabled back.
#define log_disable() log_disable_impl()
// INTERNAL, DO NOT USE
inline FILE *log_disable_impl()
{
return log_handler1_impl(true, LogTriStateTrue);
return log_handler1_impl(true, LogTriStateSame, LogTriStateTrue);
}
// Enables logs at runtime.
@@ -419,19 +436,31 @@ inline FILE *log_disable_impl()
// INTERNAL, DO NOT USE
inline FILE *log_enable_impl()
{
return log_handler1_impl(true, LogTriStateFalse);
return log_handler1_impl(true, LogTriStateSame, LogTriStateFalse);
}
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
#define log_set_target(target) log_set_target_impl(target)
// INTERNAL, DO NOT USE
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, target); }
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, LogTriStateSame, filename); }
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, LogTriStateSame, target); }
// INTERNAL, DO NOT USE
inline FILE *log_handler() { return log_handler1_impl(); }
// Enable or disable creating separate log files for each run.
// can ONLY be invoked BEFORE first log use.
#define log_multilog(enable) log_filename_generator_impl((enable) ? LogTriStateTrue : LogTriStateFalse, "", "")
// Enable or disable append mode for log file.
// can ONLY be invoked BEFORE first log use.
#define log_append(enable) log_append_impl(enable)
// INTERNAL, DO NOT USE
inline FILE *log_append_impl(bool enable)
{
return log_handler1_impl(true, enable ? LogTriStateTrue : LogTriStateFalse, LogTriStateSame);
}
inline void log_test()
{
log_disable();
@@ -493,6 +522,18 @@ inline bool log_param_single_parse(const std::string & param)
return true;
}
if (param == "--log-new")
{
log_multilog(true);
return true;
}
if (param == "--log-append")
{
log_append(true);
return true;
}
return false;
}
@@ -522,7 +563,10 @@ inline void log_print_usage()
printf(" --log-disable Disable trace logs\n");
printf(" --log-enable Enable trace logs\n");
printf(" --log-file Specify a log filename (without extension)\n");
printf(" Log file will be tagged with unique ID and written as \"<name>.<ID>.log\"\n"); /* */
printf(" --log-new Create a separate new log file on start. "
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
printf(" --log-append Don't truncate the old log file.\n");
printf("\n");
}
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
@@ -579,38 +623,75 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
return buf.str();
}
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
[&tokens, &ctx]() \
{ \
std::stringstream buf; \
buf << "[ "; \
\
bool first = true; \
for (const auto &token : tokens) \
{ \
if (!first) \
buf << ", "; \
else \
first = false; \
\
auto detokenized = llama_token_to_piece(ctx, token); \
\
detokenized.erase( \
std::remove_if( \
detokenized.begin(), \
detokenized.end(), \
[](const unsigned char c) { return !std::isprint(c); }), \
detokenized.end()); \
\
buf \
<< "'" << detokenized << "'" \
<< ":" << std::to_string(token); \
} \
buf << " ]"; \
\
return buf.str(); \
}() \
.c_str()
template <typename C, typename T>
inline std::string LOG_TOKENS_TOSTR_PRETTY(const C & ctx, const T & tokens)
{
std::stringstream buf;
buf << "[ ";
bool first = true;
for (const auto &token : tokens)
{
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = llama_token_to_piece(ctx, token);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf
<< "'" << detokenized << "'"
<< ":" << std::to_string(token);
}
buf << " ]";
return buf.str();
}
template <typename C, typename B>
inline std::string LOG_BATCH_TOSTR_PRETTY(const C & ctx, const B & batch)
{
std::stringstream buf;
buf << "[ ";
bool first = true;
for (int i = 0; i < batch.n_tokens; ++i)
{
if (!first) {
buf << ", ";
} else {
first = false;
}
auto detokenized = llama_token_to_piece(ctx, batch.token[i]);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf
<< "\n" << std::to_string(i)
<< ":token '" << detokenized << "'"
<< ":pos " << std::to_string(batch.pos[i])
<< ":n_seq_id " << std::to_string(batch.n_seq_id[i])
<< ":seq_id " << std::to_string(batch.seq_id[i][0])
<< ":logits " << std::to_string(batch.logits[i]);
}
buf << " ]";
return buf.str();
}
#ifdef LOG_DISABLE_LOGS

282
common/ngram-cache.cpp Normal file
View File

@@ -0,0 +1,282 @@
#include "ngram-cache.h"
#include "common.h"
#include "log.h"
#include <cstdint>
#include <fstream>
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {
const int64_t t_start_ms = ggml_time_ms();
const int64_t inp_size = inp.size();
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
int64_t n_done = 0;
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
for (int64_t i = i_start; i < inp_size; ++i) {
const int64_t ngram_start = i - ngram_size;
llama_ngram ngram(&inp[ngram_start], ngram_size);
const llama_token token = inp[i];
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
if (part_it == ngram_cache.end()) {
llama_ngram_cache_part part;
part.emplace(token, 1);
ngram_cache.emplace(ngram, part);
} else {
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
if (token_count_it == part_it->second.end()) {
part_it->second.emplace(token, 1);
} else {
token_count_it->second++;
}
}
++n_done;
if (print_progress && n_done % 10000000 == 0) {
const int64_t t_now_ms = ggml_time_ms();
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
const int64_t eta_min = eta_ms / (60*1000);
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
}
}
}
}
// Helper function to get a token from the combined, speculative sequence of inp and draft.
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
}
// If sample size or percentage are below these thresholds the draft is aborted early:
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
// Helper function that tries to draft a token from only the static ngram cache:
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
if (part_static_it == nc_static.end()) {
return -1;
}
const llama_ngram_cache_part part_static = part_static_it->second;
int max_count_static = 0;
int sum_count_static = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_static : part_static) {
const llama_token token = token_count_static.first;
const int32_t count_static = token_count_static.second;
if (count_static > max_count_static) {
max_token = token;
max_count_static = count_static;
}
sum_count_static += count_static;
}
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
return -1;
}
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
return -1;
}
return max_token;
}
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
static llama_token try_draft(
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
const int * min_sample_size, const int * min_percent) {
llama_token drafted_token = -1;
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
const llama_ngram ngram_primary = ngrams_primary[i];
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
if (part_primary_it == nc_primary.end()) {
continue;
}
const llama_ngram_cache_part part_primary = part_primary_it->second;
int max_count_primary = 0;
int max_count_static = 0;
int sum_count_primary = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_primary : part_primary) {
const llama_token token = token_count_primary.first;
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
const int32_t count_primary = token_count_primary.second;
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
if (count_primary*count_static > max_count_primary*max_count_static) {
max_token = token;
max_count_primary = count_primary;
max_count_static = count_static;
}
sum_count_primary += count_primary;
}
if (sum_count_primary < min_sample_size[i]) {
continue;
}
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
continue;;
}
drafted_token = max_token;
}
return drafted_token;
}
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
) {
GGML_ASSERT(draft.size() == 1);
const int inp_size = inp.size();
if (inp_size < LLAMA_NGRAM_STATIC) {
return;
}
while ((int) draft.size()-1 < n_draft) {
llama_token drafted_token = -1;
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
llama_ngram ngram_static;
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
}
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
llama_ngram_cache_part part_static;
if (part_static_it != nc_static.end()) {
part_static = part_static_it->second;
}
// cd = context + dynamic
std::vector<llama_ngram> ngrams_cd;
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
llama_ngram ngram_cd;
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
}
ngrams_cd.push_back(ngram_cd);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_static, ngram_static);
}
if (drafted_token == -1) {
break;
}
LOG(" - draft candidate: token=%d\n", drafted_token);
draft.push_back(drafted_token);
}
}
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
std::ofstream file_out(filename, std::ios::binary);
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
const llama_ngram ngram = item.first;
llama_ngram_cache_part token_counts = item.second;
GGML_ASSERT(!token_counts.empty());
const int32_t ntokens = token_counts.size();
GGML_ASSERT(ntokens > 0);
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
for (std::pair<llama_token, int32_t> item2 : token_counts) {
const llama_token token = item2.first;
const int32_t count = item2.second;
GGML_ASSERT(count > 0);
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
}
}
}
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
std::ifstream hashmap_file(filename, std::ios::binary);
if (!hashmap_file) {
throw std::ifstream::failure("Unable to open file " + filename);
}
llama_ngram_cache ngram_cache;
llama_ngram ngram;
int32_t ntokens;
llama_token token;
int32_t count;
char * ngramc = reinterpret_cast<char*>(&ngram);
char * ntokensc = reinterpret_cast<char*>(&ntokens);
char * tokenc = reinterpret_cast<char*>(&token);
char * countc = reinterpret_cast<char*>(&count);
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
GGML_ASSERT(ntokens > 0);
llama_ngram_cache_part token_counts;
for (int i = 0; i < ntokens; ++i) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
GGML_ASSERT(count > 0);
token_counts.emplace(token, count);
}
ngram_cache.emplace(ngram, token_counts);
}
GGML_ASSERT(hashmap_file.eof());
return ngram_cache;
}
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
const llama_ngram ngram = ngram_part.first;
llama_ngram_cache_part part = ngram_part.second;
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
if (part_merged_it == ngram_cache_target.end()) {
ngram_cache_target.emplace(ngram, part);
continue;
}
for (std::pair<llama_token, int32_t> token_count : part) {
const llama_token token = token_count.first;
const int32_t count = token_count.second;
GGML_ASSERT(count > 0);
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
if (token_count_merged_it == part_merged_it->second.end()) {
part_merged_it->second.emplace(token, count);
continue;
}
token_count_merged_it->second += count;
}
}
}

94
common/ngram-cache.h Normal file
View File

@@ -0,0 +1,94 @@
#pragma once
#include "llama.h"
#include <unordered_map>
#include <string>
#include <vector>
#define LLAMA_NGRAM_MIN 1
#define LLAMA_NGRAM_MAX 4
#define LLAMA_NGRAM_STATIC 2
// Data structures to map n-grams to empirical token probabilities:
struct llama_ngram {
llama_token tokens[LLAMA_NGRAM_MAX];
llama_ngram() {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = -1;
}
}
llama_ngram(const llama_token * input, const int ngram_size) {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = i < ngram_size ? input[i] : -1;
}
}
bool operator==(const llama_ngram & other) const {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
if (tokens[i] != other.tokens[i]) {
return false;
}
}
return true;
}
};
struct llama_ngram_hash_function {
size_t operator()(const llama_ngram & ngram) const {
size_t hash = 0;
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
}
return hash;
}
};
// token -> number of times token has been seen
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
// n-gram -> empirical distribution of following tokens
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
// Update an ngram cache with tokens.
// ngram_cache: the cache to modify.
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
// inp_data: the token sequence with which to update ngram_cache.
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
// print_progress: whether to print progress to stderr.
//
// In order to get correct results inp_data can ONLY BE APPENDED TO.
// Changes in the middle need a complete rebuild.
void llama_ngram_cache_update(
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
// Try to draft tokens from ngram caches.
// inp: the tokens generated so far.
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
// n_draft: maximum number of tokens to add to draft.
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
// nc_context: ngram cache based on current context.
// nc_dynamic: ngram cache based on previous user generations.
// nc_static: ngram cache generated from a large text corpus, used for validation.
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
// Save an ngram cache to a file.
// ngram_cache: the ngram cache to save.
// filename: the path under which to save the ngram cache.
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
// Load an ngram cache saved with llama_ngram_cache_save.
// filename: the path from which to load the ngram cache.
// returns: an ngram cache containing the information saved to filename.
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
// Merge two ngram caches.
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);

364
common/sampling.cpp Normal file
View File

@@ -0,0 +1,364 @@
#define LLAMA_API_INTERNAL
#include "sampling.h"
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
result->params = params;
result->grammar = nullptr;
// if there is a grammar, parse it
if (!params.grammar.empty()) {
result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
// will be empty (default) if there are parse errors
if (result->parsed_grammar.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
delete result;
return nullptr;
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
}
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
result->grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
}
result->prev.resize(params.n_prev);
llama_sampling_set_rng_seed(result, params.seed);
return result;
}
void llama_sampling_free(struct llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
}
delete ctx;
}
void llama_sampling_reset(llama_sampling_context * ctx) {
if (ctx->grammar != NULL) {
llama_grammar_free(ctx->grammar);
ctx->grammar = NULL;
}
if (!ctx->parsed_grammar.rules.empty()) {
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
ctx->grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
}
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = std::random_device{}();
}
ctx->rng.seed(seed);
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
if (dst->grammar) {
llama_grammar_free(dst->grammar);
dst->grammar = nullptr;
}
if (src->grammar) {
dst->grammar = llama_grammar_copy(src->grammar);
}
dst->prev = src->prev;
}
llama_token llama_sampling_last(llama_sampling_context * ctx) {
return ctx->prev.back();
}
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
const int size = ctx_sampling->prev.size();
n = std::min(n, size);
std::string result;
for (int i = size - n; i < size; i++) {
result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
}
return result;
}
std::string llama_sampling_print(const llama_sampling_params & params) {
char result[1024];
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
params.mirostat, params.mirostat_eta, params.mirostat_tau);
return std::string(result);
}
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
}
}
} else {
result += "-> mirostat ";
}
return result;
}
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t min_keep) {
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case llama_sampler_type::TEMPERATURE:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
} else {
llama_sample_temp(ctx_main, &cur_p, temp);
}
break;
default : break;
}
}
}
static llama_token llama_sampling_sample_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool is_resampling) { // Add a parameter to indicate if we are resampling
const llama_sampling_params & params = ctx_sampling->params;
const float temp = params.temp;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
std::vector<float> original_logits;
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
if (!is_resampling) {
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);
sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
}
}
return id;
}
static llama_token_data_array llama_sampling_prepare_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (apply_grammar && original_logits != NULL) {
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
}
// apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
if (penalty_tokens_used_size) {
const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
llama_sample_repetition_penalties(ctx_main, &cur_p,
penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
if (!penalize_nl) {
for (size_t idx = 0; idx < cur_p.size; idx++) {
if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
cur_p.data[idx].logit = nl_logit;
break;
}
}
}
}
// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
return cur_p;
}
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
}
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
}
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar) {
ctx_sampling->prev.erase(ctx_sampling->prev.begin());
ctx_sampling->prev.push_back(id);
if (ctx_sampling->grammar != NULL && apply_grammar) {
llama_grammar_accept_token(ctx_main, ctx_sampling->grammar, id);
}
}

154
common/sampling.h Normal file
View File

@@ -0,0 +1,154 @@
#pragma once
#include "llama.h"
#include "grammar-parser.h"
#include <random>
#include <string>
#include <unordered_map>
#include <vector>
// sampler types
enum class llama_sampler_type : char {
TOP_K = 'k',
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
TYPICAL_P = 'y',
TEMPERATURE = 't'
};
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
llama_sampler_type::TEMPERATURE
};
std::string grammar; // optional BNF-like grammar to constrain sampling
// Classifier-Free Guidance
// https://arxiv.org/abs/2306.17806
std::string cfg_negative_prompt; // string to help guidance
float cfg_scale = 1.f; // how strong is guidance
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
std::vector<llama_token> penalty_prompt_tokens;
bool use_penalty_prompt_tokens = false;
} llama_sampling_params;
// general sampler context
// TODO: move to llama.h
struct llama_sampling_context {
// parameters that will be used for sampling
llama_sampling_params params;
// mirostat sampler state
float mirostat_mu;
llama_grammar * grammar;
// internal
grammar_parser::parse_state parsed_grammar;
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
std::mt19937 rng;
};
#include "common.h"
// Create a new sampling context instance.
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params);
void llama_sampling_free(struct llama_sampling_context * ctx);
// Reset the sampler context
// - clear prev tokens
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Set the sampler seed
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
// Get the last sampled token
llama_token llama_sampling_last(llama_sampling_context * ctx);
// Get a string representation of the last sampled tokens
std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n);
// Print sampling parameters into a string
std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
// llama_sampling_reset when a sequence ends
//
// required:
// - ctx_main: context to use for sampling
// - ctx_sampling: sampling-specific context
//
// optional:
// - ctx_cfg: context to use for classifier-free guidance
// - idx: sample from llama_get_logits_ith(ctx, idx)
//
// returns:
// - token: sampled token
// - candidates: vector of candidate tokens
//
llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = -1);
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0,
bool apply_grammar = true,
std::vector<float> * original_logits = nullptr);
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
llama_token id,
bool apply_grammar);

8396
common/stb_image.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -31,7 +31,8 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
return state;
@@ -70,7 +71,7 @@ void free_random_uniform_distribution(struct random_uniform_distribution * rnd)
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
float scale = 1.0f; // xavier
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
scale /= sqrtf((float) tensor->ne[0]);
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
@@ -118,7 +119,7 @@ struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct
}
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd) {
switch (tensor->n_dims) {
switch (ggml_n_dims(tensor)) {
case 1:
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float * dst = (float *) ((char *) tensor->data + i0*tensor->nb[0]);
@@ -182,25 +183,27 @@ float fclamp(const float v, const float min, const float max) {
}
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
GGML_ASSERT(tensor->n_dims == 1);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == 1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
GGML_ASSERT(tensor->n_dims == 2);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == 1);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
GGML_ASSERT(tensor->n_dims == 3);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
GGML_ASSERT(tensor->ne[3] == 1);
}
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
GGML_ASSERT(tensor->n_dims == 4);
GGML_ASSERT(tensor->ne[0] == ne0);
GGML_ASSERT(tensor->ne[1] == ne1);
GGML_ASSERT(tensor->ne[2] == ne2);
@@ -224,8 +227,8 @@ int64_t get_example_targets_batch(
bool sample_random_offsets
) {
GGML_ASSERT(samples_count > 0);
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT(target_probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(target_probs));
int64_t n_vocab = target_probs->ne[0];
int64_t n_tokens = tokens_input->ne[0];
int64_t n_batch = tokens_input->ne[1];
@@ -236,8 +239,8 @@ int64_t get_example_targets_batch(
int64_t used_samples = 0;
ggml_set_f32(target_probs, 0.0f);
llama_token bos = llama_token_bos(lctx);
llama_token eos = llama_token_eos(lctx);
llama_token bos = llama_token_bos(llama_get_model(lctx));
llama_token eos = llama_token_eos(llama_get_model(lctx));
// printf("%s: example_id=%d n_batch=%d n_train_samples=%zu\n", __func__, example_id, n_batch, n_train_samples);
for (int k=0; k<n_batch; ++k) {
// printf("%s: batch %d\n", __func__, k);
@@ -553,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
std::string opt_type;
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
opt->params.type = GGML_OPT_ADAM;
opt->params.type = GGML_OPT_TYPE_ADAM;
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
@@ -565,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
opt->params.type = GGML_OPT_LBFGS;
opt->params.type = GGML_OPT_TYPE_LBFGS;
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
@@ -600,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
switch (opt->params.type) {
case GGML_OPT_ADAM:
case GGML_OPT_TYPE_ADAM:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
@@ -619,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_add_tensor(fctx, opt->adam.pf);
}
} break;
case GGML_OPT_LBFGS:
case GGML_OPT_TYPE_LBFGS:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
@@ -863,7 +866,7 @@ size_t tokenize_file(
(int) buf.size(),
out_tokens.data(),
(int) out_tokens.size(),
false);
false, false);
if (n_tokens < 0) {
out_tokens.resize(-n_tokens);
n_tokens = llama_tokenize(
@@ -872,7 +875,7 @@ size_t tokenize_file(
(int) buf.size(),
out_tokens.data(),
(int) out_tokens.size(),
false);
false, false);
}
if (n_tokens >= 0) {
out_tokens.resize(n_tokens);
@@ -924,7 +927,7 @@ size_t tokenize_file(
for (llama_token token=0; token < n_vocab; ++token) {
max_token_text_size = std::max(
max_token_text_size,
strlen(llama_token_get_text(lctx, token)));
strlen(llama_token_get_text(llama_get_model(lctx), token)));
}
// upper bound of context byte length.
@@ -966,7 +969,7 @@ size_t tokenize_file(
(int) buf_sample.size(),
tok_sample.data(),
(int) tok_sample.size(),
false);
false, false);
if (n_tokens < 0) {
tok_sample.resize(-n_tokens);
n_tokens = llama_tokenize(llama_get_model(lctx),
@@ -974,7 +977,7 @@ size_t tokenize_file(
(int) buf_sample.size(),
tok_sample.data(),
(int) tok_sample.size(),
false);
false, false);
GGML_ASSERT(n_tokens >= 0);
}
GGML_ASSERT(n_tokens <= (int) tok_sample.size());
@@ -1045,6 +1048,7 @@ struct train_params_common get_default_train_params_common() {
params.n_batch = 8;
params.n_gradient_accumulation = 1;
params.n_epochs = -1;
params.n_gpu_layers = 0;
params.custom_n_ctx = false;
@@ -1080,6 +1084,7 @@ struct train_params_common get_default_train_params_common() {
params.adam_beta2 = 0.999f;
params.adam_gclip = 1.0f;
params.adam_eps_f = 0.0f;
return params;
}
@@ -1102,7 +1107,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --sample-start STR Sets the starting point for samples after the specified pattern. If empty use every token position as sample start. (default '%s')\n", params->sample_start.c_str());
fprintf(stderr, " --include-sample-start Include the sample start in the samples. (default off)\n");
fprintf(stderr, " --escape process sample start escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
fprintf(stderr, " --overlapping-samples Samples my overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --overlapping-samples Samples may overlap, will include sample-start of second and following samples. When off, samples will end at begin of next sample. (default off)\n");
fprintf(stderr, " --fill-with-next-samples Samples shorter than context length will be followed by the next (shuffled) samples. (default off)\n");
fprintf(stderr, " --separate-with-eos When fill-with-next-samples, insert end-of-sequence token between samples.%s\n", params->separate_with_eos ? " (default)" : "");
fprintf(stderr, " --separate-with-bos When fill-with-next-samples, insert begin-of-sequence token between samples.%s\n", params->separate_with_bos ? " (default)" : "");
@@ -1133,6 +1138,7 @@ void print_common_train_usage(int /*argc*/, char ** /*argv*/, const struct train
fprintf(stderr, " --adam-beta2 N AdamW beta2 in interval [0,1). How much to smooth the second moment of gradients. (default %f)\n", params->adam_beta2);
fprintf(stderr, " --adam-gclip N AdamW gradient clipping. Disabled when zero. (default %f)\n", params->adam_gclip);
fprintf(stderr, " --adam-epsf N AdamW epsilon for convergence test. Disabled when <= zero. (default %f)\n", params->adam_eps_f);
fprintf(stderr, " -ngl N, --n-gpu-layers N Number of model layers to offload to GPU (default %d)", params->n_gpu_layers);
fprintf(stderr, "\n");
}
@@ -1352,6 +1358,17 @@ bool consume_common_train_arg(
return true;
}
params->adam_gclip = std::stof(argv[i]);
} else if (arg == "-ngl" || arg == "--n-gpu-layers") {
if (++i >= argc) {
*invalid_param = true;
return true;
}
if (llama_supports_gpu_offload()) {
params->n_gpu_layers = std::stoi(argv[i]);
} else {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;
@@ -1425,7 +1442,7 @@ void train_opt_callback(void * vdata, int accum_step, float * sched, bool * canc
int impr_plot = -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
if (impr_plot > 0) impr_plot = 0;
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_before)) impr_plot = 0;
if (std::isnan(opt->loss_before) || std::isnan(opt->loss_after)) impr_plot = 0;
printf("%s: iter=%6d sample=%zu/%zu sched=%f loss=%f",
__func__, opt->iter, std::min(1+train->shuffle_next_sample, train->shuffle_sample_count), train->shuffle_sample_count,
*sched, opt->loss_after);

View File

@@ -9,6 +9,8 @@
#include "ggml.h"
#include "llama.h"
#define LLAMA_TRAIN_MAX_NODES 16384
typedef std::string mt19937_state;
struct train_state {
@@ -44,6 +46,7 @@ struct train_params_common {
int n_batch;
int n_gradient_accumulation;
int n_epochs;
int n_gpu_layers;
bool custom_n_ctx;

View File

@@ -1,310 +0,0 @@
#!/usr/bin/env python3
# HF baichuan --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import TYPE_CHECKING, Any
import itertools
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
if TYPE_CHECKING:
from typing import TypeAlias
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
# reverse HF permute back to original pth layout
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
r = weights.shape[0] // 3
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
r = weights.shape[0] // 3
return weights[r * n_part : r * n_part + r, ...]
def count_model_parts(dir_model: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
print("hello print: ",hparams["architectures"][0])
if hparams["architectures"][0] != "BaichuanForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
print(f"num_parts:{num_parts}\n")
ARCH=gguf.MODEL_ARCH.BAICHUAN
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
head_count = hparams["num_attention_heads"]
if "num_key_value_heads" in hparams:
head_count_kv = hparams["num_key_value_heads"]
else:
head_count_kv = head_count
if "_name_or_path" in hparams:
hf_repo = hparams["_name_or_path"]
else:
hf_repo = ""
if "max_sequence_length" in hparams:
ctx_length = hparams["max_sequence_length"]
elif "max_position_embeddings" in hparams:
ctx_length = hparams["max_position_embeddings"]
elif "model_max_length" in hparams:
ctx_length = hparams["model_max_length"]
else:
print("gguf: can not find ctx length parameter.")
sys.exit()
gguf_writer.add_name(dir_model.name)
gguf_writer.add_source_hf_repo(hf_repo)
gguf_writer.add_tensor_data_layout("Meta AI original pth")
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
if "type" in hparams["rope_scaling"]:
if hparams["rope_scaling"]["type"] == "linear":
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
tokenizer_model_file = dir_model / 'tokenizer.model'
if not tokenizer_model_file.is_file():
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
sys.exit(1)
# vocab type sentencepiece
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
vocab_size = hparams.get('vocab_size')
if vocab_size is None:
vocab_size = tokenizer.vocab_size()
for i in range(vocab_size):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1 # defualt to normal token type
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
# toktype = 4 is user-defined = tokens from added_tokens.json
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
addtokens_json = json.load(f)
print("gguf: get added tokens")
for key in addtokens_json:
tokens.append( key.encode("utf-8") )
scores.append(-1000.0)
toktypes.append(4) # user-defined token type
gguf_writer.add_tokenizer_model("llama")
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
tmp=model_part
for i in range(block_count):
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
print(f"Unpacking and permuting layer {i}")
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@@ -1,250 +0,0 @@
#!/usr/bin/env python3
# HF falcon--> gguf conversion
from __future__ import annotations
import argparse
import contextlib
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path, prefix: str) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith(prefix):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "FalconForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model, "model-00")
if num_parts:
is_safetensors = True
from safetensors import safe_open
else:
is_safetensors = False
num_parts = count_model_parts(dir_model, "pytorch_model-")
ARCH=gguf.MODEL_ARCH.FALCON
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name("Falcon")
gguf_writer.add_context_length(2048) # not in config.json
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["num_attention_heads"])
if "num_kv_heads" in hparams:
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
else:
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i])
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["num_attention_heads"]
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
head_dim = hparams["hidden_size"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
elif is_safetensors:
part_names = (
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
)
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
if is_safetensors:
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
else:
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
with ctx as model_part:
for name in model_part.keys():
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data = torch.cat((q,k,v)).reshape_as(data)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@@ -1,212 +0,0 @@
#!/usr/bin/env python3
# HF gptneox--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit()
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.GPTNEOX
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["num_hidden_layers"]
gguf_writer.add_name(dir_model.name)
gguf_writer.add_context_length(hparams["max_position_embeddings"])
gguf_writer.add_embedding_length(hparams["hidden_size"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
gguf_writer.add_head_count(hparams["num_attention_heads"])
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
for name in model_part.keys():
data = model_part[name]
# we don't need these
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@@ -0,0 +1,279 @@
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert-hf-to-gguf-update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
# TODO: automate the update of convert-hf-to-gguf.py
#
import os
import requests
import sys
import json
from hashlib import sha256
from enum import IntEnum, auto
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
else:
print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{ "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{ "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{ "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{ "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{ "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{ "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{ "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{ "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{ "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{ "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
]
# make directory "models/tokenizers" if it doesn't exist
if not os.path.exists("models/tokenizers"):
os.makedirs("models/tokenizers")
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
with open(save_path, 'wb') as f:
f.write(response.content)
print(f"File {save_path} downloaded successfully")
else:
print(f"Failed to download file. Status code: {response.status_code}")
# download the tokenizer models
for model in models:
name = model["name"]
repo = model["repo"]
tokt = model["tokt"]
if not os.path.exists(f"models/tokenizers/{name}"):
os.makedirs(f"models/tokenizers/{name}")
else:
print(f"Directory models/tokenizers/{name} already exists - skipping")
continue
print(f"Downloading {name} to models/tokenizers/{name}")
url = f"{repo}/raw/main/config.json"
save_path = f"models/tokenizers/{name}/config.json"
download_file_with_auth(url, token, save_path)
url = f"{repo}/raw/main/tokenizer.json"
save_path = f"models/tokenizers/{name}/tokenizer.json"
download_file_with_auth(url, token, save_path)
if tokt == TOKENIZER_TYPE.SPM:
url = f"{repo}/resolve/main/tokenizer.model"
save_path = f"models/tokenizers/{name}/tokenizer.model"
download_file_with_auth(url, token, save_path)
url = f"{repo}/raw/main/tokenizer_config.json"
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
download_file_with_auth(url, token, save_path)
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
# TODO: auto-update convert-hf-to-gguf.py with the generated function
src_ifs = ""
for model in models:
name = model["name"]
tokt = model["tokt"]
if tokt == TOKENIZER_TYPE.SPM:
continue
# create the tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
print(f"model: {name}")
print(f"tokt: {tokt}")
print(f"repo: {model['repo']}")
print(f"chktok: {chktok}")
print(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
pre_tokenizer = cfg["pre_tokenizer"]
print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
print(f"\n")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
src_ifs += f" res = \"{name}\"\n"
src_func = ""
src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n"
src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n"
src_func += " # is specific for the BPE pre-tokenizer used by the model\n"
src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n"
src_func += " # use in llama.cpp to implement the same pre-tokenizer\n"
src_func += "\n"
src_func += f" chktxt = {repr(chktxt)}\n"
src_func += "\n"
src_func += " chktok = tokenizer.encode(chktxt)\n"
src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n"
src_func += "\n"
src_func += " print(f\"chktok: {chktok}\")\n"
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
src_func += "\n"
src_func += " res = None\n"
src_func += "\n"
src_func += " # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script\n"
src_func += " # or pull the latest version of the model from Huggingface\n"
src_func += " # don't edit the hashes manually!\n"
src_func += f"{src_ifs}\n"
src_func += " if res is None:\n"
src_func += " print(\"\\n\")\n"
src_func += " print(\"**************************************************************************************\")\n"
src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n"
src_func += " print(\"** There are 2 possible reasons for this:\")\n"
src_func += " print(\"** - the model has not been added to convert-hf-to-gguf-update.py yet\")\n"
src_func += " print(\"** - the pre-tokenization config has changed upstream\")\n"
src_func += " print(\"** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.\")\n"
src_func += " print(\"** ref: https://github.com/ggerganov/llama.cpp/pull/6920\")\n"
src_func += " print(\"**\")\n"
src_func += " print(f\"** chkhsh: {chkhsh}\")\n"
src_func += " print(\"**************************************************************************************\")\n"
src_func += " print(\"\\n\")\n"
src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n"
src_func += "\n"
src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n"
src_func += " print(f\"chkhsh: {chkhsh}\")\n"
src_func += "\n"
src_func += " return res\n"
print(src_func)
print("\n")
print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
print("\n")
# generate tests for each tokenizer model
tests = [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
chktxt,
]
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
# the format is:
#
# test0
# __ggml_vocab_test__
# test1
# __ggml_vocab_test__
# ...
#
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
# for each test, write the resulting tokens on a separate line
for model in models:
name = model["name"]
tokt = model["tokt"]
# create the tokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
for text in tests:
f.write(f"{text}")
f.write("\n__ggml_vocab_test__\n")
with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
for text in tests:
res = tokenizer.encode(text, add_special_tokens=False)
for r in res:
f.write(f" {r}")
f.write("\n")
print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
# generate commands for creating vocab files
print("\nRun the following commands to generate the vocab files for testing:\n")
for model in models:
name = model["name"]
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only")
print("\n")

3001
convert-hf-to-gguf.py Executable file

File diff suppressed because it is too large Load Diff

View File

@@ -2,7 +2,7 @@
from __future__ import annotations
import argparse
import math
import os
import struct
import sys
from enum import IntEnum
@@ -10,36 +10,17 @@ from pathlib import Path
import numpy as np
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
GGML_QUANT_SIZES = {
gguf.GGMLQuantizationType.F32 : (1, 4),
gguf.GGMLQuantizationType.F16 : (1, 2),
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
}
class GGMLFormat(IntEnum):
GGML = 0
GGMF = 1
GGJT = 2
class GGMLFType(IntEnum):
ALL_F32 = 0
MOSTLY_F16 = 1
@@ -59,6 +40,7 @@ class GGMLFType(IntEnum):
MOSTLY_Q5_K_M = 17
MOSTLY_Q6_K = 18
class Hyperparameters:
def __init__(self):
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
@@ -90,6 +72,7 @@ class Hyperparameters:
def __str__(self):
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
class Vocab:
def __init__(self, load_scores = True):
self.items = []
@@ -111,6 +94,7 @@ class Vocab:
self.items.append((item_text, item_score))
return offset - orig_offset
class Tensor:
def __init__(self, use_padding = True):
self.name = None
@@ -125,7 +109,7 @@ class Tensor:
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
assert name_len < 4096, 'Absurd tensor name length'
quant = GGML_QUANT_SIZES.get(dtype)
quant = gguf.GGML_QUANT_SIZES.get(dtype)
assert quant is not None, 'Unknown tensor type'
(blksize, tysize) = quant
offset += 12
@@ -144,6 +128,7 @@ class Tensor:
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
class GGMLModel:
def __init__(self):
self.hyperparameters = None
@@ -180,8 +165,8 @@ class GGMLModel:
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
if ftype in (GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
if len(err) > 0:
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
@@ -208,6 +193,7 @@ class GGMLModel:
hp.set_n_ff(self)
return offset
class GGMLToGGUF:
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
hp = ggml_model.hyperparameters
@@ -238,7 +224,7 @@ class GGMLToGGUF:
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
use_temp_file = False )
use_temp_file = False)
self.add_params(gguf_writer)
self.add_vocab(gguf_writer)
if self.special_vocab is not None:
@@ -295,6 +281,7 @@ class GGMLToGGUF:
def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_tokenizer_pre('default')
tokens = []
scores = []
toktypes = []
@@ -362,7 +349,8 @@ class GGMLToGGUF:
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
raw_shape = tempdims,
raw_dtype = tensor.dtype )
raw_dtype = tensor.dtype)
def handle_metadata(cfg, hp):
import convert
@@ -384,38 +372,38 @@ def handle_metadata(cfg, hp):
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else:
raise ValueError('Unable to load metadata')
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype )
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
vocab_factory = convert.VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
convert.check_vocab_size(params, vocab)
return (params, vocab, svocab)
return params, vocab, special_vocab
def handle_args():
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
parser.add_argument('--input', '-i', type = Path, required = True,
help = 'Input GGMLv3 filename')
help = 'Input GGMLv3 filename')
parser.add_argument('--output', '-o', type = Path, required = True,
help ='Output GGUF filename')
help ='Output GGUF filename')
parser.add_argument('--name',
help = 'Set model name')
help = 'Set model name')
parser.add_argument('--desc',
help = 'Set model description')
help = 'Set model description')
parser.add_argument('--gqa', type = int, default = 1,
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
parser.add_argument('--eps', default = '5.0e-06',
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
parser.add_argument('--context-length', '-c', type=int, default = 2048,
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
parser.add_argument('--model-metadata-dir', '-m', type = Path,
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", default="spm,hfft",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
return parser.parse_args()
def main():
cfg = handle_args()
print(f'* Using config: {cfg}')
@@ -425,7 +413,7 @@ def main():
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
print('* Scanning GGML input file')
offset = model.load(data, 0)
offset = model.load(data, 0) # noqa
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
@@ -440,12 +428,15 @@ def main():
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(model, data, cfg,
converter = GGMLToGGUF(
model, data, cfg,
params_override = params_override,
vocab_override = vocab_override,
special_vocab = special_vocab )
special_vocab = special_vocab
)
converter.save()
print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__':
main()

View File

@@ -3,51 +3,21 @@ from __future__ import annotations
import json
import os
import re
import struct
import sys
from pathlib import Path
from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
HF_SUBLAYER_TO_GGML = {
"self_attn.q_proj": "attn_q",
"self_attn.k_proj": "attn_k",
"self_attn.v_proj": "attn_v",
"self_attn.o_proj": "attn_output",
"mlp.gate_proj": "ffn_gate",
"mlp.down_proj": "ffn_down",
"mlp.up_proj": "ffn_up",
"input_layernorm": "attn_norm",
"post_attention_layernorm": "ffn_norm",
}
def translate_tensor_name(t: str) -> str:
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
if match:
nn = match.group(1)
sub_layer = match.group(2)
lora_type = match.group(3)
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
if sub_layer_renamed is None:
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
sys.exit(1)
output_string = (
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
)
return output_string
else:
print(f"Error: unrecognized tensor {t}")
sys.exit(1)
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
@@ -61,9 +31,7 @@ def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(
self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
) -> None:
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
@@ -78,60 +46,103 @@ def write_tensor_header(
fout.seek((fout.tell() + 31) & -32)
if len(sys.argv) != 2:
print(f"Usage: python {sys.argv[0]} <path>")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
sys.exit(1)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu")
if os.path.exists(input_model):
model = torch.load(input_model, map_location="cpu")
else:
input_model = os.path.join(sys.argv[1], "adapter_model.safetensors")
# lazy import load_file only if lora is in safetensors format.
from safetensors.torch import load_file
model = load_file(input_model, device="cpu")
with open(input_json, "r") as f:
params = json.load(f)
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
with open(input_json, "r") as f:
params = json.load(f)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
write_file_header(fout, params)
for k, v in model.items():
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
tname = translate_tensor_name(k)
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
t = v.detach().numpy()
print(f"Converted {input_json} and {input_model} to {output_path}")
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}")

31
convert-persimmon-to-gguf.py Normal file → Executable file
View File

@@ -1,14 +1,20 @@
import torch
import os
from pprint import pprint
import sys
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import os
import sys
from pathlib import Path
from pprint import pprint
import torch
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
@@ -21,6 +27,7 @@ def _flatten_dict(dct, tensors, prefix=None):
raise ValueError(type(dct[key]))
return None
def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
@@ -54,6 +61,7 @@ def _get_sentencepiece_tokenizer_info(dir_model: Path):
pass
return tokens, scores, toktypes
def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
@@ -65,7 +73,7 @@ def main():
persimmon_model = torch.load(args.ckpt_path)
hparams = persimmon_model['args']
pprint(hparams)
tensors = {}
tensors: dict[str, torch.Tensor] = {}
_flatten_dict(persimmon_model['model'], tensors, None)
arch = gguf.MODEL_ARCH.PERSIMMON
@@ -82,7 +90,8 @@ def main():
gguf_writer.add_embedding_length(hidden_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
@@ -90,6 +99,7 @@ def main():
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_tokenizer_pre('default')
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
@@ -99,12 +109,12 @@ def main():
tensor_map = gguf.get_tensor_name_map(arch, block_count)
print(tensor_map)
for name in tensors.keys():
data = tensors[name]
data_torch = tensors[name]
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
old_dtype = data_torch.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data.to(torch.float32).squeeze().numpy()
data = data_torch.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
@@ -125,6 +135,5 @@ def main():
print("")
if __name__ == '__main__':
main()

View File

@@ -1,263 +0,0 @@
#!/usr/bin/env python3
# HF refact--> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import sys
from pathlib import Path
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if "NO_LOCAL_GGUF" not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a Refact model to a GGML compatible file"
)
parser.add_argument(
"--vocab-only",
action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--outfile",
type=Path,
help="path to write to; default: based on input",
)
parser.add_argument(
"model",
type=Path,
help="directory containing model file, or model file itself (*.bin)",
)
parser.add_argument(
"ftype",
type=int,
choices=[0, 1],
default=1,
nargs="?",
help="output format - use 0 for float32, 1 for float16",
)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f"Error: {args.model} is not a directory", file=sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
print("gguf: loading model " + dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTRefactForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH = gguf.MODEL_ARCH.REFACT
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
# Get refact feed forward dimension
hidden_dim = hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
block_count = hparams["n_layer"]
gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])
gguf_writer.add_feed_forward_length(ff_dim)
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = 1
head_dim = hparams["n_embd"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
for i in range(block_count):
if f"transformer.h.{i}.attn.kv.weight" in model_part:
data = model_part[f"transformer.h.{i}.attn.kv.weight"]
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
: n_head_kv * head_dim
]
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
n_head_kv * head_dim :
]
del model_part[f"transformer.h.{i}.attn.kv.weight"]
if f"transformer.h.{i}.attn.q.weight" in model_part:
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
f"transformer.h.{i}.attn.q.weight"
]
del model_part[f"transformer.h.{i}.attn.q.weight"]
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if (
ftype == 1
and data_dtype == np.float32
and name.endswith(".weight")
and n_dims == 2
):
data = data.astype(np.float16)
print(
new_name
+ ", n_dims = "
+ str(n_dims)
+ ", "
+ str(old_dtype)
+ " --> "
+ str(data.dtype)
)
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

View File

@@ -1,202 +0,0 @@
#!/usr/bin/env python3
# HF starcoder --> gguf conversion
from __future__ import annotations
import argparse
import json
import os
import struct
import sys
from pathlib import Path
from typing import Any
import numpy as np
import torch
from transformers import AutoTokenizer # type: ignore[import]
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
def count_model_parts(dir_model: Path) -> int:
num_parts = 0
for filename in os.listdir(dir_model):
if filename.startswith("pytorch_model-"):
num_parts += 1
if num_parts > 0:
print("gguf: found " + str(num_parts) + " model parts")
return num_parts
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
return parser.parse_args()
args = parse_args()
dir_model = args.model
ftype = args.ftype
if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file = sys.stderr)
sys.exit(1)
# possible tensor data types
# ftype == 0 -> float32
# ftype == 1 -> float16
# map from ftype to string
ftype_str = ["f32", "f16"]
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
print("gguf: loading model "+dir_model.name)
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
hparams = json.load(f)
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
print("Model architecture not supported: " + hparams["architectures"][0])
sys.exit(1)
# get number of model parts
num_parts = count_model_parts(dir_model)
ARCH=gguf.MODEL_ARCH.STARCODER
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
print("gguf: get model metadata")
block_count = hparams["n_layer"]
gguf_writer.add_name("StarCoder")
gguf_writer.add_context_length(hparams["n_positions"])
gguf_writer.add_embedding_length(hparams["n_embd"])
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
gguf_writer.add_block_count(block_count)
gguf_writer.add_head_count(hparams["n_head"])
gguf_writer.add_head_count_kv(1)
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
gguf_writer.add_file_type(ftype)
# TOKENIZATION
print("gguf: get tokenizer metadata")
tokens: list[bytearray] = []
scores: list[float] = []
toktypes: list[int] = []
# gpt2 tokenizer
gguf_writer.add_tokenizer_model("gpt2")
print("gguf: get gpt2 tokenizer vocab")
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
tokenizer = AutoTokenizer.from_pretrained(dir_model)
# The number of tokens in tokenizer.json can differ from the expected vocab size.
# This causes downstream issues with mismatched tensor sizes when running the inference
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
for i in range(vocab_size):
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
scores.append(0.0) # dummy
toktypes.append(gguf.TokenType.NORMAL)
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
special_vocab.add_to_gguf(gguf_writer)
# TENSORS
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
# params for qkv transform
n_head = hparams["n_head"]
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
head_dim = hparams["n_embd"] // n_head
# tensor info
print("gguf: get tensor metadata")
if num_parts == 0:
part_names = iter(("pytorch_model.bin",))
else:
part_names = (
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
)
for part_name in part_names:
if args.vocab_only:
break
print("gguf: loading model part '" + part_name + "'")
model_part = torch.load(dir_model / part_name, map_location="cpu")
for name in model_part.keys():
data = model_part[name]
old_dtype = data.dtype
# convert any unsupported data types to float32
if data.dtype != torch.float16 and data.dtype != torch.float32:
data = data.to(torch.float32)
data = data.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
if not args.vocab_only:
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{fname_out}'")
print("")

File diff suppressed because it is too large Load Diff

View File

@@ -49,7 +49,7 @@ According to the BLIS documentation, we could set the following
environment variables to modify the behavior of openmp:
```bash
export GOMP_GPU_AFFINITY="0-19"
export GOMP_CPU_AFFINITY="0-19"
export BLIS_NUM_THREADS=14
```

119
docs/HOWTO-add-model.md Normal file
View File

@@ -0,0 +1,119 @@
## Add a new model architecture to `llama.cpp`
Adding a model requires few steps:
1. Convert the model to GGUF
2. Define the model architecture in `llama.cpp`
3. Build the GGML graph implementation
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](../examples/main)
- [imatrix](../examples/imatrix)
- [quantize](../examples/quantize)
- [server](../examples/server)
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
The required steps to implement for an HF model are:
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
```python
@Model.register("MyModelForCausalLM")
class MyModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
```
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
Example for `falcon` model:
```python
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
]
```
3. Map the original tensor names to the standardize equivalent in GGUF
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
Example for the normalization tensor in attention layers:
```python
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
...
)
}
```
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
- `Model#set_gguf_parameters`
- `Model#set_vocab`
- `Model#write_tensors`
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look to existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support of missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback).
## GGUF specification
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
## Resources
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948

BIN
docs/llama-star/idea-arch.key Executable file

Binary file not shown.

Binary file not shown.

View File

@@ -1,7 +1,7 @@
# Token generation performance troubleshooting
## Verifying that the model is running on the GPU with cuBLAS
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
```
@@ -17,7 +17,7 @@ llama_model_load_internal: [cublas] total VRAM used: 17223 MB
If you see these lines, then the GPU is being used.
## Verifying that the CPU is not oversaturated
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physicial CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physical CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
# Example of runtime flags effect on inference speed benchmark
These runs were tested on the following machine:

View File

@@ -12,27 +12,39 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(baby-llama)
add_subdirectory(batched)
add_subdirectory(batched-bench)
add_subdirectory(beam-search)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(gguf-split)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)
if (LLAMA_SYCL)
add_subdirectory(sycl)
endif()
add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(perplexity)
add_subdirectory(embedding)
add_subdirectory(retrieval)
add_subdirectory(save-load-state)
add_subdirectory(benchmark)
add_subdirectory(baby-llama)
add_subdirectory(train-text-from-scratch)
add_subdirectory(finetune)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(simple)
add_subdirectory(batched)
add_subdirectory(passkey)
add_subdirectory(speculative)
add_subdirectory(parallel)
add_subdirectory(embd-input)
add_subdirectory(llama-bench)
add_subdirectory(beam-search)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(gguf)
add_subdirectory(train-text-from-scratch)
add_subdirectory(imatrix)
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()

View File

@@ -575,10 +575,7 @@ static struct ggml_tensor * forward(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
@@ -844,10 +841,7 @@ static struct ggml_tensor * forward_batch(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, n_batch]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
// KQ_masked = mask_past(KQ_scaled)
@@ -1131,10 +1125,7 @@ static struct ggml_tensor * forward_lora(
// KQ_scaled = KQ / sqrt(n_embd/n_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled =
ggml_scale(ctx0,
KQ,
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, 1.0f/sqrtf(float(n_embd)/n_head));
// KQ_masked = mask_past(KQ_scaled)
// KQ_masked shape [n_past + N, N, n_head, 1]
@@ -1258,9 +1249,9 @@ static struct ggml_tensor * forward_lora(
}
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
assert(logits->n_dims == 2);
assert(probs->n_dims == 2);
assert(best_samples->n_dims == 1);
assert(ggml_is_matrix(logits));
assert(ggml_is_matrix(probs));
assert(ggml_is_vector(best_samples));
assert(logits->ne[1] == best_samples->ne[0]);
assert(logits->ne[0] == probs->ne[0]);
assert(logits->ne[1] == probs->ne[1]);
@@ -1292,9 +1283,9 @@ static void sample_softmax_batch(
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
struct ggml_tensor * best_samples
) {
GGML_ASSERT(best_samples->n_dims == 2);
GGML_ASSERT(logits->n_dims == 3);
GGML_ASSERT(probs->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(best_samples));
GGML_ASSERT(ggml_is_3d(logits));
GGML_ASSERT(ggml_is_3d(probs));
int n_tokens = best_samples->ne[0];
int n_batch = best_samples->ne[1];
int n_vocab = logits->ne[0];
@@ -1334,7 +1325,7 @@ static void print_row(struct ggml_tensor * probs, int i) {
}
static void print_matrix(struct ggml_tensor * probs) {
assert(probs->n_dims == 2);
assert(ggml_is_matrix(probs));
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
@@ -1386,8 +1377,8 @@ static void get_example_targets(int example_id, struct ggml_tensor * tokens_inpu
static void get_example_targets_batch(
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
) {
GGML_ASSERT(tokens_input->n_dims == 2);
GGML_ASSERT( targets->n_dims == 3);
GGML_ASSERT(ggml_is_matrix(tokens_input));
GGML_ASSERT(ggml_is_3d(targets));
int n_tokens = tokens_input->ne[0];
int n_batch = tokens_input->ne[1];
GGML_ASSERT(n_tokens == targets->ne[1]);
@@ -1542,27 +1533,28 @@ int main(int argc, char ** argv) {
int n_past = 0;
ggml_cgraph gf = {};
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch);
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, gf, tokens_input, n_tokens, n_past, n_batch);
// struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits);
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
ggml_build_forward_expand(&gf, e);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
float error_before_opt = ggml_get_f32_1d(e, 0);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_lbfgs.lbfgs.n_iter = 16;
ggml_opt(ctx0, opt_params_lbfgs, e);
//
ggml_build_forward_expand(&gf, e);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
float error_after_opt = ggml_get_f32_1d(e, 0);
@@ -1609,13 +1601,14 @@ int main(int argc, char ** argv) {
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {};
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(&gf, logits);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
ggml_build_forward_expand(gf, logits);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);

61
examples/base-translate.sh Executable file
View File

@@ -0,0 +1,61 @@
#!/bin/bash
#
# Few-shot translation example.
# Requires a base model (i.e. no fine-tuned or instruct models).
#
# Usage:
#
# cd llama.cpp
# make -j
#
# ./examples/base-translate.sh <model-base> "<text>" [extra-main-args]
#
if [ $# -lt 2 ]; then
echo "Usage: ./base-translate.sh <model-base> \"<text>\" [extra-main-args]"
exit 1
fi
eargs=""
if [ $# -gt 2 ]; then
eargs="${@:3}"
fi
ftmp="__llama.cpp_example_tmp__.txt"
trap "rm -f $ftmp" EXIT
echo "Translate from English to French:
===
sea otter, peppermint, plush girafe:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
===
violin
violin => violon
===
phone, computer, mouse, keyboard:
phone => téléphone
computer => ordinateur
mouse => souris
keyboard => clavier
===
" > $ftmp
echo "$2
" >> $ftmp
model=$1
# generate the most likely continuation until the string "===" is found
./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs

View File

@@ -0,0 +1,5 @@
set(TARGET batched-bench)
add_executable(${TARGET} batched-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

Some files were not shown because too many files have changed in this diff Show More