Compare commits

..

304 Commits
b3003 ... b3307

Author SHA1 Message Date
Neo Zhang Jianyu
f09b7cb609 rm get_work_group_size() by local cache for performance (#8286)
Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2024-07-05 10:32:29 +08:00
Xuan Son Nguyen
a38b884c6c cli: add EOT when user hit Ctrl+C (#8296)
* main: add need_insert_eot

* do not format system prompt if it is empty
2024-07-04 20:55:03 +02:00
Icecream95
d7fd29fff1 llama : add OpenELM support (#7359)
* Initial OpenELM support (270M only so far)

* Fill out missing entries in llama_model_type_name

* fixup! Initial OpenELM support (270M only so far)

Fix formatting

* llama : support all OpenELM models

* llama : add variable GQA and variable FFN sizes

Some metadata keys can now also be arrays to support setting
their value per-layer for models like OpenELM.

* llama : minor spacing changes

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : use std::array for per-layer hparams

* llama : fix save/load state

* llama : do not print hparams for vocab-only models

* llama : handle n_head == 0

* llama : use const ref for print_f and fix division by zero

* llama : fix t5 uses of n_head and n_ff

* llama : minor comment

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-04 20:14:21 +03:00
Daniel Bevenius
6f63d646c1 tokenize : add --show-count (token) option (#8299)
This commit adds a new option to the tokenize example, --show-count.
When this is set the total number of tokens are printed to stdout.

This was added as an option as I was concerned that there might be
scripts that use the output from this program and it might be better to
not print this information by default.

The motivation for this is that can be useful to find out how many
tokens a file contains, for example when trying to determine prompt
input file sizes for testing.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-07-04 19:38:58 +03:00
ditsuke
51d2ebadbb build: Export hf-to-gguf as snakecase 2024-07-04 15:39:13 +00:00
ditsuke
1e920018d3 doc: Add context for why we add an explicit pytorch source 2024-07-04 15:39:13 +00:00
ditsuke
01a5f06550 chore: Remove rebase artifacts 2024-07-04 15:39:13 +00:00
ditsuke
07786a61a2 chore: Fixup requirements and build 2024-07-04 15:39:13 +00:00
ditsuke
de14e2ea2b chore: ignore all __pychache__ 2024-07-04 15:39:13 +00:00
ditsuke
821922916f fix: Update script paths in CI scripts 2024-07-04 15:39:13 +00:00
ditsuke
b1c3f26e5e fix: Actually include scripts in build
Not namespaced though :(
2024-07-04 15:39:13 +00:00
ditsuke
b0a46993df build(python): Package scripts with pip-0517 compliance 2024-07-04 15:39:13 +00:00
fairydreaming
807b0c49ff Inference support for T5 and FLAN-T5 model families (#5763)
* llama : add inference support and model types for T5 and FLAN-T5 model families

* llama : add new API functions to support encoder-decoder models: llama_encode(), llama_model_has_encoder(), llama_model_decoder_start_token()

* common, llama-cli, llama-batched : add support for encoder-decoder models

* convert-hf : handle shared token embeddings tensors in T5Model

* convert-hf : add support for SentencePiece BPE tokenizer in T5Model (for Pile-T5 models)

* convert-hf : add MT5ForConditionalGeneration and UMT5ForConditionalGeneration to architectures supported by T5Model

* convert : add t5 tokenizer tests, use "slow" HF tokenizer for t5

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-04 15:46:11 +02:00
Daniel Bevenius
f8c4c0738d tests : add _CRT_SECURE_NO_WARNINGS for WIN32 (#8231)
This commit adds the compile definition `_CRT_SECURE_NO_WARNINGS`
to the root cmake subproject.

The motivation for this is that currently the following warnings are
displayed when compiling the tests and common cmake subprojects:
```console
test-llama-grammar.cpp
C:\llama.cpp\src\.\llama.cpp(1406,77): warning C4996: 'strerror':
This function or variable may be unsafe. Consider using strerror_s
instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See
online help for details.
[C:\llama.cpp\build\tests\test-llama-grammar.vcxproj]
...
```

This compile definition is currently set for the `src` subproject
and this change moves into the root cmake project so that it is applied
to all cmake subprojects.
2024-07-04 13:53:42 +03:00
Daniel Bevenius
402d6feffa llama : suppress unref var in Windows MSVC (#8150)
* llama : suppress unref var in Windows MSVC

This commit suppresses two warnings that are currently generated for
src/llama.cpp when building on Windows MSVC

```console
C:\llama.cpp\src\llama.cpp(14349,45): warning C4101: 'ex':
unreferenced local variable [C:\llama.cpp\build\src\llama.vcxproj]
C:\llama.cpp\src\llama.cpp(19285,44): warning C4101: 'e':
unreferenced local variable [C:\llama.cpp\build\src\llama.vcxproj]
```

* Update src/llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-04 13:50:57 +03:00
Georgi Gerganov
20fc3804bf convert : fix gemma v1 tokenizer convert (#8248)
ggml-ci
2024-07-04 10:41:03 +03:00
AidanBeltonS
f619024764 [SYCL] Remove unneeded semicolons (#8280) 2024-07-04 09:07:19 +08:00
Daniele
d23287f122 Define and optimize RDNA1 (#8085) 2024-07-04 01:02:58 +02:00
slaren
5f2d4e60e2 ppl : fix n_seq_max for perplexity (#8277)
* ppl : fix n_seq_max for perplexity

* use 1 seq for kl_divergence
2024-07-03 20:33:31 +03:00
Xuan Son Nguyen
916248af1f fix phi 3 conversion (#8262) 2024-07-03 16:01:54 +02:00
Judd
f8d6a23804 fix typo (#8267)
Co-authored-by: Judd <foldl@boxvest.com>
2024-07-03 14:40:16 +02:00
AidanBeltonS
fadde67135 Dequant improvements rebase (#8255)
* Single load for half2

* Store scales in local mem

* Vec load quantized values
2024-07-03 09:55:34 +08:00
MistApproach
a27152b602 fix: add missing short command line argument -mli for multiline-input (#8261) 2024-07-02 22:56:46 +02:00
Clint Herron
3e2618bc7b Adding step to clean target to remove legacy binary names to reduce upgrade / migration confusion arising from #7809. (#8257) 2024-07-02 13:19:56 -04:00
Clint Herron
07a3fc0608 Removes multiple newlines at the end of files that is breaking the editorconfig step of CI. (#8258) 2024-07-02 12:18:10 -04:00
Faisal Zaghloul
968967376d Add JAIS model(s) (#8118)
* Add `JAIS` model(s)

* cleanup

* address review comments

* remove hack

* un-hardcode max-alibi-bias

* minor tweaks

---------

Co-authored-by: fmz <quic_fzaghlou@quic.com>
2024-07-02 16:36:00 +02:00
Daniel Bevenius
023b8807e1 convert-hf : print output file name when completed (#8181)
* convert-hf : print output file name when completed

This commit adds the output file name to the log message when the
conversion is completed.

The motivation for this change is that when `--outfile` option is not
specified it migth not be obvious where the output file is written.

With this change the output of running the script will be something like
the following:
```console
INFO:hf-to-gguf:Model successfully exported to models/gemma-2-9b-it.gguf.
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! convert-hf : print output file name when completed

Updates the output of to support printing the directory if the output is
split into multiple files. Also the output file name is now retrieved
from the model_instance object.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! convert-hf : print output file name when completed

Use parent attribute of Path object and string interpolation.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! convert-hf : print output file name when completed

Use os.sep instead of hardcoding the path separator.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-07-02 09:40:49 +03:00
slaren
0e0590adab cuda : update supports_op for matrix multiplication (#8245) 2024-07-02 09:39:38 +03:00
luoyu-intel
a9f3b10215 [SYCL] Fix win build conflict of math library (#8230)
* fix win build conflict of math library

* fix the condition: !(win32 & SYCL)

* revert warp_size=16
2024-07-02 12:50:07 +08:00
luoyu-intel
d08c20edde [SYCL] Fix the sub group size of Intel (#8106)
* use warp_size macro for all sycl kernels

* fix mask of permute_sub_group_by_xor

* fix rms_norm with correct warp number

* fix rms_norm_f32/group_norm_f32

* move norm to norm.cpp file

* fix quantize bug

* fix mmvq's batch size
2024-07-02 10:16:00 +08:00
Xuan Son Nguyen
5fac350b9c Fix gemma2 tokenizer convert (#8244)
* fix gemma2 tokenizer convert

* remove scores

* improve code, fix new line issue
2024-07-02 01:07:23 +02:00
Johannes Gäßler
cb5fad4c6c CUDA: refactor and optimize IQ MMVQ (#8215)
* CUDA: refactor and optimize IQ MMVQ

* uint -> uint32_t

* __dp4a -> ggml_cuda_dp4a

* remove MIN_CC_DP4A checks

* change default

* try CI fix
2024-07-01 20:39:06 +02:00
Mateusz Charytoniuk
dae57a1ebc readme: add Paddler to the list of projects (#8239) 2024-07-01 20:13:22 +03:00
Xuan Son Nguyen
49122a873f gemma2: add sliding window mask (#8227)
* gemma2: add sliding window mask

* fix data_swa uninitialized

* better naming

* add co-author

Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com>

* replace list with single tensor

* update

* llama : minor styling

* convert : add sanity check for query_pre_attn_scalar

* fix small typo in README

---------

Co-authored-by: Arlo Phoenix <arlo-phoenix@users.noreply.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-01 18:48:34 +02:00
Roni
0ddeff1023 readme : update tool list (#8209)
* Added gppm to Tool list in README

* Update README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-01 15:48:16 +03:00
Michael Francis
3840b6f593 nix : enable curl (#8043)
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-07-01 14:47:04 +03:00
Georgi Gerganov
257f8e41e2 nix : remove OpenCL remnants (#8235)
* nix : remove OpenCL remnants

* minor : remove parentheses
2024-07-01 14:46:18 +03:00
iacore
694c59cb42 Document BERT support. (#8205)
* Update README.md

document BERT support

* Update README.md
2024-07-01 13:40:58 +02:00
zhentaoyu
197fe6c1d7 [SYCL] Update SYCL-Rope op and Refactor (#8157)
* align with rope.cu and move sycl-op to a single file
2024-07-01 19:39:06 +08:00
Georgi Gerganov
d0a7145ba9 flake.lock: Update (#8218) 2024-06-30 16:09:34 -07:00
Xuan Son Nguyen
9ef0780062 Fix new line issue with chat template, disable template when in-prefix/suffix is set (#8203)
* preserve new line llama_chat_format_single

* disable chat template if in-prefix/suffix is set

* remove redundant change
2024-06-30 20:27:13 +02:00
Andrei
1c5eba6f8e llama: Add attention and final logit soft-capping, update scaling factor to Gemma2 (#8197)
* Add attention and final logit softcapping.

* fix

* Add custom add_ functions

* Disable flash attention for Gemma2

* Update src/llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Add default value for attention and final logit softcap value

* Add custom kq scaling from Gemma2Attention

* Remove custom pre attention scaling and use computed value instead.

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-29 23:44:08 -04:00
Xuan Son Nguyen
72272b83a3 fix code typo in llama-cli (#8198) 2024-06-29 00:14:20 +02:00
Olivier Chafik
8748d8ac6f json: attempt to skip slow tests when running under emulator (#8189) 2024-06-28 18:02:05 +01:00
Xuan Son Nguyen
26a39bbd6b Add MiniCPM, Deepseek V2 chat template + clean up llama_chat_apply_template_internal (#8172)
* tmp_contains

* minicpm chat template

* add DeepSeek Lite template

* change deepseek-lite to deepseek2

* correct code comment

* correct code from master branch
2024-06-28 15:11:44 +02:00
Sigbjørn Skjæret
38373cfbab Add SPM infill support (#8016)
* add --spm-infill option

* support --spm-infill

* support --spm-infill
2024-06-28 12:53:43 +02:00
slaren
b851b3fba0 cmake : allow user to override default options (#8178) 2024-06-28 12:37:45 +02:00
Olivier Chafik
139cc621e9 json: restore default additionalProperties to false, fix some pattern escapes (#8180)
* json: expand ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS charset

* json: revert default of additionalProperties to false

* Update README.md
2024-06-28 09:26:45 +01:00
pculliton
e57dc62057 llama: Add support for Gemma2ForCausalLM (#8156)
* Inference support for Gemma 2 model family

* Update convert-hf-to-gguf.py, constants, and tensor mappings

* cleanup

* format fix

* Fix special token vocab bug

* Don't add space prefix

* fix deleted lines

* Update src/llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

* Add model type names

* Add control vector

* Fix model type identification

---------

Co-authored-by: Andrei Betlen <abetlen@gmail.com>
Co-authored-by: slaren <slarengh@gmail.com>
2024-06-27 21:00:43 -07:00
Xuan Son Nguyen
a27aa50ab7 Add missing items in makefile (#8177) 2024-06-28 02:19:11 +02:00
Olivier Chafik
cb0b06a8a6 json: update grammars/README w/ examples & note about additionalProperties (#8132)
* json: update grammars/README

* mention broken prefixItems

* add mention to llama-gbnf-validator

* json: explicit type: object for nested items object in cli example
2024-06-27 22:08:42 +01:00
loonerin
558f44bf83 CI: fix release build (Ubuntu+Mac) (#8170)
* CI: fix release build (Ubuntu)

PR #8006 changes defaults to build shared libs. However, CI for releases
expects static builds.

* CI: fix release build (Mac)

---------

Co-authored-by: loonerin <loonerin@users.noreply.github.com>
2024-06-27 21:01:23 +02:00
slaren
8172ee9da9 cmake : fix deprecated option names not working (#8171)
* cmake : fix deprecated option names not working

* remove LlAMA_OPENMP
2024-06-27 20:04:39 +02:00
Xuan Son Nguyen
16791b8f0b Add chatml fallback for cpp llama_chat_apply_template (#8160)
* add chatml fallback for cpp `llama_chat_apply_template`

* remove redundant code
2024-06-27 18:14:19 +02:00
Georgi Gerganov
ab3679112d flake.lock: Update (#8071)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/e9ee548d90ff586a6471b4ae80ae9cfcbceb3420?narHash=sha256-4Zu0RYRcAY/VWuu6awwq4opuiD//ahpc2aFHg2CWqFY%3D' (2024-06-13)
  → 'github:NixOS/nixpkgs/d603719ec6e294f034936c0d0dc06f689d91b6c3?narHash=sha256-k3JqJrkdoYwE3fHE6xGDY676AYmyh4U2Zw%2B0Bwe5DLU%3D' (2024-06-20)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Philip Taron <philip.taron@gmail.com>
2024-06-27 08:37:29 -07:00
jukofyork
97877eb10b Control vector loading fixes (#8137)
* Fixed leak in llama_control_vector_load_one() and allow llama_control_vector_load() to grow

* refactored `llama_control_vector_load_one()`

* allow multiple directions for same layer in same file

* llama_control_vector_load_one() and llama_control_vector_load() now break on error

* removed unnecessary ggml_free() call
2024-06-27 16:48:07 +02:00
Raj Hammeer Singh Hada
387952651a Delete examples/llama.android/llama/CMakeLists.txt (#8165)
* Delete examples/llama.android/llama/CMakeLists.txt

https://github.com/ggerganov/llama.cpp/pull/8145#issuecomment-2194534244

This file is not being used for building on Android. `llama.cpp/examples/llama.android/llama/src/main/cpp/CMakeLists.txt` is being used instead.

* Update CMakeLists.txt

Pick local llama.cpp files instead of fetching content from git
2024-06-27 16:39:29 +02:00
Sigbjørn Skjæret
6030c61281 Add Qwen2MoE 57B-A14B model identifier (#8158)
* Add Qwen2MoE 57B-A14B

* Add Qwen2MoE 57B-A14B
2024-06-27 16:27:41 +02:00
Johannes Gäßler
85a267daaa CUDA: fix MMQ stream-k for --split-mode row (#8167) 2024-06-27 16:26:05 +02:00
kustaaya
f675b20a3b Added support for Viking pre-tokenizer (#8135)
Co-authored-by: kustaaya <kustaaya@protonmail.com>
2024-06-27 10:58:54 +02:00
Sigbjørn Skjæret
911e35bb8b llama : fix CodeLlama FIM token checks (#8144)
* account for space prefix character

* use find instead
2024-06-27 10:46:41 +03:00
Raj Hammeer Singh Hada
ac146628e4 Fix llama-android.cpp for error - "common/common.h not found" (#8145)
- Path seems to be wrong for the common.h header file in llama-android.cpp file. Fixing the path so the Android Build doesn't fail with the error "There is no file common/common.h"
2024-06-27 03:57:57 +02:00
Daniel Bevenius
9b31a40c6d clip : suppress unused variable warnings (#8105)
* clip : suppress unused variable warnings

This commit suppresses unused variable warnings for the variables e in
the catch blocks.

The motivation for this change is to suppress the warnings that are
generated on Windows when using the MSVC compiler. The warnings are
not displayed when using GCC because GCC will mark all catch parameters
as used.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! clip : suppress unused variable warnings

Remove e (/*e*/) instead instead of using GGML_UNUSED.

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-06-27 01:50:09 +02:00
Georgi Gerganov
c70d117c37 scripts : fix filename sync 2024-06-26 23:25:22 +03:00
slaren
ae5d0f4b89 ci : publish new docker images only when the files change (#8142) 2024-06-26 21:59:28 +02:00
slaren
31ec3993f6 ggml : add GGML_CUDA_USE_GRAPHS option, restore GGML_CUDA_FORCE_CUBLAS (cmake) (#8140) 2024-06-26 21:34:14 +02:00
slaren
c7ab7b612c make : fix missing -O3 (#8143) 2024-06-26 21:20:22 +03:00
Georgi Gerganov
f2d48fffde sync : ggml 2024-06-26 19:39:19 +03:00
Georgi Gerganov
4713bf3093 authors : regen 2024-06-26 19:36:44 +03:00
Georgi Gerganov
0e814dfc42 devops : remove clblast + LLAMA_CUDA -> GGML_CUDA (#8139)
ggml-ci
2024-06-26 19:32:07 +03:00
Georgi Gerganov
a95631ee97 readme : update API notes 2024-06-26 19:26:13 +03:00
Georgi Gerganov
f3f65429c4 llama : reorganize source code + improve CMake (#8006)
* scripts : update sync [no ci]

* files : relocate [no ci]

* ci : disable kompute build [no ci]

* cmake : fixes [no ci]

* server : fix mingw build

ggml-ci

* cmake : minor [no ci]

* cmake : link math library [no ci]

* cmake : build normal ggml library (not object library) [no ci]

* cmake : fix kompute build

ggml-ci

* make,cmake : fix LLAMA_CUDA + replace GGML_CDEF_PRIVATE

ggml-ci

* move public backend headers to the public include directory (#8122)

* move public backend headers to the public include directory

* nix test

* spm : fix metal header

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* scripts : fix sync paths [no ci]

* scripts : sync ggml-blas.h [no ci]

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-26 18:33:02 +03:00
Isaac McFadyen
8854044561 Clarify default MMQ for CUDA and LLAMA_CUDA_FORCE_MMQ flag (#8115)
* Add message about int8 support

* Add suggestions from review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-26 08:29:28 +02:00
Johannes Gäßler
c8771ab5f8 CUDA: fix misaligned shared memory read (#8123) 2024-06-26 08:28:02 +02:00
Eddie-Wang
494165f3b6 llama : extend llm_build_ffn() to support _scale tensors (#8103) 2024-06-26 09:27:46 +03:00
Olivier Chafik
9b2f16f805 json: better support for "type" unions (e.g. nullable arrays w/ typed items) (#7863)
* json: better suport for "type" arrays (e.g. `{"type": ["array", "null"], "items": {"type": "string"}}`)

* json: add test for type: [array, null] fix

* update tests
2024-06-26 01:46:35 +01:00
Olivier Chafik
6777c544bd json: fix additionalProperties, allow space after enum/const (#7840)
* json: default additionalProperty to true

* json: don't force additional props after normal properties!

* json: allow space after enum/const

* json: update pydantic example to set additionalProperties: false

* json: prevent additional props to redefine a typed prop

* port not_strings to python, add trailing space

* fix not_strings & port to js+py

* Update json-schema-to-grammar.cpp

* fix _not_strings for substring overlaps

* json: fix additionalProperties default, uncomment tests

* json: add integ. test case for additionalProperties

* json: nit: simplify condition

* reformat grammar integ tests w/ R"""()""" strings where there's escapes

* update # tokens in server test: consts can now have trailing space
2024-06-26 01:45:58 +01:00
jukofyork
163d50adaf fixes #7999 (adds control vectors to all build_XXX() functions in llama.cpp [needs testing] (#8060)
* fixes #7999

The `build_command_r` forgot to add the control vector.

* Fixes qwen2 too

* Fixed all models' control vectors

* Removed double calls to `cb(cur, "l_out", il)`

* Moved control vector logic to llama_control_vector:apply_to()
2024-06-25 22:47:40 +02:00
fairydreaming
6fcbf68235 llama : implement Unigram tokenizer needed by T5 and FLAN-T5 model families (#5763)
* llama : add T5 model architecture, tensors and model header parameters

* llama : add implementation of Unigram tokenizer with SentencePiece-like text normalization using precompiled charsmap

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-06-25 21:14:35 +02:00
Daniel Bevenius
e6bf007744 llama : return nullptr from llama_grammar_init (#8093)
* llama : return nullptr from llama_grammar_init

This commit updates llama_grammar_init to return nullptr instead of
throwing an exception.

The motivation for this is that this function is declared inside an
extern "C" block and is intended/may be used from C code which will not
be able to handle exceptions thrown, and results in undefined behavior.

On Windows and using MSVC the following warning is currently generated:
```console
C:\llama.cpp\llama.cpp(13998,1): warning C4297: 'llama_grammar_init':
function assumed not to throw an exception but does
C:\llama.cpp\llama.cpp(13998,1): message :
__declspec(nothrow), throw(), noexcept(true), or noexcept was specified
on the function
```

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* squash! llama : return nullptr from llama_grammar_init

Add checks for nullptr when calling llama_grammar_init.

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>

---------

Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Clint Herron <hanclinto@gmail.com>
2024-06-25 15:07:28 -04:00
Olivier Chafik
84631fe150 json: support integer minimum, maximum, exclusiveMinimum, exclusiveMaximum (#7797)
* json: support minimum for positive integer values

* json: fix min 0

* json: min + max integer constraints

* json: handle negative min / max integer bounds

* json: fix missing paren min/max bug

* json: proper paren fix

* json: integration test for schemas

* json: fix bounds tests

* Update json-schema-to-grammar.cpp

* json: fix negative max

* json: fix negative min (w/ more than 1 digit)

* Update test-grammar-integration.cpp

* json: nit: move string rules together

* json: port min/max integer support to Python & JS

* nit: move + rename _build_min_max_int

* fix min in [1, 9]

* Update test-grammar-integration.cpp

* add C++11-compatible replacement for std::string_view

* add min/max constrained int field to pydantic json schema example

* fix merge

* json: add integration tests for min/max bounds

* reshuffle/merge min/max integ test cases

* nits / cleanups

* defensive code against string out of bounds (apparently different behaviour of libstdc++ vs. clang's libc++, can't read final NULL char w/ former)
2024-06-25 20:06:20 +01:00
slaren
dd047b476c disable docker CI on pull requests (#8110) 2024-06-25 19:20:06 +02:00
joecryptotoo
925c30956d Add healthchecks to llama-server containers (#8081)
* added healthcheck

* added healthcheck

* added healthcheck

* added healthcheck

* added healthcheck

* moved curl to base

* moved curl to base
2024-06-25 17:13:27 +02:00
Brian
c8ad35955a Gguf dump start data offset via --data-offset and some extra refactor (#8054)
* gguf-dump: add --data-offset

* gguf-dump: add tensor data offset table

* gguf-dump: refactor GGUFReader for clarity

* gguf-dump: add --data-alignment

* gguf-dump.py: Rename variables and adjust comments

start_data_offset --> data_offset

_build_tensors_info_fields --> _build_tensor_info
2024-06-25 22:03:25 +10:00
Xuan Son Nguyen
49c03c79cd cvector: better prompt handling, add "mean vector" method (#8069)
* remove completions file

* fix inverted vector

* add mean method

* code style

* remove inverted pca hotfix
2024-06-25 13:59:54 +02:00
Xuan Son Nguyen
48e6b92cc3 Add chat template support for llama-cli (#8068)
* add chat template support for llama-cli

* add help message

* server: simplify format_chat

* more consistent naming

* improve

* add llama_chat_format_example

* fix server

* code style

* code style

* Update examples/main/main.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-25 21:56:49 +10:00
HanishKVC
3791ad2193 SimpleChat v3.1: Boolean chat request options in Settings UI, cache_prompt (#7950)
* SimpleChat: Allow for chat req bool options to be user controlled

* SimpleChat: Allow user to control cache_prompt flag in request

* SimpleChat: Add sample GUI images to readme file

Show the chat screen and the settings screen

* SimpleChat:Readme: Add quickstart block, title to image, cleanup

* SimpleChat: RePosition contents of the Info and Settings UI

Make it more logically structured and flow through.

* SimpleChat: Rename to apiRequestOptions from chatRequestOptions

So that it is not wrongly assumed that these request options are
used only for chat/completions endpoint. Rather these are used
for both the end points, so rename to match semantic better.

* SimpleChat: Update image included with readme wrt settings ui

* SimpleChat:ReadMe: Switch to webp screen image to reduce size
2024-06-25 21:27:35 +10:00
HatsuneMikuUwU33
f702a90e24 Update control vector help (#8104) 2024-06-25 10:44:48 +02:00
Meng, Hengyu
083bacce14 [SYCL] Re-enabled mul_mat_batched_sycl (#8095) 2024-06-25 10:19:20 +08:00
Johannes Gäßler
2df373ac40 CUDA: fix matrix multiplication algorithm choice (#8102) 2024-06-25 01:22:33 +02:00
Johannes Gäßler
3b099bcd9c CUDA: fix MMQ writeback for int8 tensor cores (#8100) 2024-06-24 22:15:33 +02:00
Johannes Gäßler
a818f3028d CUDA: use MMQ instead of cuBLAS by default (#8075) 2024-06-24 17:43:42 +02:00
fairydreaming
d62e4aaa02 gguf-py : fix tensor groups for encoder-decoder models in gguf-dump.py (#8090)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Brian <mofosyne@gmail.com>
2024-06-24 14:13:39 +02:00
Johannes Gäßler
9a590c8226 CUDA: optimize MMQ int8 tensor core performance (#8062)
* CUDA: optimize MMQ int8 tensor core performance

* only a single get_mma_tile_x_k function

* simplify code, make functions constexpr
2024-06-24 12:41:23 +02:00
Christian Zhou-Zheng
52fc8705a0 Option to split during conversion (#6942)
* support splits in convert.py

* Support split by size and dry run to write estimated shards/filesizes

* Move split functionality to new GGUFManager class

* fix improper function signature

* tentative push of convert-hf-to-gguf support

* resolve merge + SplitArguments for easier parsing

* Fix eager tensor memory leak and remove convert.py changes

Removed a memory leak caused by unexpected reference retention to eager tensors.

Also removed GGUFManager functionality in convert.py in favor of specializing for convert-hf-to-gguf.py.

* refactor SplitStrategy to be a deque

Instead of having SplitStrategy have a `data` field that is a deque, just have SplitStrategy be a subclass of deque itself.

* fix Q8 quantization

* remove unnecessary imports in gguf_manager

* fix final? merge issue

* fix gguf_writer placement and remove comments

* oops, actually fix gguf_writer placement

* reduce duplicated code from gguf_writer

* further simplify GGUFManager

* simplify even further and standardize with GGUFWriter

* reduce diffs with master

* form shards while adding tensors, SHA256 sums agree with master

* re-add type hint

Co-authored-by: compilade <git@compilade.net>

* GGUFWriter compatibility fix

Co-authored-by: compilade <git@compilade.net>

* Shard dataclass and un-negative dont_add_architecture

* type consistency in format_n_bytes_to_str

* move kv keys to constants.py

* make pathlib explicit

* base-1024 bytes to base-1000

* rename GGUFManager to GGUFWriterSplit

* Update gguf-py/gguf/constants.py

Co-authored-by: compilade <git@compilade.net>

* fix convert-hf-to-gguf.py permissions

* fix line endings

* Update gguf-py/gguf/gguf_writer_split.py

Co-authored-by: compilade <git@compilade.net>

* convert-hf : restore executable file permission

* examples/convert-legacy-llama.py: restore executable file permission

* reinstate original gguf package import and fix type annotation

* attempt to appease the linter

* attempt 2 to appease the linter

* attempt 3 to appease the linter

* comma consistency

* Update convert-hf-to-gguf.py

Co-authored-by: compilade <git@compilade.net>

* edit cmd line args

* use simplification from #7827

* kv/ti data are still wrong

* try to refactor kv data (still fails)

* fix ti data messiness

* tidy up

* fix linting

* actually make the linter happy

* cleanup round 1

* remove SplitStrategy, SplitArguments

* appease linter

* fix typing and clean up

* fix linting

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* progress bar, fix split logic

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* catch oversights

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* swap bar orders

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* compatibility fix

* Update gguf-py/gguf/gguf_writer.py

Co-authored-by: compilade <git@compilade.net>

* Update convert-hf-to-gguf.py

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: Brian <mofosyne@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2024-06-24 19:42:03 +10:00
slaren
8cb508d0d5 disable publishing the full-rocm docker image (#8083) 2024-06-24 08:36:11 +03:00
Yann Follet
646ef4a9cf embedding : more cli arguments (#7458)
* add parameters for embeddings
--embd-normalize
--embd-output-format
--embd-separator
description in the README.md

* Update README.md

fix tipo

* Trailing whitespace

* fix json generation, use " not '

* fix merge master

* fix code formating
group of parameters // embedding
print usage for embedding parameters

---------

Co-authored-by: Brian <mofosyne@gmail.com>
2024-06-24 08:30:24 +03:00
fairydreaming
de0d6a68ac gguf-py, convert-hf : model conversion support for T5 and FLAN-T5 model variants (#5763)
* gguf-py : add T5 model architecture

* gguf-py : add separate tensors for encoder and decoder

* gguf-py : add new model header parameters: decoder_start_token_id, attention.relative_buckets_count, tokenizer.ggml.remove_extra_whitespaces, tokenizer.ggml.precompiled_charsmap

* convert-hf : add model conversion support for T5ForConditionalGeneration and T5WithLMHeadModel

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-06-24 07:06:05 +02:00
slaren
95f57bb5d5 ggml : remove ggml_task_type and GGML_PERF (#8017)
* ggml : remove ggml_task_type and GGML_PERF

* check abort_callback on main thread only

* vulkan : remove usage of ggml_compute_params

* remove LLAMA_PERF
2024-06-24 03:07:59 +02:00
Eddie-Wang
e112b610a1 llama : add support for BitnetForCausalLM (#7931)
* hf bitnet v1

* hf bitnet e2e v2

* finish bitnet e2e

* finish f16 hf bitnet e2e

* remove unsed

* finish bitnet i2 e2e

* move i2s to quantize v1

* move i2 to quantize

* clean code

* clean code 2

* fix codestyle

* fix code

* fix

* fix code

* fix merge

* remove unused

* change table name

* fix whitespace

* delete redundant

* i2_s to absmax

* finish i2_s/i8_s vec_dot x86 simd

* i2s->q22

* fix code

* remove block scale

* add dequantize

* fix seq

* update avx2

* remove q2_2

* remove q22_grid

* fix whitespace

* reuse llm_build_kv

* fix bo

---------

Co-authored-by: root <root@wangjinheng>
2024-06-23 21:27:57 +03:00
Aarni Koskela
6a2f298bd7 server : fix JSON-Scheme typo (#7975) 2024-06-23 11:03:08 -04:00
Daniel Bevenius
11318d9aa1 Fix typo in llama_set_embeddings comment (#8077) 2024-06-23 15:39:45 +02:00
slaren
b6b9a8e606 fix CI failures (#8066)
* test-backend-ops : increase cpy max nmse

* server ci : disable thread sanitizer
2024-06-23 13:14:45 +02:00
0cc4m
45c0e2e4c1 Refactor Vulkan backend to allow multiple contexts (#7961)
* Refactor Vulkan backend to allow multiple contexts

* Fix too many shader groups called validation error in llama3 on AMD and Intel GPUs

* Fix Vulkan debug build error
2024-06-23 10:21:25 +02:00
Clint Herron
b5a5f34efa Removing extra blank lines that were breaking Lint. (#8067) 2024-06-22 14:28:18 -04:00
Xuan Son Nguyen
3e58b0ee35 cvector: fix CI + correct help message (#8064)
* cvector: fix CI + correct help message

* also correct --pca-iter
2024-06-22 18:11:30 +02:00
HatsuneMikuUwU33
adf480c3ab cvector-generator: Moe Moe Fixie-Fixie for Lots of Formats~! ♡(ᐢ ᴥ ᐢ)♡ (#8052)
* Update negative.txt

* Update positive.txt

* Update cvector-generator.cpp

* Update cvector-generator.cpp
2024-06-22 17:19:37 +02:00
0xspringtime
3aa184a8c7 convert-hf : change assert to exception (#8015) 2024-06-22 15:37:41 +02:00
ddh0
5b48cd53a8 Update llama-quantize ppl/file size output from LLaMA-v1 to Llama-3 values (#8058)
Uses the values computed by @JohannesGaessler in PR #7413
2024-06-22 15:16:10 +02:00
Clint Herron
c5a8d4b749 JSON Schema to GBNF integration tests (#7790)
* Adding simple bare-bones test for end-to-end integration test for json validation against auto-generated JSON-schema grammars.

* Adding additional examples as documented in #7789 . Also adding the ability to automatically output improperly failing grammars to debug output files so they can more easily be examined in the gbnf-validator program.

* Uncommenting formerly commented tests so that they fail for others who are attempting to reproduce the bugs.

* Merging improved schema test methods added by @ochafik in #7797

* Adding #define to temporarily remove failing tests so that this PR can pass CI, but still be useful for other PRs that want to leverage the framework.

* Fixing nits from ochafik. Removing escape slashes, adding additional failing cases, fixing some other strings.

* Fixing grammar indentation to be consistent throughout file.
2024-06-21 23:18:36 -04:00
k.h.lai
557b653dc9 vulkan: detect multiple devices by deviceUUID instead of deviceID (#8022)
* vulkan: detect multiple devices by deviceUUID instead of deviceID

* vulkan: remove unneeded variables

* vulkan: fix id query
2024-06-21 10:28:20 +02:00
Eve
7d5e8777ae ggml : AVX IQ quants (#7845)
* initial iq4_xs

* fix ci

* iq4_nl

* iq1_m

* iq1_s

* iq2_xxs

* iq3_xxs

* iq2_s

* iq2_xs

* iq3_s before sllv

* iq3_s

* iq3_s small fix

* iq3_s sllv can be safely replaced with sse multiply
2024-06-21 08:57:36 +03:00
Georgi Gerganov
a927b0f3dd llama : optimize long word tokenization with WPM (#8034)
ggml-ci
2024-06-21 08:51:28 +03:00
Douglas Hanley
80ea089d77 llama : allow pooled embeddings on any model (#7477)
* create append_pooling operation; allow to specify attention_type; add last token pooling; update examples

* find result_norm/result_embd tensors properly; update output allocation logic

* only use embd output for pooling_type NONE

* get rid of old causal_attn accessor

* take out attention_type; add in llama_set_embeddings

* bypass logits when doing non-NONE pooling
2024-06-21 08:38:22 +03:00
Shuichi Tsutsumi
0e64591e82 swiftui : enable stream updating (#7754) 2024-06-21 08:30:58 +03:00
Hamdoud Hakem
b1ef562bc1 requirements : Bump torch and numpy for python3.12 (#8041) 2024-06-20 22:01:15 +02:00
Hamdoud Hakem
17b291a6a5 convert-hf : Fix the encoding in the convert-hf-to-gguf-update.py (#8040) 2024-06-20 21:59:59 +02:00
Johannes Gäßler
abd894ad96 common: fix warning (#8036)
* common: fix warning

* Update common/common.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-20 16:40:13 +02:00
luoyu-intel
de391e4c80 [SYCL] Fix windows build and inference (#8003)
* add sycl preset

* fix debug link error. fix windows crash

* update README
2024-06-20 21:19:05 +08:00
Johannes Gäßler
d50f8897a7 CUDA: stream-k decomposition for MMQ (#8018)
* CUDA: stream-k decomposition for MMQ

* fix undefined memory reads for small matrices
2024-06-20 14:39:21 +02:00
Michael de Gans
2075a66a96 metal : fix ggml_metal_supports_op for BF16 (#8021)
Currently the Metal backend does not support BF16. `ggml_metal_supports_op` was returning true in these cases, leading to a crash with models converted with `--leave-output-tensor`. This commit checks if the first few sources types are BF16 and returns false if that's the case.
2024-06-20 08:32:01 +03:00
sasha0552
ba58993152 server : fix smart slot selection (#8020) 2024-06-20 09:57:10 +10:00
Michael de Gans
a7854743c5 un-ignore build-info.cmake and build-info.sh (#7996)
* un-ignore `build-info.cmake` and `build-info.sh`

I am assuming that ignoring them was unintentional. If they are ignored, some tools, like cargo, will consider the files inexistent, even if they're comitted, for the purpose of publishing. This leads to the build failing in such cases.

* un-ignore `build-info.cpp.in`

For the same reason as the previous two files.

* Reorganize `.gitignore`

* Add exceptions for files mentioned by @slaren

I did leave .clang-tidy since it was explicitly ignored before.

* Add comments for organization
* Sort some lines for pretty
* Test with `make` and `cmake` builds to ensure no build artifacts might be comitted

* Remove `.clang-tidy` from `.gitignore`

Per comment by @ggerganov

* Remove `IDEWorkspaceChecks.plist` from root-level `.gitignore`
2024-06-19 22:10:42 +02:00
slaren
9c77ec1d74 ggml : synchronize threads using barriers (#7993) 2024-06-19 15:04:15 +02:00
Georgi Gerganov
a04a953cab codecov : remove (#8004) 2024-06-19 13:04:36 +03:00
Meng, Hengyu
623494a478 [SYCL] refactor (#6408)
* seperate lower precision GEMM from the main files

* fix workgroup size hardcode
2024-06-19 09:11:51 +08:00
jaime-m-p
37bef89433 tokenizer : BPE fixes (#7530)
* Random test: add_bos_token, add_eos_token
* Random test: add BPE models for testing
* Custom regex split fails with codepoint 0
* Fix falcon punctuation regex
* Refactor llm_tokenizer_bpe: move code to constructor
* Move 'add_special_bos/eos' logic to llm_tokenizer_bpe
* Move tokenizer flags to vocab structure.
* Default values for special_add_bos/eos
* Build vocab.special_tokens_cache using vocab token types
* Generalize 'jina-v2' per token attributes
* Fix unicode whitespaces (deepseek-coder, deepseek-llm)
* Skip missing byte tokens (falcon)
* Better unicode data generation
* Replace char32_t with uint32_t
2024-06-18 18:40:52 +02:00
Sigbjørn Skjæret
91c188d6c2 Only use FIM middle token if it exists (#7648)
* Only use FIM middle if it exists

* Only use FIM middle if it exists
2024-06-18 22:19:45 +10:00
jojorne
84f6de17f6 Fix no gcc pragma on Windows (#7751) 2024-06-18 22:18:32 +10:00
Ulrich Drepper
61665277af Allow compiling with CUDA without CUDA runtime installed (#7989)
On hosts which are not prepared/dedicated to execute code using CUDA
it is still possible to compile llama.cpp with CUDA support by just
installing the development packages.  Missing are the runtime
libraries like /usr/lib64/libcuda.so* and currently the link step
will fail.

The development environment is prepared for such situations.  There
are stub libraries for all the CUDA libraries available in the
$(CUDA_PATH)/lib64/stubs directory.  Adding this directory to the end
of the search path will not change anything for environments which
currently work fine but will enable compiling llama.cpp also in case
the runtime code is not available.
2024-06-18 14:00:14 +02:00
Frank Mai
b96f9afb0d chore: clean useless beam search param (#7985)
Signed-off-by: thxCode <thxcode0824@gmail.com>
2024-06-18 10:11:40 +03:00
Abheek Gulati
1193778105 readme : update UI list (#7943) 2024-06-18 09:57:41 +03:00
Georgi Gerganov
5326bcceeb ggml : sync 2024-06-18 09:50:45 +03:00
Georgi Gerganov
e6ecc2be47 whisper : use ggml_backend_sched (whisper/2239)
* whisper : use ggml_backend_sched (wip)

* use sched in whisper_allocr

* whisper : single backend in whisper_context

* whisper : remove whisper_state->backends_used

* whisper : remove whisper_context->backend

* whisper : reset scheduler after init

* whisper : fix external encoder (e.g. CoreML)

* whisper : cleanup

* whisper : handle null GPU buffer types + fix sycl

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-18 09:50:40 +03:00
Ștefan-Gabriel Muscalu
a94e6ff877 update: support Qwen2-57B-A14B (#7835)
* update: convert-hf-to-gguf.py to support Qwen2-57B-A14B

* fix: QWEN2MOE support for expert_feed_forward_length

previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH

n_ff_exp and n_ff_shared_exp are now properly calculated

* update: convert-hf-to-gguf.py cleanup for Qwen2MoeForCausalLM

* fix: QWEN2MOE support for expert_feed_forward_length

previously, expert ff was taken from n_ff (intermediate size) but it is now properly taken from LLM_KV_EXPERT_FEED_FORWARD_LENGTH

n_ff_exp and n_ff_shexp are now properly calculated
2024-06-17 21:08:46 +02:00
Srihari-mcw
5b6da18750 Make updates to type cast based on compiler instead of OS (#7851) 2024-06-17 20:23:17 +02:00
Georgi Gerganov
7c26775adb llama : disable FA if KV head size do not match (#7982) 2024-06-17 19:40:01 +03:00
Bryan Honof
b473e95084 Add Nix and Flox install instructions (#7899) 2024-06-17 09:37:55 -06:00
slaren
99052cd227 sched : offload_op also requires supports_op (#7977) 2024-06-17 16:51:42 +02:00
Frank Mai
c637fcd34d fix: divide 0 exception in mamba (#7932)
Signed-off-by: thxCode <thxcode0824@gmail.com>
2024-06-17 16:11:08 +02:00
Markus Tavenrath
6a2f0b3474 Implement non-mapped async IO for CUDA on Windows. (#7896)
* Implement non-mapped async IO for CUDA on Windows. On a fast Gen5 NVMe drive this change improves model load time by >3x while it should be the same (or slightly faster) on any other drive.

* Free resources except for backend.

* Change assertions to exceptions in llama_file, find correct cuda backend to create CUDA resources and respect the use_mmap flag again for CUDA.

* Apply suggestions from code review

Co-authored-by: slaren <slarengh@gmail.com>

* Fix editorconfig and unused variable

* Fix issues with Windows build

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-17 16:10:15 +02:00
Georgi Gerganov
21be9cab94 rpc : fix load/store misaligned addresses (#7948) 2024-06-17 11:09:20 +03:00
Brian
006167aaf6 gguf-dump.py: add --markdown dump output (#7853)
* gguf-dump.py: add --markdown dump output

* gguf-dump.py: Add toc

* gguf-dump.py: use standard tensor name lookup. Also add tensor ID field

* gguf-dump.py: Add tensor overview count

* gguf-dump.py: fix array preview

* gguf-dump.py: markdownTableWithAlignmentSupport() added

* Add type hints and spacing

Co-authored-by: compilade <git@compilade.net>

* gguf-dump.py: prettyfy dimention

* gguf-dump: right align element count

* gguf-dump.py: element count autosizing

* Apply suggestions from code review

Co-authored-by: compilade <git@compilade.net>

---------

Co-authored-by: compilade <git@compilade.net>
2024-06-17 15:25:20 +10:00
Neo Zhang
df68d4fa5d [SYCL] Update README-sycl.md for Chapter "Recommended release" and "News" (#7946)
* Update README-sycl.md

* Update README-sycl.md

* Update README-sycl.md

* Update README-sycl.md
2024-06-17 11:17:07 +08:00
Calvin Laurenson
43b35e38ba Add support for sqrt on CUDA (#7953)
* cuda sqrt support

* enable cuda in pca

* fix comments in pca

* add test

* add sqrt to ggml_backend_cuda_supports_op

* fix test

* new line

* Use F32 sqrtf instead of F64 sqrt

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-17 00:23:04 +02:00
Georgi Gerganov
19b7a836f6 cuda : fix bounds check for src0 rows in MMVQ kernel (whisper/2231)
* cuda : fix bounds check for src0 rows in MMVQ kernel

* Update ggml-cuda/mmvq.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2024-06-16 20:32:49 +03:00
Hong Bo PENG
b5fcf8ef5c ggml : fix and optimize ppc64le (ggml/849)
* fix compile issues introduced by loongarch_asx

* restore quant changes to merge

* fix compile issues introduced by loongarch_asx

* further optimize by using vec_msum & vec_sum4s on ppc64le
2024-06-16 20:32:49 +03:00
Daniel Bevenius
398105ff43 ggml : remove duplicate include of ggml-common.h (ggml/853)
Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2024-06-16 20:32:49 +03:00
Georgi Gerganov
bc6c457fa3 flake.lock: Update (#7951) 2024-06-16 09:16:21 -07:00
Georgi Gerganov
52399254b3 unicode : avoid char32_t (#7957)
ggml-ci
2024-06-16 14:51:40 +03:00
hopkins385
6fe1c62741 readme : update UI list [no ci] (#7958) 2024-06-16 14:51:18 +03:00
Georgi Gerganov
cddaf028ad ggml : fix handling of zero blocks in IQ quants (#7955)
ggml-ci
2024-06-16 14:50:12 +03:00
Georgi Gerganov
c8a82194a8 github : update pr template 2024-06-16 10:46:51 +03:00
0cc4m
7c7836d9d4 Vulkan Shader Refactor, Memory Debugging Option (#7947)
* Refactor shaders, extract GLSL code from ggml_vk_generate_shaders.py into vulkan-shaders directory

* Improve debug log code

* Add memory debug output option

* Fix flake8

* Fix unnecessary high llama-3 VRAM use
2024-06-16 07:17:31 +02:00
Xuan Son Nguyen
0c7b3595b9 Add cvector-generator example (#7514)
* add control-vector-generator

* calc diff

* add comments

* proof-of-concept stdlib implementation

Implements PCA and file writing using mostly standard libraries. The output is recognized as a functional control vector, but outputs gibberish.

* param parsing, refactor, comments

Added basic command-line parameters for outfile and one each positive/negative prompt.

Refactored some messy code in PCA computation and GGUF exporting.

Left a bunch of comments regarding further work needed.

* example template completions

Implements an example template set built from the positive/negative prompts like the control vector Python implementation.

* add multi prompts, multi-thread for PCA

* fix mem error

* add debugs

* fix matrix transpose multiplication

you have got to be kidding me

* preliminary template/multiprompt support

model is running out of context and that ought to be fixed (segfaulting) but other than that it looks goodish

* fix zero output & param parsing, functional templating

fixed a bug where the output file had no tensor data/was all zero

fixed a bug where single hyphen flags were not being correctly parsed

implements creation of templated prompts from input (still need to adapt based on model)

* fix square_diff matmul index range and CRLF->LF line endings

fixed a logic error where square_diff would not multiply all rows

fixed a formatting error where the provided completions.txt had CRLF line endings

* add command-line args for num threads, num completions file lines, always reload model

refactored a few things and did what the commit message says on the tin

* code aestheticization

* fix compiler warnings

* in-series multithreading for prompt embedding?

added commented-out code to attempt to start implementing mutlithreading for embedding in main

* remove unnecessary multithreading

* interim fix memory leak

* translated everything but PCA (I think)

* tentatively translate the rest

* fix ggml errors and make new ones

at least it compiles and runs

* fix cb_eval

* temporary commit while I move dev environments

it finally outputs a functioning control vector - "functioning" in the sense that it can be loaded and it clearly has the right idea, but makes the model incoherent

* update debug statements

* pre-tokenize so we can allocate correct memory to ctx_diffs_wrapped

* update comments

* (wip) refactor

* clean up PCA ggml implementation

* fix shape of v_diff_original

* add n_batch for pca

* working version

* remember to copy back the last_eigenvector

* fix n_completions

* bring back n_completions

* default n_pca_batch to 20

* fix macos build

* add to makefile all targets

* use ggml_format_name

* add readme

* fix .editorconfig

* use ggml_backend_tensor_copy

* attemp to fix compile problem on mac

* fix compile warn

* reuse allocr

* move param parser to common

* better error handling

* clean up a bit

* add print_usage

* shorten help msg

* beautify help msg

* escape prompt by default

* change compile target to llama-cvector-generator

* typo

* disable GPU for PCA

* code style

---------

Co-authored-by: Christian Zhou-Zheng <christianzhouzheng@gmail.com>
2024-06-15 18:53:40 +02:00
Meng, Hengyu
7b2f4a7d19 [SYCL] remove global variables (#7710)
* separate DPCT helpers outside

* replace global variables with context

* remove useless extra

* update mul_mat condition

* remove duplicate buft initialization

* remove duplicate extra and global work group size

* remove useless backend check

* remove duplicated extras

* use macro for group_size and remove cuda-related
2024-06-15 14:05:10 +08:00
olexiyb
f8ec8877b7 ci : fix macos x86 build (#7940)
In order to use old `macos-latest` we should use `macos-12`

Potentially will fix: https://github.com/ggerganov/llama.cpp/issues/6975
2024-06-14 20:28:34 +03:00
Johannes Gäßler
76d66ee0be CUDA: faster q2_K, q3_K MMQ + int8 tensor cores (#7921)
* CUDA: faster q2_K, q3_K MMQ + int8 tensor cores

* try CI fix

* try CI fix

* try CI fix

* fix data race

* rever q2_K precision related changes
2024-06-14 18:41:49 +02:00
Georgi Gerganov
66ef1ceedf metal : utilize max shared memory for mul_mat_id (#7935) 2024-06-14 17:14:09 +03:00
Radoslav Gerganov
e65bbf606c llama-bench : fix RPC indication (#7936)
Show "<backend_name>+RPC" when RPC offloading is used
2024-06-14 16:47:41 +03:00
Sigbjørn Skjæret
6fcd1331ef llama : more checks before assuming FIM tokens (#7644)
* More checks before assuming FIM tokens for Llama arch

* extensive token check
2024-06-14 13:20:04 +03:00
Elaine
41b9260f18 convert : add Poro-34B-chat tokenizer support (#7713)
* support for Poro chat pre-tokenizer

* add support for Poro pre-tokenizer

* Update convert-hf-to-gguf-update.py

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Change Poro-34B-chat to poro-chat

* Change Poro-34B-chat to poro-chat

* Update convert-hf-to-gguf-update.py

* Update llama.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-14 13:16:49 +03:00
Radoslav Gerganov
172c825684 rpc : fix ggml_backend_rpc_supports_buft() (#7918) 2024-06-13 15:18:44 +03:00
Galunid
a55eb1bf0f readme : Remove outdated instructions from README.md (#7914) [no ci] 2024-06-13 09:42:41 +02:00
slaren
f578b86b21 move BLAS to a separate backend (#6210)
* move BLAS to a separate backend

* rename GGML_USE_OPENBLAS to GGML_USE_BLAS

* alloc : reuse same buffer when the same buffer type if used multiple times

* set number of threads automatically for openblas and blis

* sched : print assignments when GGML_SCHED_DEBUG env variable is set

* sched : allow ops with weights on an incompatible buffer type

This will cause the weight to be copied to a backend that supports the
op, which is very costly. The weight should have been stored in a buffer
of a backend that can run the op, but llama.cpp cannot do this
automatically at the moment.

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-13 03:11:35 +02:00
Olivier Chafik
1c641e6aac build: rename main → llama-cli, server → llama-server, llava-cli → llama-llava-cli, etc... (#7809)
* `main`/`server`: rename to `llama` / `llama-server` for consistency w/ homebrew

* server: update refs -> llama-server

gitignore llama-server

* server: simplify nix package

* main: update refs -> llama

fix examples/main ref

* main/server: fix targets

* update more names

* Update build.yml

* rm accidentally checked in bins

* update straggling refs

* Update .gitignore

* Update server-llm.sh

* main: target name -> llama-cli

* Prefix all example bins w/ llama-

* fix main refs

* rename {main->llama}-cmake-pkg binary

* prefix more cmake targets w/ llama-

* add/fix gbnf-validator subfolder to cmake

* sort cmake example subdirs

* rm bin files

* fix llama-lookup-* Makefile rules

* gitignore /llama-*

* rename Dockerfiles

* rename llama|main -> llama-cli; consistent RPM bin prefixes

* fix some missing -cli suffixes

* rename dockerfile w/ llama-cli

* rename(make): llama-baby-llama

* update dockerfile refs

* more llama-cli(.exe)

* fix test-eval-callback

* rename: llama-cli-cmake-pkg(.exe)

* address gbnf-validator unused fread warning (switched to C++ / ifstream)

* add two missing llama- prefixes

* Updating docs for eval-callback binary to use new `llama-` prefix.

* Updating a few lingering doc references for rename of main to llama-cli

* Updating `run-with-preset.py` to use new binary names.
Updating docs around `perplexity` binary rename.

* Updating documentation references for lookup-merge and export-lora

* Updating two small `main` references missed earlier in the finetune docs.

* Update apps.nix

* update grammar/README.md w/ new llama-* names

* update llama-rpc-server bin name + doc

* Revert "update llama-rpc-server bin name + doc"

This reverts commit e474ef1df4.

* add hot topic notice to README.md

* Update README.md

* Update README.md

* rename gguf-split & quantize bins refs in **/tests.sh

---------

Co-authored-by: HanClinto <hanclinto@gmail.com>
2024-06-13 00:41:52 +01:00
Johannes Gäßler
963552903f CUDA: fix broken oob check for FA vec f32 kernel (#7904) 2024-06-12 17:41:51 +02:00
Georgi Gerganov
a9cae48003 tests : add non-cont unary tests (#7857)
* tests : add non-cont unary tests

* ggml : update unary asserts and "supports_op"

ggml-ci
2024-06-12 16:00:22 +03:00
Georgi Gerganov
bfaa676b08 ggml : improve ggml_is_contiguous logic (#7856)
* ggml : improve ggml_is_contiguous logic

ggml-ci

* ggml : support more contiguous cases

ggml-ci
2024-06-12 15:24:20 +03:00
Georgi Gerganov
704a35b183 server : restore numeric prompts (#7883) 2024-06-12 14:42:29 +03:00
Meng, Hengyu
dcf752707d update intel docker oneapi-basekit to 2024.1.1-devel-ubuntu22.04 (#7894)
In addition this reverts a workaround we had to do to workaround the upstream issue with expired intel GPG package keys in 2024.0.1-devel-ubuntu22.04
2024-06-12 19:05:35 +10:00
Patrice Ferlet
f2b5764beb Fix a typo and add Fedora 40 pacakge to install for Vulkan (#7794) [no ci]
Fix "appropiate" to "appropriate" and add Fedora 40 packages to install to compile with Vulkan support
2024-06-12 11:18:16 +10:00
k.h.lai
73bac2b11d vulkan: select only one device for single gpu with multiple drivers (#7582) 2024-06-11 21:26:05 +02:00
0cc4m
ef52d1d16a Update Vulkan RoPE implementation (#7818)
* Update Vulkan RoPE implementation

* Return nullptr on alloc_buffer when allocation fails, instead of throwing an exception

Minor fixes

* Fix segfault when running out of VRAM

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-11 21:20:29 +02:00
Deven Mistry
14f83526cd fix broken link in pr template (#7880) [no ci]
* fix broken link in pr template

* Update pull_request_template.md [no ci]

---------

Co-authored-by: Brian <mofosyne@gmail.com>
2024-06-12 02:18:58 +10:00
Brian
6fe42d073f github: move PR template to .github/ root (#7868) 2024-06-11 17:43:41 +03:00
Johannes Gäßler
148995e5e5 llama-bench: more compact markdown tables (#7879) 2024-06-11 14:45:40 +02:00
Georgi Gerganov
4bfe50f741 tests : check the Python version (#7872)
ggml-ci
2024-06-11 10:10:20 +03:00
Johannes Gäßler
bdcb8f4222 CUDA: int8 tensor cores for MMQ (q4_K, q5_K, q6_K) (#7860) 2024-06-11 08:26:07 +02:00
slaren
c2ce6c47e4 fix CUDA CI by using a windows-2019 image (#7861)
* try to fix CUDA ci with --allow-unsupported-compiler

* trigger when build.yml changes

* another test

* try exllama/bdashore3 method

* install vs build tools before cuda toolkit

* try win-2019
2024-06-11 08:59:20 +03:00
Olivier Chafik
b61eb9644d json: refine constraint for whitespace to avoid runaways yet allow pretty print (#7866) 2024-06-11 02:22:57 +01:00
Olivier Chafik
396b18dfec json: document schema conversion in GBNF readme, align manual grammar examples & converters (#7841)
* json: fix char pattern in grammar converters

* json: prevent number precision & whitespace runaways in example grammars

* json: add doc to grammar readme
2024-06-11 01:00:30 +01:00
Jared Van Bortel
864a99e7a0 cmake : fix CMake requirement for CUDA (#7821) 2024-06-10 18:32:10 -04:00
slaren
fd5ea0f897 ci : try win-2019 on server windows test (#7854) 2024-06-10 15:18:41 +03:00
Georgi Gerganov
c28a83902c examples : remove --instruct remnants (#7846) 2024-06-10 15:00:15 +03:00
Georgi Gerganov
d9da0e4986 server : improve "prompt" handling (#7847) 2024-06-10 14:59:55 +03:00
Johannes Gäßler
1f0dabda8d CUDA: use tensor cores for MMQ (#7676)
* CUDA: int8 tensor cores for MMQ (legacy quants)

* fix out-of-bounds writes

* __builtin_assume -> GGML_CUDA_ASSUME

* fix writeback returning too early
2024-06-10 11:45:13 +02:00
Ben Ashbaugh
af4ae502dd use the correct SYCL context for host USM allocations (#7777)
Signed-off-by: Ben Ashbaugh <ben.ashbaugh@intel.com>
2024-06-10 10:21:31 +01:00
Georgi Gerganov
10ceba354a flake.lock: Update (#7838)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/ad57eef4ef0659193044870c731987a6df5cf56b?narHash=sha256-SzDKxseEcHR5KzPXLwsemyTR/kaM9whxeiJohbL04rs%3D' (2024-05-29)
  → 'github:NixOS/nixpkgs/051f920625ab5aabe37c920346e3e69d7d34400e?narHash=sha256-4q0s6m0GUcN7q%2BY2DqD27iLvbcd1G50T2lv08kKxkSI%3D' (2024-06-07)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-06-09 16:04:50 -07:00
Georgi Gerganov
e95beeb1fc imatrix : handle partial entries (#7833) 2024-06-09 20:19:35 +03:00
Nicolás Pérez
57bf62ce7c docs: Added initial PR template with directions for doc only changes and squash merges [no ci] (#7700)
This commit adds pull_request_template.md and CONTRIBUTING.md . It focuses on explaining to contributors the need to rate PR complexity level, when to add [no ci] and how to format PR title and descriptions.

Co-authored-by: Brian <mofosyne@gmail.com>
Co-authored-by: compilade <git@compilade.net>
2024-06-10 01:24:29 +10:00
mgroeber9110
3e2ee44315 server: do not remove whitespace at the start of a completion chunk (#7830) 2024-06-09 20:50:35 +10:00
Johannes Gäßler
42b53d192f CUDA: revise q8_1 data layout for mul_mat_q (#7824) 2024-06-09 09:42:25 +02:00
sasha0552
2decf57bc6 convert-hf : set the model name based on cli arg, if present (#7693)
`--model-name` argument was added a while ago but did not do anything.
This commit fixes this issue and enables this feature.
2024-06-09 16:39:25 +10:00
compilade
5795b94182 convert-hf : match model part name prefix and suffix (#7687)
In #7075, to fix the conversion of (some) models using model-00001-of-00001.safetensors instead of model.safetensors for a single model part we simply used the same logic as the part count to get the part names. 

But this doesn't always work correctly, like when unusual additional model files like consolidated.safetensors in https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 are present.

This commit matching both the prefix and the suffix of the model part names should fix this problem without breaking any previously-supported upstream models. But according to report by @teleprint-me there is still some
persistent problem, but shall do in the meantime.
2024-06-09 12:47:25 +10:00
compilade
ed9f252118 gguf-py : decouple adding metadata from writing in GGUFWriter (#7827)
Main changes of this PR is to consolidate GGUFWriter.add_key and GGUFWriter.add_val into GGUFWriter.add_key_value. 

In addition use_temp_file is now opt-in instead of opt-out defaulting to False.

Also GGUFWriter now does not require output file name until when actually writing to it.

And GGUFWriter doesn't really need to eagerly prepare the data layout of the metadata
2024-06-09 12:34:29 +10:00
slaren
fe1e3917cf Revert "[SYCL] Update rpc-server.cpp to include SYCL backend (#7682)" (#7808)
This reverts commit 9422c5e34b.
2024-06-09 01:43:39 +02:00
Olivier Chafik
d4d915d351 url: save -mu downloads to new cache location (#7826)
* url: save -mu download to new cache location

* url: fs_get_cache_file_path util

* url: tweak sig of fs_get_cache_file
2024-06-08 21:21:08 +02:00
sasha0552
7a16ce7db2 server : smart slot selection using Longest Common Prefix (#7728)
* server : Smart selection of available slot using Longest Common Substring

* add usage

* remove trailing whitespaces

* Use Longest Common Prefix (LCP) instead of LCS

* Rename argument
2024-06-08 10:50:31 +03:00
slaren
da799b4189 vulkan : reuse parent extra for views (#7806)
* vulkan : reuse parent extra for views

* Fix validation error when multiple compute contexts are used in a graph

---------

Co-authored-by: 0cc4m <picard12@live.de>
2024-06-07 19:47:49 +02:00
Christian Zhou-Zheng
c00fad71e5 gguf-split : change binary multi-byte units to decimal (#7803) 2024-06-07 15:56:01 +03:00
intelmatt
27615f5ab2 cmake : fix BUILD_SHARED_LIBS=ON build (#7784)
common depends on pthreads in Linux
2024-06-07 15:15:07 +03:00
Johannes Gäßler
7027b27d76 server: update cache_prompt documentation [no ci] (#7745) 2024-06-07 11:15:49 +02:00
woodx
a5cabd7649 server : do not get prompt in infill mode (#7286)
* avoid to get prompt in infill mode and embedding mode

* remove embedding mode

* refactor format

---------

Co-authored-by: wudexiang <wudexiang@bytedance.com>
2024-06-07 10:09:45 +03:00
pengxin99
d5c938cd77 [SYCL] fix softmax r2r result wrong issue (#7811) 2024-06-07 14:28:26 +08:00
slaren
c9ee7118d5 check for nans in imatrix and quantize (#7807)
* imatrix : detect nan/inf values

* quantize : check imatrix for nan/inf values
2024-06-07 09:01:29 +03:00
Georgi Gerganov
ee459f40f6 server : fix --threads-http arg (#7801) 2024-06-06 19:19:59 +03:00
Georgi Gerganov
f83351f9a6 imatrix : migrate to gpt_params (#7771)
* imatrix : migrate to gpt_params

ggml-ci

* imatrix : add --save-frequency cli arg

* common : fix --no-ppl
2024-06-06 16:30:58 +03:00
Clint Herron
ad675e1c67 Added support for . (any character) token in grammar engine. (#6467)
* Added support for . (any characer) token in grammar engine.

* Add integration tests for any-character symbol.
2024-06-06 06:08:52 -07:00
Mattheus Chediak
a143c04375 README minor fixes (#7798) [no ci]
derievatives --> derivatives
2024-06-06 22:17:54 +10:00
Olivier Chafik
55b2d0849d grammars: x{min,max} repetition operator (#6640)
* grammars: x{min,max} repetition operator + tweak +/*/? to avoid duplication of original over alternates

* grammars: handle `x{n}` and fix `x{n,n}`

* grammars: document new repetition operators

* grammars: uniform use of int for min & max

* grammars: refactor parser test

* grammar: parsing tests w/ natural pretty print of updated expectations

* grammars: much prettier print of expectations (+ TEST_GRAMMAR_PARSER_PRINT_ALL=1 to force all)

* grammars: improve test pretty print again

* grammars: pretty print rules and chars

* grammars: fix copy rule skipping

* grammars: disallow `a{,}` (not allowed in regexps)

* Update common/grammar-parser.cpp

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* grammars: fix copy rule skipping (again) & display of expectations

* grammars: more test cases

* grammars: update reps parsing to bring ? / * / + closer to before

* json: use new GBNF repetitions{m,n} syntax

* grammars: update performance gotchas w/ repetition advice

* Update examples/json_schema_to_grammar.py

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* Update examples/server/public/json-schema-to-grammar.mjs

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* grammars: comment on rule repetitions

* grammars: ensure unambiguous number alternatives

* grammar: nit typo switched error msgs

* grammar: nit numbering in comment

* json: update numeric rule to be unambiguous

* Apply suggestions from code review

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* Update examples/server/public/json-schema-to-grammar.mjs

Co-authored-by: Clint Herron <hanclinto@gmail.com>

* json: fix integral-part

* grammar: add repetition tests

---------

Co-authored-by: Clint Herron <hanclinto@gmail.com>
2024-06-06 10:07:06 +01:00
Joan Fontanals
f5d7b268ec llama : add jina v2 base code (#7596)
* feat: add changes to handle jina v2 base code

* fix: do not complicate things

* fix: fix the usage of the code model

* fix: fix comments

* fix: fix linting issues

* fix: remove ollama patches

* style : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-06 10:22:41 +03:00
slaren
2d08b7fbb4 docker : build only main and server in their images (#7782)
* add openmp lib to dockerfiles

* build only main and server in their docker images
2024-06-06 08:19:49 +03:00
slaren
d67caea0d6 docker : add openmp lib (#7780) 2024-06-06 08:17:21 +03:00
Galunid
7672adeec7 Fix encoding in python scripts (#7733) 2024-06-06 03:07:24 +10:00
Johannes Gäßler
7d1a378b8f CUDA: refactor mmq, dmmv, mmvq (#7716)
* CUDA: refactor mmq, dmmv, mmvq

* fix out-of-bounds write

* struct for qk, qr, qi

* fix cmake build

* mmq_type_traits
2024-06-05 16:53:00 +02:00
Georgi Gerganov
2b3389677a ggml : refactor rope norm/neox (#7634)
* ggml : unify rope norm/neox (CPU)

* ggml : fix compile warning

* ggml : remove GLM rope mode

ggml-ci

* metal : better rope implementation

ggml-ci

* cuda : better rope implementation

ggml-ci

* naming : n_orig_ctx -> n_ctx_orig

ggml-ci

* dev : add reminders to update backends

ggml-ci

* vulkan : fix ggml_rope_ext() usage

* cuda : fix array size + indents

ggml-ci
2024-06-05 11:29:20 +03:00
arch-btw
9973e81c5c readme : remove -ins (#7759)
-ins and --instruct were moved in https://github.com/ggerganov/llama.cpp/pull/7675

I have adjusted the README accordingly.
There was no trace of --chatml in the README.
2024-06-05 09:40:49 +03:00
jaime-m-p
c90dbe026b Fix per token atrributes bits (#7749) 2024-06-05 01:26:14 +02:00
agray3
b90dc566c1 Allow number of nodes in CUDA graph to change (#7738)
Previously the code would have failed to cope in the case that the
number of nodes changes in an existing CUDA graph. This fixes the
issue by removing an unnecessary conditional.
2024-06-04 22:06:49 +02:00
Georgi Gerganov
1442677f92 common : refactor cli arg parsing (#7675)
* common : gpt_params_parse do not print usage

* common : rework usage print (wip)

* common : valign

* common : rework print_usage

* infill : remove cfg support

* common : reorder args

* server : deduplicate parameters

ggml-ci

* common : add missing header

ggml-ci

* common : remote --random-prompt usages

ggml-ci

* examples : migrate to gpt_params

ggml-ci

* batched-bench : migrate to gpt_params

* retrieval : migrate to gpt_params

* common : change defaults for escape and n_ctx

* common : remove chatml and instruct params

ggml-ci

* common : passkey use gpt_params
2024-06-04 21:23:39 +03:00
Georgi Gerganov
554c247caf ggml : remove OpenCL (#7735)
ggml-ci
2024-06-04 21:23:20 +03:00
Georgi Gerganov
0cd6bd3483 llama : remove beam search (#7736) 2024-06-04 21:23:05 +03:00
Georgi Gerganov
5ca0944a15 readme : remove obsolete Zig instructions (#7471) 2024-06-04 19:43:01 +03:00
slaren
adc9ff3841 llama-bench : allow using a different printer for stderr with -oe (#7722)
compare-commits.sh : hide stdout, use -oe to print markdown
2024-06-04 14:32:42 +02:00
Daniele
987d743d6b Improve hipBLAS support in CMake (#7696)
* Improve hipBLAS support in CMake

This improves the detection of the correct CMAKE_PREFIX_PATH when using different distributions or a self-built ROCm SDK.

* Set ROCM_PATH correctly
2024-06-04 14:09:15 +02:00
zhouwg
b226c1227b refine .gitignore (#7688)
This adds tags and android ndk into the git ignore list
2024-06-04 21:21:26 +10:00
jaime-m-p
3b38d48609 Per token attributes (#7685)
* Add per token attributes enum
* Using phi-3 for testing 'rstrip'
* Using jina-v2 for testing 'lstrip'
* Brute force test for 'lstrip' and 'rstrip'
* Implement 'rstrip' and 'lstrip'
* Update phi-3 GGUF file (obsolete since 917dc8c)
* Replace llama_token_type with llama_token_attribs
2024-06-04 09:17:17 +02:00
Georgi Gerganov
6d1616944d ggml : prevent builds with -ffinite-math-only (#7726)
This enforces a check that -fno-finite-math-only was set and that the operating
compiling mode is not in finite maths mode. This is because during rewriting of
silu and softmax for cpu #7154 there emerged an issue where the result that was
observed when >1 slot was nondeterministic as found by @JohannesGaessler.

@LostRuins narrowed the problem down to -ffinite-math-only which was theorised
to be due to SiLU, instead of flushing small values to 0, returns NaN or some 
other garbage. @jart proposed a fix that @ggerganov then implemented in this fix

ref https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2145661825
2024-06-04 17:01:09 +10:00
Radoslav Gerganov
bde7cd3cd9 llama : offload to RPC in addition to other backends (#7640)
* llama : offload to RPC in addition to other backends

* - fix copy_tensor being called on the src buffer instead of the dst buffer

- always initialize views in the view_src buffer

- add RPC backend to Makefile build

- add endpoint to all RPC object names

* add rpc-server to Makefile

* Update llama.cpp

Co-authored-by: slaren <slarengh@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-06-03 20:03:26 +03:00
Masaya, Kato
a5735e4426 ggml : use OpenMP as a thread pool (#7606)
* ggml: Added OpenMP for multi-threads processing

* ggml : Limit the number of threads used to avoid deadlock

* update shared state n_threads in parallel region

* clear numa affinity for main thread even with openmp

* enable openmp by default

* fix msvc build

* disable openmp on macos

* ci : disable openmp with thread sanitizer

* Update ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-06-03 17:14:15 +02:00
Johannes Gäßler
0b832d53ba make: fix debug options not being applied to NVCC (#7714) 2024-06-03 16:28:58 +02:00
0cc4m
3d7ebf6312 Vulkan Mixture of Experts (MoE) support (#7628)
* Finish Vulkan mul_mat_id implementation

* Add Vulkan sum_rows and div ops

* Fix MUL_MAT_ID matrix matrix shader

* Fix MUL_MAT_ID matrix vector shader dispatch size

* Fix MUL_MAT_ID matrix vector shader and dispatch code

* Update Vulkan CPU offload for MUL_MAT_ID

* Fix crash when using split mode none and setting a main GPU
2024-06-03 10:59:14 +02:00
Andy Tai
a10cda58d3 cmake : add pkg-config spec file for llama.cpp (#7702) 2024-06-03 11:06:24 +03:00
zhangkaihuo
6f28a333c1 llama : MiniCPM support tied embeddings (#7664)
* support lm_head

* remove the code block

---------

Co-authored-by: zhangkaihuo <zhangkaihuo@modelbest.cn>
2024-06-03 10:49:30 +03:00
Georgi Gerganov
549279d804 llama : avoid double token-to-piece cache (#7654)
ggml-ci
2024-06-03 08:34:43 +03:00
woachk
9e405b6e2e kompute : implement op_getrows_f32 (#6403)
op_getrows_f32 is required since https://github.com/ggerganov/llama.cpp/pull/6122
for the Vulkan w/ Kompute backend to be functional.

As such, implement this op to make this backend functional again.
2024-06-03 08:32:16 +03:00
Dave Airlie
3413ae2193 fix bug introduced in using calloc (#7701)
compilade pointed this out on the previous MR
2024-06-02 17:59:54 -04:00
Georgi Gerganov
1669810d7c flake.lock: Update (#7686)
Flake lock file updates:

• Updated input 'flake-parts':
    'github:hercules-ci/flake-parts/8dc45382d5206bd292f9c2768b8058a8fd8311d9?narHash=sha256-/GJvTdTpuDjNn84j82cU6bXztE0MSkdnTWClUCRub78%3D' (2024-05-16)
  → 'github:hercules-ci/flake-parts/2a55567fcf15b1b1c7ed712a2c6fadaec7412ea8?narHash=sha256-iKzJcpdXih14qYVcZ9QC9XuZYnPc6T8YImb6dX166kw%3D' (2024-06-01)
• Updated input 'flake-parts/nixpkgs-lib':
    '50eb7ecf4c.tar.gz?narHash=sha256-QBx10%2Bk6JWz6u7VsohfSw8g8hjdBZEf8CFzXH1/1Z94%3D' (2024-05-02)
  → 'eb9ceca17d.tar.gz?narHash=sha256-lIbdfCsf8LMFloheeE6N31%2BBMIeixqyQWbSr2vk79EQ%3D' (2024-06-01)
• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/bfb7a882678e518398ce9a31a881538679f6f092?narHash=sha256-4zSIhSRRIoEBwjbPm3YiGtbd8HDWzFxJjw5DYSDy1n8%3D' (2024-05-24)
  → 'github:NixOS/nixpkgs/ad57eef4ef0659193044870c731987a6df5cf56b?narHash=sha256-SzDKxseEcHR5KzPXLwsemyTR/kaM9whxeiJohbL04rs%3D' (2024-05-29)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-06-02 14:13:12 -07:00
Austin
7c4e5b7eae chore : add ignore rule for generated server themes (#7689) 2024-06-02 20:39:08 +03:00
nickp27
9422c5e34b [SYCL] Update rpc-server.cpp to include SYCL backend (#7682)
* Update rpc-server.cpp to include SYCL backend

Draft PR to address inclusion of SYCL backend for RPC server

* Update rpc-server.cpp
2024-06-02 12:13:54 +03:00
Johannes Gäßler
e141ce624a Fix FlashAttention debug test, FP32 assert (#7684) 2024-06-01 23:26:10 +02:00
Yazan Agha-Schrader
2e666832e6 server : new UI (#7633)
* ic

* migrate my eary work

* add the belonging stuff: css,favicon etc

* de prompts

* chore: Update HTML meta tags in index.html file

* add api-key css classes

* some necessary fixes

* Add API key CSS classes and update styling in style.css

* clean the code

* move API to the top, rearrange param sliders. update css

* add tooltips to the parameters with comprehensible explanations

* fix FloatField and BoolField tooltips

* fix grammar field width

* use template literales for promptFormats.js

* update const ModelGenerationInfo

* remove ms per token, since not relevant for most webui users and use cases

* add phi-3 prompt template

* add phi3 to dropdown

* add css class

* update forgotten css theme

* add user message suffix

* fix chatml & add llama3 format

* fix llama3 prompt template

* more prompt format fixes

* add more comon stop tokens

* add missing char

* do not separate with new line or comma

* move prompt style

* add hacky llama2 prompt solution, reduce redundancy in promptFormats.js

* fix toggle state localstorage

* add cmd-r prompt et reduce redundancy

* set default prompt to empty

* move files, clean code

* fix css path

* add a button to the new ui

* move new ui to "/public" due to otherwise problematic CORS behaviour

* include new ui in cpp

* fix wrong link to old ui

* renaming to ensure consistency

* fix typos "prompt-format" -> "prompt-formats"

* use correct indent

* add new ui files to makefile

* fix typo
2024-06-01 22:31:48 +03:00
HanishKVC
2ac95c9d56 SimpleChat: Simple histogram/repeatMatching driven garbageTrimming, Settings UI, Streaming mode, OpenAi Compat (Model, Authorization Bearer), Save/Restore session, Auto Settings UI (#7548)
* SimpleChat:DU:BringIn local helper js modules using importmap

Use it to bring in a simple trim garbage at end logic, which is
used to trim received response.

Also given that importmap assumes esm / standard js modules, so
also global variables arent implicitly available outside the
modules. So add it has a member of document for now

* SimpleChat:DU: Add trim garbage at end in loop helper

* SimpleChat:DU:TrimGarbage if unable try skip char and retry

* SimpleChat:DU: Try trim using histogram based info

TODO: May have to add max number of uniq chars in histogram at
end of learning phase.

* SimpleChat:DU: Switch trim garbage hist based to maxUniq simple

Instead of blindly building histogram for specified substring
length, and then checking if any new char within specified min
garbage length limit, NOW exit learn state when specified maxUniq
chars are found. Inturn there should be no new chars with in
the specified min garbage length required limit.

TODO: Need to track char classes like alphabets, numerals and
special/other chars.

* SimpleChat:DU: Bring in maxType to the mix along with maxUniq

Allow for more uniq chars, but then ensure that a given type of
char ie numerals or alphabets or other types dont cross the
specified maxType limit. This allows intermixed text garbage
to be identified and trimmed.

* SimpleChat:DU: Cleanup debug log messages

* SimpleChat:UI: Move html ui base helpers into its own module

* SimpleChat:DU:Avoid setting frequence/Presence penalty

Some models like llama3 found to try to be over intelligent by
repeating garbage still, but by tweaking the garbage a bit so that
it is not exactly same. So avoid setting these penalties and let
the model's default behaviour work out, as is.

Also the simple minded histogram based garbage trimming from end,
works to an extent, when the garbage is more predictable and
repeatative.

* SimpleChat:UI: Add and use a para-create-append helper

Also update the config params dump to indicate that now one needs
to use document to get hold of gMe global object, this is bcas of
moving to module type js.

Also add ui.mjs to importmap

* SimpleChat:UI: Helper to create bool button and use it wrt settings

* SimpleChat:UI: Add Select helper and use it wrt ChatHistoryInCtxt

* SimpleChat:UI:Select: dict-name-value, value wrt default, change

Take a dict/object of name-value pairs instead of just names.
Inturn specify the actual value wrt default, rather than the
string representing that value.

Trap the needed change event rather than click wrt select.

* SimpleChat:UI: Add Div wrapped label+element helpers

Move settings related elements to use the new div wrapped ones.

* SimpleChat:UI:Add settings button and bring in settings ui

* SimpleChat:UI:Settings make boolean button text show meaning

* SimpleChat: Update a bit wrt readme and notes in du

* SimpleChat: GarbageTrim enable/disable, show trimmed part ifany

* SimpleChat: highlight trim, garbage trimming bitmore aggressive

Make it easy for end user to identified the trimmed text.

Make garbage trimming logic, consider a longer repeat garbage
substring.

* SimpleChat: Cleanup a bit wrt Api end point related flow

Consolidate many of the Api end point related basic meta data into
ApiEP class.

Remove the hardcoded ApiEP/Mode settings from html+js, instead use
the generic select helper logic, inturn in the settings block.

Move helper to generate the appropriate request json string based
on ApiEP into SimpleChat class itself.

* SimpleChat:Move extracting assistant response to SimpleChat class

so also the trimming of garbage.

* SimpleChat:DU: Bring in both trim garbage logics to try trim

* SimpleChat: Cleanup readme a bit, add one more chathistory length

* SimpleChat:Stream:Initial handshake skeleton

Parse the got stream responses and try extract the data from it.

It allows for a part read to get a single data line or multiple
data line. Inturn extract the json body and inturn the delta
content/message in it.

* SimpleChat: Move handling oneshot mode server response

Move handling of the oneshot mode server response into SimpleChat.

Also add plumbing for moving multipart server response into same.

* SimpleChat: Move multi part server response handling in

* SimpleChat: Add MultiPart Response handling, common trimming

Add logic to call into multipart/stream server response handling.

Move trimming of garbage at the end into the common handle_response
helper.

Add new global flag to control between oneshot and multipart/stream
mode of fetching response. Allow same to be controlled by user.

If in multipart/stream mode, send the stream flag to the server.

* SimpleChat: show streamed generative text as it becomes available

Now that the extracting of streamed generated text is implemented,
add logic to show the same on the screen.

* SimpleChat:DU: Add NewLines helper class

To work with an array of new lines. Allow adding, appending,
shifting, ...

* SimpleChat:DU: Make NewLines shift more robust and flexible

* SimpleChat:HandleResponseMultiPart using NewLines helper

Make handle_response_multipart logic better and cleaner. Now it
allows for working with the situation, where the delta data line
got from server in stream mode, could be split up when recving,
but still the logic will handle it appropriately.

ALERT: Rather except (for now) for last data line wrt a request's
response.

* SimpleChat: Disable console debug by default by making it dummy

Parallely save a reference to the original func.

* SimpleChat:MultiPart/Stream flow cleanup

Dont try utf8-decode and newlines-add_append if no data to work on.

If there is no more data to get (ie done is set), then let NewLines
instance return line without newline at end, So that we dont miss
out on any last-data-line without newline kind of scenario.

Pass stream flag wrt utf-8 decode, so that if any multi-byte char
is only partly present in the passed buffer, it can be accounted
for along with subsequent buffer. At sametime, bcas of utf-8's
characteristics there shouldnt be any unaccounted bytes at end,
for valid block of utf8 data split across chunks, so not bothering
calling with stream set to false at end. LATER: Look at TextDecoder's
implementation, for any over intelligence, it may be doing..
If needed, one can use done flag to account wrt both cases.

* SimpleChat: Move baseUrl to Me and inturn gMe

This should allow easy updating of the base url at runtime by the
end user.

* SimpleChat:UI: Add input element helper

* SimpleChat: Add support for changing the base url

This ensures that if the user is running the server with a
different port or wants to try connect to server on a different
machine, then this can be used.

* SimpleChat: Move request headers into Me and gMe

Inturn allow Authorization to be sent, if not empty.

* SimpleChat: Rather need to use append to insert headers

* SimpleChat: Allow Authorization header to be set by end user

* SimpleChat:UI+: Return div and element wrt creatediv helpers

use it to set placeholder wrt Authorization header.

Also fix copy-paste oversight.

* SimpleChat: readme wrt authorization, maybe minimal openai testing

* SimpleChat: model request field for openai/equivalent compat

May help testing with openai/equivalent web services, if they
require this field.

* SimpleChat: readme stream-utf-8 trim-english deps, exception2error

* Readme: Add a entry for simplechat in the http server section

* SimpleChat:WIP:Collate internally, Stream mode Trap exceptions

This can help ensure that data fetched till that point, can be
made use of, rather than losing it.

On some platforms, the time taken wrt generating a long response,
may lead to the network connection being broken when it enters
some user-no-interaction related power saving mode.

* SimpleChat:theResp-origMsg: Undo a prev change to fix non trim

When the response handling was moved into SimpleChat, I had changed
a flow bit unnecessarily and carelessly, which resulted in the non
trim flow, missing out on retaining the ai assistant response.

This has been fixed now.

* SimpleChat: Save message internally in handle_response itself

This ensures that throwing the caught exception again for higher
up logic, doesnt lose the response collated till that time.

Go through theResp.assistant in catch block, just to keep simple
consistency wrt backtracing just in case.

Update the readme file.

* SimpleChat:Cleanup: Add spacing wrt shown req-options

* SimpleChat:UI: CreateDiv Divs map to GridX2 class

This allows the settings ui to be cleaner structured.

* SimpleChat: Show Non SettingsUI config field by default

* SimpleChat: Allow for multiline system prompt

Convert SystemPrompt into a textarea with 2 rows. Reduce
user-input-textarea to 2 rows from 3, so that overall
vertical space usage remains same.

Shorten usage messages a bit, cleanup to sync with settings ui.

* SimpleChat: Add basic skeleton for saving and loading chat

Inturn when ever a chat message (system/user/model) is added,
the chat will be saved into browser's localStorage.

* SimpleChat:ODS: Add a prefix to chatid wrt ondiskstorage key

* SimpleChat:ODS:WIP:TMP: Add UI to load previously saved chat

This is a temporary flow

* SimpleChat:ODS:Move restore/load saved chat btn setup to Me

This also allows being able to set the common system prompt
ui element to loaded chat's system prompt.

* SimpleChat:Readme updated wrt save and restore chat session info

* SimpleChat:Show chat session restore button, only if saved session

* SimpleChat: AutoCreate ChatRequestOptions settings to an extent

* SimpleChat: Update main README wrt usage with server
2024-06-02 02:20:18 +10:00
Johannes Gäßler
750f60c03e CUDA: fix Pascal FA, deq. KV to FP16 for batch > 8 (#7681) 2024-06-01 15:47:04 +02:00
Johannes Gäßler
9b596417af CUDA: quantized KV support for FA vec (#7527)
* CUDA: quantized KV support for FA vec

* try CI fix

* fix commented-out kernel variants

* add q8_0 q4_0 tests

* fix nwarps > batch size

* split fattn compile via extern templates

* fix flake8

* fix metal tests

* fix cmake

* make generate_cu_files.py executable

* add autogenerated .cu files

* fix AMD

* error if type_v != FP16 and not flash_attn

* remove obsolete code
2024-06-01 08:44:14 +02:00
Georgi Gerganov
a323ec60af server : update js (#7670) 2024-05-31 22:23:04 +03:00
Galunid
0515ad93f4 convert-hf : Handle NotImplementedError in convert-hf-to-gguf (#7660) 2024-05-31 17:42:33 +02:00
Johannes Gäßler
c8047d538f scripts: update compare_llama_bench.py [no ci] (#7673) 2024-05-31 16:26:21 +02:00
Daniele
30e238b246 Improve HIP compatibility (#7672) 2024-05-31 16:00:29 +02:00
Georgi Gerganov
16926dff92 readme : link homebrew discussion 2024-05-31 15:04:58 +03:00
Georgi Gerganov
0c27e6f62e ggml : fix loongson compile warnings (#7537)
* ggml : fix loongson compile warnings

ggml-ci

* Fix loongarch quantize test fail.

Fix unexpected error introduced during rebase code.

* tests : disable json test due to lack of python on the CI node

ggml-ci

---------

Co-authored-by: junchao-loongson <zhaojunchao@loongson.cn>
2024-05-31 14:17:10 +03:00
Galunid
2e32f874e6 Somehow '**' got lost (#7663) 2024-05-31 18:24:41 +10:00
Galunid
1af511fc22 Add convert.py removal to hot topics (#7662) 2024-05-31 10:09:20 +02:00
Sertaç Özercan
0541f06296 [no ci] docs: add aikit to readme (#7650)
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
2024-05-31 09:57:16 +10:00
JohnnyB
9022c33646 Fixed painfully slow single process builds. (#7326)
* Fixed painfully slow single process builds.

* Added nproc for systems that don't default to nproc
2024-05-30 22:32:38 +02:00
Georgi Gerganov
5921b8f089 llama : cache llama_token_to_piece (#7587)
* llama : cache llama_token_to_piece

ggml-ci

* llama : use vectors and avoid has_cache

ggml-ci

* llama : throw on unknown tokenizer types

ggml-ci

* llama : print a log of the total cache size
2024-05-31 02:01:41 +10:00
Martin Delille
5dcdf94676 Fix conan badge display [no ci] (#7645) 2024-05-31 01:07:39 +10:00
Manuel
2e2340de17 Add brew installation instruction to README [no ci] (#7616) 2024-05-31 00:58:15 +10:00
Martin Delille
7846540bd2 readme : add Conan badge (#7638) 2024-05-30 15:52:50 +03:00
Brian
e6157f94c8 github: add contact links to issues and convert question into research [no ci] (#7612) 2024-05-30 21:55:36 +10:00
Galunid
9c4c9cc83f Move convert.py to examples/convert-legacy-llama.py (#7430)
* Move convert.py to examples/convert-no-torch.py

* Fix CI, scripts, readme files

* convert-no-torch -> convert-legacy-llama

* Move vocab thing to vocab.py

* Fix convert-no-torch -> convert-legacy-llama

* Fix lost convert.py in ci/run.sh

* Fix imports

* Fix gguf not imported correctly

* Fix flake8 complaints

* Fix check-requirements.sh

* Get rid of ADDED_TOKENS_FILE, FAST_TOKENIZER_FILE

* Review fixes
2024-05-30 21:40:00 +10:00
Chris Elrod
59b0d07766 faster avx512 exp implementation (#7551)
* faster avx512 exp implementation

* x->r

* improve accuracy, handle special cases

* remove `e`
2024-05-30 21:32:55 +10:00
junchao-loongson
d5c05821f3 ggml : fix loongarch build (O2 issue) (#7636) 2024-05-30 12:30:10 +03:00
Johannes Gäßler
972b555ab9 README: explain parallel build [no ci] (#7618) 2024-05-30 09:52:39 +02:00
Meng, Hengyu
3854c9d07f [SYCL] fix intel docker (#7630)
* Update main-intel.Dockerfile

* workaround for https://github.com/intel/oneapi-containers/issues/70

* reset intel docker in CI

* add missed in server
2024-05-30 16:19:08 +10:00
Galunid
eb57fee51f gguf-py : Add tokenizer.ggml.pre to gguf-new-metadata.py (#7627) 2024-05-30 02:10:40 +02:00
Georgi Gerganov
55d62262a9 metal : remove invalid asserts (#7617) 2024-05-29 22:21:20 +03:00
Georgi Gerganov
975ec63ff2 metal : add missing asserts (#7617) 2024-05-29 20:45:25 +03:00
Georgi Gerganov
fb76ec31a9 ggml : fix YARN + add tests + add asserts (#7617)
* tests : add rope tests

ggml-ci

* ggml : fixes (hopefully)

ggml-ci

* tests : add non-cont tests

ggml-ci

* cuda : add asserts for rope/norm + fix DS2

ggml-ci

* ggml : assert contiguousness

* tests : reduce RoPE tests

ggml-ci
2024-05-29 20:17:31 +03:00
Georgi Gerganov
cce3dcffc5 cuda : non-cont concat support (#7610)
* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci
2024-05-29 15:38:26 +03:00
Radoslav Gerganov
210d99173d llama-bench : add support for the RPC backend (#7435) 2024-05-29 14:45:44 +03:00
slaren
87bdf2a199 ggml : use atomic_flag for critical section (#7598)
* ggml : use atomic_flag for critical section

* add windows shims
2024-05-29 13:36:39 +02:00
Georgi Gerganov
00281b7be3 scripts : remove mpi remnants 2024-05-29 14:31:18 +03:00
Georgi Gerganov
2ab977282b sync : ggml 2024-05-29 14:29:52 +03:00
Georgi Gerganov
72de268bec ggml : restore ggml_rope_xpos_inplace (ggml/0)
ggml-ci
2024-05-29 14:29:33 +03:00
Akarshan Biswas
0e8d8bfd6c Add Arc A750 and Arch linux to readme-sycl.md as verified GPU model and Linux distro (#7605) 2024-05-29 16:53:47 +10:00
zhouwg
504f0c340f ggml : fix typo in ggml.c (#7603) 2024-05-29 04:09:31 +02:00
Meng, Hengyu
b864b50ce5 [SYCL] Align GEMM dispatch (#7566)
* align GEMM dispatch
2024-05-29 07:00:24 +08:00
jaime-m-p
02c1ecad07 Tokenizer WPM fixes (#7500)
* Update random test: add_bos_token.
* Update random test: add WPM models for testing.
* Build vocab.special_tokens_cache using vocab token types.
* Fix and improve WPM preprocessing.
  - Fix unicode edge case combinations.
  - Split by whitspace in the same pass.
* Discard all tokens when no matching found.
2024-05-28 21:46:34 +02:00
Georgi Gerganov
6bd12ce409 sycl : fix assert (#7563) 2024-05-28 22:22:50 +03:00
Giuseppe Scrivano
5442939fcc llama : support small Granite models (#7481)
* Add optional MLP bias for Granite models

Add optional MLP bias for ARCH_LLAMA to support Granite models.
Partially addresses ggerganov/llama.cpp/issues/7116
Still needs some more changes to properly support Granite.

* llama: honor add_space_prefix from the model configuration

propagate the add_space_prefix configuration from the HF model
configuration to the gguf file and honor it with the gpt2 tokenizer.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

* llama: add support for small granite models

it works only for the small models 3b and 8b.

The convert-hf-to-gguf.py script uses the vocabulary size of the
granite models to detect granite and set the correct configuration.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

---------

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
Co-authored-by: Steffen Roecker <sroecker@redhat.com>
2024-05-28 21:49:49 +03:00
k.h.lai
56411a950f vulkan: properly initialize vulkan devices for LLAMA_SPLIT_MODE_NONE (#7552) 2024-05-28 19:25:08 +02:00
Radoslav Gerganov
2b737caae1 rpc : resource management rework (#7562)
* rpc : resource management rework

* address review comments
2024-05-28 18:13:36 +03:00
fairydreaming
ee3dff6b8e Add support for DeepseekV2ForCausalLM (#7519)
* common : increase max number of experts to 160

* common : add tensors ATTN_Q_A, ATTN_Q_A_NORM, ATTN_Q_B, ATTN_KV_A_MQA, ATTN_KV_A_NORM, ATTN_KV_B needed by DeepSeek-V2 MLA (multi-head latent attention) architecture

* common : add model header parameters: leading_dense_block_count, expert_feed_forward_length, expert_shared_count, expert_weights_scale, attention.q_lora_rank, attention.kv_lora_rank, rope.scaling.yarn_log_multiplier

* convert-hf : add model conversion support for DeepseekV2ForCausalLM

* llama : add model types for DeepSeek-V2 and DeepSeek-V2-Lite models

* llama : add two new llm_build_moe_ffn() arguments: scale_w (whether to scale weights of selected MoE experts) and w_scale (numerical value of the scaling factor)

* llama : add inference support for LLM_ARCH_DEEPSEEK2

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2024-05-28 17:07:05 +02:00
Georgi Gerganov
edc29433fa tests : fix test-tokenizer-0.sh 2024-05-28 15:04:09 +03:00
Georgi Gerganov
8b99e2aa66 llama : handle unknown utf8 bytes (#7588) 2024-05-28 13:55:35 +03:00
Brian
271ff3fc44 github: add refactor to issue template (#7561)
* github: add refactor issue template [no ci]

* Update 07-refactor.yml
2024-05-28 20:27:27 +10:00
Neo Zhang
e2b065071c [SYCL]fix ggml_sycl_mul_mat_id() to match the change of api (#7436)
* fix mul_mat_id to match the change of api

* rm comment

* rm unused or duplicated code, rename as review comment
2024-05-28 10:53:37 +01:00
Georgi Gerganov
0548a4187f ggml : generalize GGML_OP_CONCAT (#7563)
* ggml : generalize GGML_OP_CONCAT (WIP)

ggml-ci

* tests : add dim != 2 tests

* metal : generalize concat kernel

* tests : naming

* cuda : generalize concat kernel

ggml-ci

* sycl : add warning and assert

* ggml : fix op params handling

* metal : bugfix kernel

ggml-ci

* ggml : reimplement CPU and Metal

* cuda : add asserts

ggml-ci

* ggml : fix ptrs

ggml-ci
2024-05-28 11:04:19 +03:00
mgroeber9110
9335b969e8 server: do not remove whitespace at the start of a completion chunk (#7524) 2024-05-28 14:55:51 +10:00
Nathan Epstein
c41767154e Markdownish code block fix (#7571)
* markdownish codeblock fix

* updating regexes
2024-05-28 14:41:14 +10:00
Ikko Eltociear Ashimine
74b239b3d5 llava : update clip.h (#7580)
overriden -> overridden
2024-05-28 12:48:16 +10:00
Djip007
852aafb163 update HIP_UMA #7399 (#7414)
* update HIP_UMA #7399

add use of hipMemAdviseSetCoarseGrain when LLAMA_HIP_UMA is enable.
- get x2 on prompte eval and x1.5 on token gen with rocm6.0 on ryzen 7940HX iGPU (780M/gfx1103)

* simplify code, more consistent style

---------

Co-authored-by: slaren <slarengh@gmail.com>
2024-05-28 01:40:47 +02:00
kunnis
0136966daf adding in x64 targets to cmake presets (#7574) 2024-05-28 01:40:12 +02:00
Johannes Gäßler
10b1e45876 make: add --device-debug to NVCC debug flags (#7542) 2024-05-27 19:34:40 +02:00
agray3
197c00681b Allow multiple copy function pointers for CUDA graph kernel param updates (#7565)
CUDA graphs require parameter updates to kernels associated with
GGML_OP_CPY nodes. Previously the implementation only checked for a
single CUDA kernel in such nodes, but this caused a bug in cases where
2 such kernels exist. This fixes the issue by using a vector to allow
multiple function pointers to be stored and checked against.

Fixes #7942
2024-05-27 19:33:42 +02:00
AidanBeltonS
95f84d5ce8 Fix q_xxs using mul_mat_q (#7459) 2024-05-27 22:04:51 +05:30
AidanBeltonS
5487593bc7 Add freq factors (#7495) 2024-05-27 18:04:09 +05:30
Georgi Gerganov
1d8fca72ae metal : add GGML_OP_REPEAT kernels (#7557)
ggml-ci
2024-05-27 12:10:19 +03:00
Georgi Gerganov
62bfef5194 metal : disable FA kernel for HS=256 (#7556)
ggml-ci
2024-05-27 10:38:39 +03:00
Georgi Gerganov
eaf6e03174 llama : add comments about experimental flags (#7544) 2024-05-27 09:24:13 +03:00
Brian
d6ef0e77dd github: add self sorted issue ticket forms (#7543)
* github: add self sorted issue ticket forms [no ci]

* github: consolidate BSD in bug issue ticket

* github: remove contact from bug ticket template [no ci]

* github: remove bios from os dropdown in bug report [no ci]
2024-05-27 10:54:30 +10:00
Georgi Gerganov
dff451cfa1 flake.lock: Update (#7540)
Flake lock file updates:

• Updated input 'nixpkgs':
    'github:NixOS/nixpkgs/4a6b83b05df1a8bd7d99095ec4b4d271f2956b64?narHash=sha256-%2BNpbZRCRisUHKQJZF3CT%2Bxn14ZZQO%2BKjxIIanH3Pvn4%3D' (2024-05-17)
  → 'github:NixOS/nixpkgs/bfb7a882678e518398ce9a31a881538679f6f092?narHash=sha256-4zSIhSRRIoEBwjbPm3YiGtbd8HDWzFxJjw5DYSDy1n8%3D' (2024-05-24)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-05-26 08:54:56 -07:00
647 changed files with 202467 additions and 121612 deletions

View File

@@ -15,7 +15,7 @@ node('x86_runner1'){ // Running on x86 runner containing latest vecto
stage('Running llama.cpp'){
sh'''#!/bin/bash
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./main -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
cat llama_log.txt # Printing results
'''
}

View File

@@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
@@ -27,10 +27,10 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
ENV GGML_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -36,7 +36,7 @@ COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
@@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
@@ -18,7 +18,7 @@ COPY . .
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc)
ENV LC_ALL=C.utf8

View File

@@ -21,12 +21,15 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
ENV GGML_CUDA=1
RUN make
RUN make -j$(nproc) llama-cli
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
COPY --from=build /app/main /main
RUN apt-get update && \
apt-get install -y libgomp1
ENTRYPOINT [ "/main" ]
COPY --from=build /app/llama-cli /llama-cli
ENTRYPOINT [ "/llama-cli" ]

View File

@@ -0,0 +1,26 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build build --config Release --target llama-cli
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/llama-cli" ]

View File

@@ -36,10 +36,10 @@ COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
RUN make
RUN make -j$(nproc) llama-cli
ENTRYPOINT [ "/app/main" ]
ENTRYPOINT [ "/app/llama-cli" ]

View File

@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
RUN apt update && apt install -y git build-essential cmake wget libgomp1
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
@@ -14,14 +14,14 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 && \
cmake --build build --config Release --target main
RUN cmake -B build -DGGML_VULKAN=1 && \
cmake --build build --config Release --target llama-cli
# Clean up
WORKDIR /
RUN cp /app/build/bin/main /main && \
RUN cp /app/build/bin/llama-cli /llama-cli && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]
ENTRYPOINT [ "/llama-cli" ]

View File

@@ -9,12 +9,15 @@ WORKDIR /app
COPY . .
RUN make
RUN make -j$(nproc) llama-cli
FROM ubuntu:$UBUNTU_VERSION as runtime
COPY --from=build /app/main /main
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/llama-cli /llama-cli
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]
ENTRYPOINT [ "/llama-cli" ]

View File

@@ -1,84 +0,0 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
# Notes for llama.cpp:
# 1. Tags are currently based on hash - which will not sort asciibetically.
# We need to declare standard versioning if people want to sort latest releases.
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-clblast
Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: OpenCL Inference of LLaMA model in C/C++
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git mesa-libOpenCL-devel clblast-devel
Requires: clblast
URL: https://github.com/ggerganov/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0
%description
CPU inference for Meta's Lllama2 models using default options.
%prep
%setup -n llama.cpp-master
%build
make -j LLAMA_CLBLAST=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamaclblast
cp -p server %{buildroot}%{_bindir}/llamaclblastserver
cp -p simple %{buildroot}%{_bindir}/llamaclblastsimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamaclblast.service
[Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamaclblastserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
[Install]
WantedBy=default.target
EOF
mkdir -p %{buildroot}/etc/sysconfig
%{__cat} <<EOF > %{buildroot}/etc/sysconfig/llama
LLAMA_ARGS="-m /opt/llama2/ggml-model-f32.bin"
EOF
%clean
rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamaclblast
%{_bindir}/llamaclblastserver
%{_bindir}/llamaclblastsimple
/usr/lib/systemd/system/llamaclblast.service
%config /etc/sysconfig/llama
%pre
%post
%preun
%postun
%changelog

View File

@@ -32,13 +32,13 @@ CPU inference for Meta's Lllama2 models using default options.
%setup -n llama.cpp-master
%build
make -j LLAMA_CUDA=1
make -j GGML_CUDA=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppcuda
cp -p server %{buildroot}%{_bindir}/llamacppcudaserver
cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple
cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli
cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
@@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS
ExecStart=/usr/bin/llama-cuda-server $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@@ -67,9 +67,9 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacppcuda
%{_bindir}/llamacppcudaserver
%{_bindir}/llamacppcudasimple
%{_bindir}/llama-cuda-cli
%{_bindir}/llama-cuda-server
%{_bindir}/llama-cuda-simple
/usr/lib/systemd/system/llamacuda.service
%config /etc/sysconfig/llama

View File

@@ -38,9 +38,9 @@ make -j
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llama
cp -p server %{buildroot}%{_bindir}/llamaserver
cp -p simple %{buildroot}%{_bindir}/llamasimple
cp -p llama-cli %{buildroot}%{_bindir}/llama-cli
cp -p llama-server %{buildroot}%{_bindir}/llama-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-simple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llama.service
@@ -51,7 +51,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamaserver $LLAMA_ARGS
ExecStart=/usr/bin/llama-server $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@@ -69,9 +69,9 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llama
%{_bindir}/llamaserver
%{_bindir}/llamasimple
%{_bindir}/llama-cli
%{_bindir}/llama-server
%{_bindir}/llama-simple
/usr/lib/systemd/system/llama.service
%config /etc/sysconfig/llama

View File

@@ -21,17 +21,19 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
ENV GGML_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
RUN make -j$(nproc) llama-server
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/server /server
COPY --from=build /app/llama-server /llama-server
ENTRYPOINT [ "/server" ]
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View File

@@ -0,0 +1,31 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
echo "GGML_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target llama-server
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev curl
COPY --from=build /app/build/bin/llama-server /llama-server
ENV LC_ALL=C.utf8
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View File

@@ -36,15 +36,17 @@ COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
apt-get install -y libcurl4-openssl-dev curl
RUN make
RUN make -j$(nproc) llama-server
ENTRYPOINT [ "/app/server" ]
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

View File

@@ -5,27 +5,25 @@ FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Install cURL
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target server
RUN cmake -B build -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target llama-server
# Clean up
WORKDIR /
RUN cp /app/build/bin/server /server && \
RUN cp /app/build/bin/llama-server /llama-server && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View File

@@ -0,0 +1,27 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev curl
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make -j$(nproc) llama-server
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1
COPY --from=build /app/llama-server /llama-server
ENV LC_ALL=C.utf8
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/llama-server" ]

View File

@@ -1,26 +0,0 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build build --config Release --target main
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/main /main
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -6,11 +6,11 @@
let
inherit (config.packages) default;
binaries = [
"llama"
"llama-cli"
"llama-embedding"
"llama-server"
"quantize"
"train-text-from-scratch"
"llama-quantize"
"llama-train-text-from-scratch"
];
mkApp = name: {
type = "app";

View File

@@ -17,19 +17,18 @@
rocmPackages,
vulkan-headers,
vulkan-loader,
clblast,
curl,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
useVulkan
] && blas.meta.available,
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
enableCurl ? true,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
@@ -56,7 +55,6 @@ let
++ lib.optionals useCuda [ "CUDA" ]
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ]
++ lib.optionals useVulkan [ "Vulkan" ];
@@ -160,9 +158,9 @@ effectiveStdenv.mkDerivation (
};
postPatch = ''
substituteInPlace ./ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
@@ -198,24 +196,24 @@ effectiveStdenv.mkDerivation (
optionals effectiveStdenv.isDarwin darwinBuildInputs
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs
++ optionals useBlas [ blas ]
++ optionals useVulkan vulkanBuildInputs;
++ optionals useVulkan vulkanBuildInputs
++ optionals enableCurl [ curl ];
cmakeFlags =
[
(cmakeBool "LLAMA_NATIVE" false)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUDA" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_VULKAN" useVulkan)
(cmakeBool "LLAMA_STATIC" enableStatic)
(cmakeBool "LLAMA_CURL" enableCurl)
(cmakeBool "GGML_NATIVE" false)
(cmakeBool "GGML_BLAS" useBlas)
(cmakeBool "GGML_CUDA" useCuda)
(cmakeBool "GGML_HIPBLAS" useRocm)
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
]
++ optionals useCuda [
(
@@ -231,7 +229,7 @@ effectiveStdenv.mkDerivation (
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
(cmakeBool "GGML_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
];
# Environment variables needed for ROCm
@@ -243,10 +241,8 @@ effectiveStdenv.mkDerivation (
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mv $out/bin/main${executableSuffix} $out/bin/llama${executableSuffix}
mv $out/bin/server${executableSuffix} $out/bin/llama-server${executableSuffix}
mkdir -p $out/include
cp $src/llama.h $out/include/
cp $src/include/llama.h $out/include/
'';
# Define the shells here, but don't add in the inputsFrom to avoid recursion.
@@ -256,7 +252,6 @@ effectiveStdenv.mkDerivation (
useCuda
useMetalKit
useMpi
useOpenCL
useRocm
useVulkan
;
@@ -283,7 +278,7 @@ effectiveStdenv.mkDerivation (
# Configurations we don't want even the CI to evaluate. Results in the
# "unsupported platform" messages. This is mostly a no-op, because
# cudaPackages would've refused to evaluate anyway.
badPlatforms = optionals (useCuda || useOpenCL) lib.platforms.darwin;
badPlatforms = optionals useCuda lib.platforms.darwin;
# Configurations that are known to result in build failures. Can be
# overridden by importing Nixpkgs with `allowBroken = true`.
@@ -294,7 +289,7 @@ effectiveStdenv.mkDerivation (
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`
mainProgram = "llama";
mainProgram = "llama-cli";
# These people might respond, on the best effort basis, if you ping them
# in case of Nix-specific regressions or for reviewing Nix-specific PRs.

View File

@@ -1,29 +0,0 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target server
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/build/bin/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -1,25 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -8,13 +8,13 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert.py "$@"
python3 ./convert-hf-to-gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@"
./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./main "$@"
./llama-cli "$@"
elif [[ "$arg1" == '--finetune' || "$arg1" == '-f' ]]; then
./finetune "$@"
./llama-finetune "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@@ -22,11 +22,11 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
./quantize "$i" "${i/f16/q4_0}" q4_0
./llama-quantize "$i" "${i/f16/q4_0}" q4_0
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
./server "$@"
./llama-server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "

View File

@@ -12,8 +12,8 @@ build*/
models/*
/main
/quantize
/llama-cli
/llama-quantize
arm_neon.h
compile_commands.json

View File

@@ -26,3 +26,7 @@ indent_size = 2
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab
[examples/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset

50
.github/ISSUE_TEMPLATE/01-bug-low.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: Low Severity Bugs
description: Used to report low severity bugs in llama.cpp (e.g. cosmetic issues, non critical UI glitches)
title: "Bug: "
labels: ["bug-unconfirmed", "low severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@@ -0,0 +1,50 @@
name: Medium Severity Bug
description: Used to report medium severity bugs in llama.cpp (e.g. Malfunctioning Features but generally still useable)
title: "Bug: "
labels: ["bug-unconfirmed", "medium severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

50
.github/ISSUE_TEMPLATE/03-bug-high.yml vendored Normal file
View File

@@ -0,0 +1,50 @@
name: High Severity Bug
description: Used to report high severity bugs in llama.cpp (e.g. Malfunctioning features hindering important common workflow)
title: "Bug: "
labels: ["bug-unconfirmed", "high severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@@ -0,0 +1,50 @@
name: Critical Severity Bug
description: Used to report critical severity bugs in llama.cpp (e.g. Crashing, Corrupted, Dataloss)
title: "Bug: "
labels: ["bug-unconfirmed", "critical severity"]
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to fill out this bug report!
Please include information about your system, the steps to reproduce the bug,
and the version of llama.cpp that you are using.
If possible, please provide a minimal code example that reproduces the bug.
- type: textarea
id: what-happened
attributes:
label: What happened?
description: Also tell us, what did you expect to happen?
placeholder: Tell us what you see!
validations:
required: true
- type: textarea
id: version
attributes:
label: Name and Version
description: Which executable and which version of our software are you running? (use `--version` to get a version string)
placeholder: |
$./llama-cli --version
version: 2999 (42b4109e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
validations:
required: true
- type: dropdown
id: operating-system
attributes:
label: What operating system are you seeing the problem on?
multiple: true
options:
- Linux
- Mac
- Windows
- BSD
- Other? (Please let us know in description)
validations:
required: false
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

View File

@@ -0,0 +1,51 @@
name: Enhancement
description: Used to request enhancements for llama.cpp
title: "Feature Request: "
labels: ["enhancement"]
body:
- type: markdown
attributes:
value: |
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
- type: checkboxes
id: prerequisites
attributes:
label: Prerequisites
description: Please confirm the following before submitting your enhancement request.
options:
- label: I am running the latest code. Mention the version if possible as well.
required: true
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
required: true
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
required: true
- type: textarea
id: feature-description
attributes:
label: Feature Description
description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
placeholder: Detailed description of the enhancement
validations:
required: true
- type: textarea
id: motivation
attributes:
label: Motivation
description: Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
placeholder: Explanation of why this feature is needed and its benefits
validations:
required: true
- type: textarea
id: possible-implementation
attributes:
label: Possible Implementation
description: If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.
placeholder: Detailed description of potential implementation
validations:
required: false

52
.github/ISSUE_TEMPLATE/06-research.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Research
description: Track new technical research area
title: "Research: "
labels: ["research 🔬"]
body:
- type: markdown
attributes:
value: |
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
- type: checkboxes
id: research-stage
attributes:
label: Research Stage
description: Track general state of this research ticket
options:
- label: Background Research (Let's try to avoid reinventing the wheel)
- label: Hypothesis Formed (How do you think this will work and it's effect?)
- label: Strategy / Implementation Forming
- label: Analysis of results
- label: Debrief / Documentation (So people in the future can learn from us)
- type: textarea
id: background
attributes:
label: Previous existing literature and research
description: Whats the current state of the art and whats the motivation for this research?
- type: textarea
id: hypothesis
attributes:
label: Hypothesis
description: How do you think this will work and it's effect?
- type: textarea
id: implementation
attributes:
label: Implementation
description: Got an approach? e.g. a PR ready to go?
- type: textarea
id: analysis
attributes:
label: Analysis
description: How does the proposed implementation behave?
- type: textarea
id: logs
attributes:
label: Relevant log output
description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
render: shell

28
.github/ISSUE_TEMPLATE/07-refactor.yml vendored Normal file
View File

@@ -0,0 +1,28 @@
name: Refactor (Maintainers)
description: Used to track refactoring opportunities
title: "Refactor: "
labels: ["refactor"]
body:
- type: markdown
attributes:
value: |
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
- type: textarea
id: background-description
attributes:
label: Background Description
description: Please provide a detailed written description of the pain points you are trying to solve.
placeholder: Detailed description behind your motivation to request refactor
validations:
required: true
- type: textarea
id: possible-approaches
attributes:
label: Possible Refactor Approaches
description: If you have some idea of possible approaches to solve this problem. You may want to make it a todo list.
placeholder: Your idea of possible refactoring opportunity/approaches
validations:
required: false

View File

@@ -1,11 +0,0 @@
---
name: Bug template
about: Used to report bugs in llama.cpp
labels: ["bug-unconfirmed"]
assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).

11
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
blank_issues_enabled: true
contact_links:
- name: Got an idea?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
about: Pop it there. It may then become an enhancement ticket.
- name: Got a question?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
about: Ask a question there!
- name: Want to contribute?
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
about: Head to the contribution guide page of the wiki for areas you can help with

View File

@@ -1,28 +0,0 @@
---
name: Enhancement template
about: Used to request enhancements for llama.cpp
labels: ["enhancement"]
assignees: ''
---
# Prerequisites
Please answer the following questions for yourself before submitting an issue.
- [ ] I am running the latest code. Development is very rapid so there are no tagged versions as of now.
- [ ] I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- [ ] I [searched using keywords relevant to my issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/filtering-and-searching-issues-and-pull-requests) to make sure that I am creating a new issue that is not already open (or closed).
- [ ] I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new bug or useful enhancement to share.
# Feature Description
Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an enhancement.
# Motivation
Please provide a detailed written description of reasons why this feature is necessary and how it is useful to `llama.cpp` users.
# Possible Implementation
If you have an idea as to how it can be implemented, please write a detailed description. Feel free to give links to external sources or share visuals that might be helpful to understand the details better.

29
.github/labeler.yml vendored
View File

@@ -2,31 +2,31 @@
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml-kompute.h
- ggml-kompute.cpp
- ggml/include/ggml-kompute.h
- ggml/src/ggml-kompute.cpp
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
- ggml-metal.h
- ggml-metal.cpp
- ggml/include/ggml-metal.h
- ggml/src/ggml-metal.cpp
- README-metal.md
SYCL:
- changed-files:
- any-glob-to-any-file:
- ggml-sycl.h
- ggml-sycl.cpp
- ggml/include/ggml-sycl.h
- ggml/src/ggml-sycl.cpp
- README-sycl.md
Nvidia GPU:
- changed-files:
- any-glob-to-any-file:
- ggml-cuda.h
- ggml-cuda/**
- ggml/include/ggml-cuda.h
- ggml/src/ggml-cuda/**
Vulkan:
- changed-files:
- any-glob-to-any-file:
- ggml_vk_generate_shaders.py
- ggml-vulkan*
- ggml/ggml_vk_generate_shaders.py
- ggml/src/ggml-vulkan*
documentation:
- changed-files:
- any-glob-to-any-file:
@@ -42,7 +42,6 @@ build:
- cmake/**
- CMakeLists.txt
- CMakePresets.json
- codecov.yml
examples:
- changed-files:
- any-glob-to-any-file: examples/**
@@ -74,10 +73,10 @@ server:
ggml:
- changed-files:
- any-glob-to-any-file:
- ggml.c
- ggml.h
- ggml-*.c
- ggml-*.h
- ggml/include/ggml*.h
- ggml/src/ggml*.c
- ggml/src/ggml*.cpp
- ggml/src/ggml*.h
- ggml-cuda/**
nix:
- changed-files:

7
.github/pull_request_template.md vendored Normal file
View File

@@ -0,0 +1,7 @@
- [x] I have read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md)
- Self-reported review complexity:
- [ ] Low
- [ ] Medium
- [ ] High

View File

@@ -109,7 +109,7 @@ jobs:
run: |
set -eux
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
@@ -119,7 +119,7 @@ jobs:
-DLLAMA_FATAL_WARNINGS=OFF \
-DLLAMA_ALL_WARNINGS=OFF \
-DCMAKE_BUILD_TYPE=Release;
cmake --build build --config Release -j $(nproc) --target server
cmake --build build --config Release -j $(nproc) --target llama-server
- name: Download the dataset
id: download_dataset

View File

@@ -10,10 +10,10 @@ on:
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
paths: ['.github/workflows/build.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
@@ -47,7 +47,7 @@ jobs:
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON ..
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@@ -84,7 +84,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-latest-cmake-x64:
runs-on: macos-latest
runs-on: macos-12
steps:
- name: Clone
@@ -103,12 +103,10 @@ jobs:
id: cmake_build
run: |
sysctl -a
mkdir build
cd build
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF -DLLAMA_CURL=ON ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
id: cmake_test
@@ -224,7 +222,7 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON -DBUILD_SHARED_LIBS=OFF
cmake --build . --config Release -j $(nproc)
- name: Test
@@ -241,8 +239,8 @@ jobs:
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/main -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Determine tag name
id: tag
@@ -294,12 +292,22 @@ jobs:
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
mkdir build
cd build
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }} -DGGML_OPENMP=OFF
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
@@ -327,7 +335,7 @@ jobs:
run: |
mkdir build
cd build
cmake -DLLAMA_RPC=ON ..
cmake -DGGML_RPC=ON ..
cmake --build . --config Release -j $(nproc)
- name: Test
@@ -355,7 +363,7 @@ jobs:
run: |
mkdir build
cd build
cmake -DLLAMA_VULKAN=ON ..
cmake -DGGML_VULKAN=ON ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-hip:
@@ -376,13 +384,13 @@ jobs:
- name: Build with native CMake HIP support
id: cmake_build
run: |
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DLLAMA_HIPBLAS=ON
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIPBLAS=ON
cmake --build build --config Release -j $(nproc)
- name: Build with legacy HIP support
id: cmake_build_legacy_hip
run: |
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DLLAMA_HIPBLAS=ON
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIPBLAS=ON
cmake --build build2 --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
@@ -423,7 +431,7 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
@@ -464,10 +472,10 @@ jobs:
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON ..
cmake -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON ..
cmake --build . --config Release -j $(nproc)
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# TODO: build with GGML_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124
macOS-latest-make:
@@ -489,15 +497,15 @@ jobs:
env:
LLAMA_FATAL_WARNINGS: 1
run: |
LLAMA_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
GGML_NO_METAL=1 make -j $(sysctl -n hw.logicalcpu)
- name: Test
id: make_test
run: |
LLAMA_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
LLAMA_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
GGML_NO_METAL=1 make tests -j $(sysctl -n hw.logicalcpu)
GGML_NO_METAL=1 make test -j $(sysctl -n hw.logicalcpu)
# TODO: build with LLAMA_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# TODO: build with GGML_METAL=OFF because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7132125951/job/19422043567?pr=4359#step:5:6584
# would be great if we fix these
@@ -521,7 +529,7 @@ jobs:
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_METAL=OFF ..
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF ..
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@@ -551,13 +559,14 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-cmake-tvos:
runs-on: macos-latest
@@ -580,13 +589,14 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DLLAMA_METAL_EMBED_LIBRARY=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-swift:
runs-on: macos-latest
@@ -654,7 +664,7 @@ jobs:
- name: Build using make w/ OpenBLAS
shell: msys2 {0}
run: |
make LLAMA_OPENBLAS=1 -j $(nproc)
make GGML_OPENBLAS=1 -j $(nproc)
- name: Build using CMake
shell: msys2 {0}
@@ -670,16 +680,14 @@ jobs:
- name: Build using CMake w/ OpenBLAS
shell: msys2 {0}
run: |
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config ${{ matrix.build }} -j $(nproc)
windows-latest-cmake:
runs-on: windows-latest
runs-on: windows-2019
env:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
CLBLAST_VERSION: 1.6.0
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.3.261.1
@@ -687,27 +695,25 @@ jobs:
matrix:
include:
- build: 'rpc-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_RPC=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=ON'
- build: 'noavx-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX=OFF -DGGML_AVX2=OFF -DGGML_FMA=OFF -DBUILD_SHARED_LIBS=ON'
- build: 'avx2-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'avx-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
- build: 'avx512-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
- build: 'clblast-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_AVX512=ON -DBUILD_SHARED_LIBS=ON'
- build: 'openblas-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_BLAS=ON -DBUILD_SHARED_LIBS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'kompute-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
- build: 'vulkan-x64'
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
defines: '-DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
- build: 'llvm-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'msvc-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
steps:
- name: Clone
@@ -720,28 +726,7 @@ jobs:
id: clone_kompute
if: ${{ matrix.build == 'kompute-x64' }}
run: |
git submodule update --init kompute
- name: Download OpenCL SDK
id: get_opencl
if: ${{ matrix.build == 'clblast-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
mkdir $env:RUNNER_TEMP/opencl
tar.exe -xvf $env:RUNNER_TEMP/opencl.zip --strip-components=1 -C $env:RUNNER_TEMP/opencl
- name: Download CLBlast
id: get_clblast
if: ${{ matrix.build == 'clblast-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z
rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast
foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) {
$txt = Get-Content -Path $f -Raw
$txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
}
git submodule update --init ggml/src/kompute
- name: Download OpenBLAS
id: get_openblas
@@ -776,13 +761,6 @@ jobs:
cmake -S . -B build ${{ matrix.defines }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add clblast.dll
id: add_clblast_dll
if: ${{ matrix.build == 'clblast-x64' }}
run: |
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas-x64' }}
@@ -806,7 +784,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900
@@ -821,6 +799,7 @@ jobs:
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar
$sde = $(join-path $env:RUNNER_TEMP sde-external-${env:SDE_VERSION}-win/sde.exe)
cd build
$env:LLAMA_SKIP_TESTS_SLOW_ON_EMULATOR = 1
& $sde -future -- ctest -L main -C Release --verbose --timeout 900
- name: Determine tag name
@@ -851,7 +830,7 @@ jobs:
name: llama-bin-win-${{ matrix.build }}.zip
windows-latest-cmake-cuda:
runs-on: windows-latest
runs-on: windows-2019
strategy:
matrix:
@@ -865,8 +844,9 @@ jobs:
with:
fetch-depth: 0
- uses: Jimver/cuda-toolkit@v0.2.11
- name: Install CUDA toolkit
id: cuda-toolkit
uses: Jimver/cuda-toolkit@v0.2.15
with:
cuda: ${{ matrix.cuda }}
method: 'network'
@@ -877,7 +857,7 @@ jobs:
run: |
mkdir build
cd build
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUDA=ON -DBUILD_SHARED_LIBS=ON
cmake .. -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_CUDA=ON -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Determine tag name
@@ -1010,7 +990,7 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DLLAMA_HIPBLAS=ON
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON
cmake --build build --config Release
ios-xcode-build:
@@ -1061,7 +1041,7 @@ jobs:
# hypervisor: 'qemu'
# run: |
# sudo pkg update
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 openblas
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
release:

View File

@@ -1,40 +0,0 @@
name: Code Coverage
on: [push, pull_request]
env:
GGML_NLOOP: 3
GGML_N_THREADS: 1
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Dependencies
run: |
sudo apt-get update
sudo apt-get install build-essential gcc-8 lcov
- name: Build
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
- name: Run tests
run: CC=gcc-8 make test
- name: Generate coverage report
run: |
make coverage
make lcov-report
- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
env:
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
with:
files: lcov-report/coverage.info

View File

@@ -10,10 +10,11 @@
name: Publish Docker image
on:
pull_request:
#pull_request:
push:
branches:
- master
paths: ['.github/workflows/docker.yml', '.devops/*.Dockerfile', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.cuh', '**/*.swift', '**/*.m', '**/*.metal']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
@@ -22,7 +23,7 @@ concurrency:
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
if: github.event.pull_request.draft == false
#if: github.event.pull_request.draft == false
runs-on: ubuntu-latest
env:
@@ -30,21 +31,18 @@ jobs:
strategy:
matrix:
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light", dockerfile: ".devops/llama-cli.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/llama-server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-cuda", dockerfile: ".devops/llama-cli-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/llama-server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/llama-cli-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/llama-server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# Note: the full-rocm image is failing due to a "no space left on device" error. It is disabled for now to allow the workflow to complete.
#- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/llama-cli-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/llama-server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v4

View File

@@ -16,11 +16,9 @@ on:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
pull_request_target:
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
schedule:
- cron: '2 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
@@ -32,7 +30,7 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
@@ -89,16 +87,30 @@ jobs:
exit 1
fi
- name: Build
id: cmake_build
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
@@ -115,7 +127,7 @@ jobs:
server-windows:
runs-on: windows-latest
runs-on: windows-2019
steps:
- name: Clone
@@ -138,7 +150,7 @@ jobs:
id: cmake_build
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
id: setup_python

155
.gitignore vendored
View File

@@ -1,126 +1,125 @@
*.o
# Extensions
*.a
*.so
*.bat
*.bin
*.dll
*.dot
*.etag
*.exe
*.gcda
*.gcno
*.gcov
*.gguf
*.gguf.json
*.bin
*.exe
*.dll
*.log
*.gcov
*.gcno
*.gcda
*.dot
*.bat
*.tmp
*.metallib
*.etag
*.lastModified
.DS_Store
.build/
*.log
*.metallib
*.o
*.so
*.tmp
# IDE / OS
.cache/
.ccls-cache/
.direnv/
.DS_Store
.envrc
.idea/
.swiftpm
.venv
.clang-tidy
.vs/
.vscode/
.idea/
nppBackup
ggml-metal-embed.metal
lcov-report/
# Coverage
gcovr-report/
lcov-report/
# Build Artifacts
tags
.build/
build*
!build-info.cmake
!build-info.cpp.in
!build-info.sh
!build.zig
/libllama.so
/llama-*
android-ndk-*
arm_neon.h
cmake-build-*
CMakeSettings.json
compile_commands.json
ggml-metal-embed.metal
llama-batched-swift
/rpc-server
out/
tmp/
# CI
!.github/workflows/*.yml
# Models
models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
/Pipfile
/baby-llama
/beam-search
/benchmark-matmult
/convert-llama2c-to-ggml
/embd-input-test
/embedding
/eval-callback
/gguf
/gguf-llama-simple
/gguf-split
/gritlm
/imatrix
/infill
/libllama.so
/llama-bench
/llava-cli
/lookahead
/lookup
/lookup-create
/lookup-merge
/lookup-stats
/main
/metal
/passkey
/perplexity
/q8dot
/quantize
/quantize-stats
/result
/save-load-state
/server
/simple
/batched
/batched-bench
/export-lora
/finetune
/retrieval
/speculative
/parallel
/train-text-from-scratch
/tokenize
/vdot
/common/build-info.cpp
arm_neon.h
compile_commands.json
CMakeSettings.json
__pycache__
dist
# Zig
zig-out/
zig-cache/
# Logs
ppl-*.txt
qnt-*.txt
perf-*.txt
# Examples
examples/jeopardy/results.txt
examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts
!examples/*/*/*.kts
!examples/sycl/*.bat
!examples/sycl/*.sh
poetry.lock
# Python
/.venv
__pycache__/
*/poetry.lock
poetry.toml
nppBackup
# Nix
/result
# Test binaries
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-backend-ops
/tests/test-double-float
/tests/test-grad0
/tests/test-grammar-parser
/tests/test-llama-grammar
/tests/test-opt
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-rope
/tests/test-sampling
/tests/test-tokenizer-0
/tests/test-tokenizer-1-spm
/tests/test-tokenizer-1-bpe
/tests/test-rope
/tests/test-backend-ops
/tests/test-tokenizer-1-spm
# Scripts
!/scripts/install-oneapi.bat

2
.gitmodules vendored
View File

@@ -1,3 +1,3 @@
[submodule "kompute"]
path = kompute
path = ggml/src/kompute
url = https://github.com/nomic-ai/kompute.git

129
AUTHORS
View File

@@ -1,8 +1,9 @@
# date: Tue Apr 9 09:17:14 EEST 2024
# date: Wed Jun 26 19:36:34 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
0xspringtime <110655352+0xspringtime@users.noreply.github.com>
20kdc <asdd2808@gmail.com>
2f38b454 <dxf@protonmail.com>
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
@@ -11,14 +12,18 @@ AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abheek Gulati <abheekg@hotmail.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abhishek Gopinath K <31348521+overtunned@users.noreply.github.com>
Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
@@ -35,19 +40,24 @@ Ali Nehzat <ali.nehzat@thanks.dev>
Ali Tariq <ali.tariq@10xengineers.ai>
Alon <alonfaraj@gmail.com>
AlpinDale <52078762+AlpinDale@users.noreply.github.com>
Amir <amir_zia@outlook.com>
AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Downing <andrew2085@gmail.com>
Andrew Duffy <a10y@users.noreply.github.com>
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
Andy Tai <andy-tai@users.noreply.github.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Artem <guinmoon@gmail.com>
Artem Zinnatullin <ceo@abstractny.gay>
Artyom Lebedev <vagran.ast@gmail.com>
Asbjørn Olling <asbjornolling@gmail.com>
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
Ashish <1856117+ashishdatta@users.noreply.github.com>
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
Ashraful Islam <ashraful.meche@gmail.com>
Atsushi Tatsuma <yoshoku@outlook.com>
@@ -57,35 +67,46 @@ BADR <contact@pythops.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
Bartowski <ckealty1182@gmail.com>
Behnam M <58621210+ibehnam@users.noreply.github.com>
Ben Ashbaugh <ben.ashbaugh@intel.com>
Ben Garney <bengarney@users.noreply.github.com>
Ben Siraphob <bensiraphob@gmail.com>
Ben Williams <ben@719ben.com>
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Bernat Vadell <hounter.caza@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Branden Butler <bwtbutler@hotmail.com>
Brian <mofosyne@gmail.com>
Bruce MacDonald <brucewmacdonald@gmail.com>
Bryan Honof <bryanhonof@gmail.com>
CJ Pais <cj@cjpais.com>
CRD716 <crd716@gmail.com>
Calvin Laurenson <calvin@laurenson.dev>
Cameron <csteele@steelecameron.com>
Cameron Kaiser <classilla@users.noreply.github.com>
Carolinabanana <140120812+Carolinabanana@users.noreply.github.com>
Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
Chad Brewbaker <crb002@gmail.com>
Chao Jiang <jc19chaoj@zoho.com>
Cheng Shao <terrorjack@type.dance>
Chris Elrod <elrodc@gmail.com>
Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Kögler <ck3d@gmx.de>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clint Herron <hanclinto@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
DAN™ <dranger003@gmail.com>
Damian Stewart <d@damianstewart.com>
@@ -95,8 +116,12 @@ Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Drake <drake@endlessos.org>
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Kennedy <dakennedyd@gmail.com>
@@ -104,10 +129,13 @@ David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
David Sommers <12738+databyte@users.noreply.github.com>
David Yang <davidyang6us@gmail.com>
Dawid Potocki <github@dawidpotocki.com>
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
Dean <Dean.Sinaean@gmail.com>
Deins <deinsegle@gmail.com>
Deven Mistry <31466137+deven367@users.noreply.github.com>
Didzis Gosko <didzis@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
@@ -116,8 +144,11 @@ Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Ebey Abraham <ebey97@gmail.com>
Ed Lee <edilee@mozilla.com>
Ed Lepedus <ed.lepedus@googlemail.com>
Eddie-Wang <wangjinheng1120@163.com>
Edward Taylor <edeetee@gmail.com>
Elaine <elaine.zosa@gmail.com>
Elbios <141279586+Elbios@users.noreply.github.com>
Elton Kola <eltonkola@gmail.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Sommerlade <es0m@users.noreply.github.com>
@@ -143,37 +174,47 @@ Firat <firatkiral@gmail.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
Frank Mai <thxcode0824@gmail.com>
FrankHB <frankhb1989@gmail.com>
Fred Douglas <43351173+fredlas@users.noreply.github.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
Gary Mulder <gjmulder@gmail.com>
Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
GiviMAD <GiviMAD@users.noreply.github.com>
Govlzkoy <gotope@users.noreply.github.com>
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
HanishKVC <hanishkvc@gmail.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
Harald Fernengel <harald.fernengel@here.com>
Hatsune Miku <129688334+at8u@users.noreply.github.com>
HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
Hoang Nguyen <hugo53@users.noreply.github.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Howard Su <howard0su@gmail.com>
Hua Jiang <allenhjiang@outlook.com>
Huawei Lin <huaweilin.cs@gmail.com>
Hugo Roussel <hugo.rous@gmail.com>
Ian Bull <irbull@eclipsesource.com>
Ian Bull <irbull@gmail.com>
Ian Scrivener <github@zilogy.asia>
@@ -190,8 +231,10 @@ Ivan Stepanov <ivanstepanovftw@gmail.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jaemin Son <woalsdnd@gmail.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
James A Capozzoli <157492257+jac-jim@users.noreply.github.com>
James Reynolds <magnusviri@users.noreply.github.com>
Jan Boon <jan.boon@kaetemi.be>
Jan Boon <kaetemi@gmail.com>
@@ -205,12 +248,17 @@ Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
Jed Fox <git@jedfox.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jeximo <jeximo@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
Joan Fontanals <joan.fontanals.martinez@jina.ai>
Johan <JohanAR@users.noreply.github.com>
Johannes Gäßler <johannesg@5d6.de>
Johannes Rudolph <johannes.rudolph@gmail.com>
John <78893154+cmp-nct@users.noreply.github.com>
@@ -221,15 +269,19 @@ Jonas Wunderlich <32615971+jonas-w@users.noreply.github.com>
Jorge A <161275481+jorgealias@users.noreply.github.com>
Jose Maldonado <63384398+yukiteruamano@users.noreply.github.com>
Joseph Stahl <1269177+josephst@users.noreply.github.com>
Josh Ramer <josh.ramer@icloud.com>
Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
Junyang Lin <justinlin930319@hotmail.com>
Juraj Bednar <juraj@bednar.io>
Justin Parker <jparkerweb@gmail.com>
Justin Suess <justin.suess@westpoint.edu>
Justina Cho <justcho5@gmail.com>
Justine Tunney <jtunney@gmail.com>
Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
@@ -242,6 +294,7 @@ Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Keiichi Tabata <keiichi.tabata@outlook.com>
Kenvix ⭐ <kenvixzure@live.com>
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Kevin Gibbons <bakkot@gmail.com>
Kevin Ji <1146876+kevinji@users.noreply.github.com>
Kevin Kwok <antimatter15@gmail.com>
Kevin Lo <kevlo@kevlo.org>
@@ -257,6 +310,7 @@ Laura <Tijntje_7@msn.com>
Lee <44310445+lx200916@users.noreply.github.com>
Lee Drake <b.lee.drake@gmail.com>
Leng Yue <lengyue@lengyue.me>
Leon Knauer <git@leonknauer.com>
LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
Leonardo Neumann <leonardo@neumann.dev.br>
Li Tan <tanliboy@gmail.com>
@@ -265,20 +319,26 @@ LoganDark <github@logandark.mozmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Maarten ter Huurne <maarten@treewalker.org>
Mack Straight <eiz@users.noreply.github.com>
Maël Kerbiriou <m431.kerbiriou@gmail.com>
MaggotHATE <clay1326@gmail.com>
Manuel <44313466+makuche@users.noreply.github.com>
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
Marco Matthies <71844+marcom@users.noreply.github.com>
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Marian Cepok <marian.cepok@gmail.com>
Mark Fairbairn <thebaron88@gmail.com>
Marko Tasic <mtasic85@gmail.com>
Markus Tavenrath <mtavenrath@users.noreply.github.com>
Martin Delille <martin@delille.org>
Martin Krasser <krasserm@googlemail.com>
Martin Schwaighofer <mschwaig@users.noreply.github.com>
Marvin Gießing <marvin.giessing@gmail.com>
Masaya, Kato <62578291+msy-kato@users.noreply.github.com>
MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
@@ -287,8 +347,11 @@ Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
Matt Pulver <matt.pulver@heavy.ai>
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
Mattheus Chediak <shammcity00@gmail.com>
Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
@@ -300,32 +363,41 @@ Michael Kesper <mkesper@schokokeks.org>
Michael Klimenko <mklimenko29@gmail.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michael de Gans <michael.john.degans@gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Mikko Juola <mikjuo@gmail.com>
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Mirko185 <mirkosig@gmail.com>
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
Nathan Epstein <nate2@umbc.edu>
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
Nebula <infinitewormhole@gmail.com>
Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang <zhang.jianyu@outlook.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nicolás Pérez <nicolas_perez@brown.edu>
Nigel Bosch <pnigelb@gmail.com>
Niklas Korz <niklas@niklaskorz.de>
Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondřej Čertík <ondrej@certik.us>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Patrice Ferlet <metal3d@gmail.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavol Rusnak <pavol@rusnak.io>
Pedro Cuenca <pedro@huggingface.co>
@@ -343,9 +415,14 @@ RJ Adriaansen <adriaansen@eshcc.eur.nl>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com>
Raj Hammeer Singh Hada <hammeerraj@gmail.com>
Ralph Soika <ralph.soika@imixs.com>
Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Reinforce-II <fate@eastal.com>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
@@ -373,6 +450,7 @@ Rowan Hart <rowanbhart@gmail.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SakuraUmi <yukinon244@gmail.com>
Salvador E. Tropea <stropea@inti.gob.ar>
@@ -386,6 +464,7 @@ SebastianApel <13675545+SebastianApel@users.noreply.github.com>
Senemu <10880819+Senemu@users.noreply.github.com>
Sergey Alirzaev <zl29ah@gmail.com>
Sergio López <slp@sinrega.org>
Sertaç Özercan <852750+sozercan@users.noreply.github.com>
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
ShadovvBeast <ShadovvBeast@gmail.com>
Shakhar Dasgupta <shakhardasgupta@gmail.com>
@@ -394,6 +473,7 @@ Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
Shouzheng Liu <lshzh.hi@gmail.com>
Shuichi Tsutsumi <shuichi0526@gmail.com>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Willison <swillison@gmail.com>
Siwen Yu <yusiwen@gmail.com>
@@ -405,11 +485,14 @@ Someone <sergei.kozlukov@aalto.fi>
Someone Serge <sergei.kozlukov@aalto.fi>
Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Spencer Sutton <spencersutton@users.noreply.github.com>
Srihari-mcw <96763064+Srihari-mcw@users.noreply.github.com>
Srinivas Billa <nivibilla@gmail.com>
Stefan Sydow <stefan@sydow.email>
Steffen Röcker <sroecker@gmail.com>
Stephan Walter <stephan@walter.name>
Stephen Nichols <snichols@users.noreply.github.com>
Steve Grubb <ausearch.1@gmail.com>
Steven Prichard <spprichard20@gmail.com>
Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
@@ -434,16 +517,19 @@ Tom C <tom.corelis@gmail.com>
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Tomas <tom.tomas.36478119@gmail.com>
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
Tristan Druyen <tristan@vault81.mozmail.com>
Tristan Ross <rosscomputerguy@protonmail.com>
Tungsten842 <886724vf@anonaddy.me>
Tungsten842 <quantmint@protonmail.com>
Tushar <ditsuke@protonmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Ulrich Drepper <drepper@gmail.com>
Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
@@ -455,7 +541,9 @@ Weird Constructor <weirdconstructor@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
Willy Tarreau <w@1wt.eu>
Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com>
Wu Jian Ping <wujjpp@hotmail.com>
Wu Jian Ping <wujp@greatld.com>
Xiake Sun <xiake.sun@intel.com>
@@ -466,6 +554,8 @@ Xiaoyi Chen <cxychina@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yaroslav <yaroslav.yashin@me.com>
Yazan Agha-Schrader <mountaiin@icloud.com>
Yiming Cui <conandiy@vip.qq.com>
Yishuo Wang <MeouSker77@outlook.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
@@ -477,6 +567,7 @@ Zane Shannon <z@zcs.me>
Zay <95888118+isaiahbjork@users.noreply.github.com>
Zenix <zenixls2@gmail.com>
Zhang Peiyuan <a1286225768@gmail.com>
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
@@ -484,14 +575,18 @@ Zsapi <martin1.zsapka@gmail.com>
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
adel boussaken <netdur@gmail.com>
afrideva <95653597+afrideva@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
akawrykow <142945436+akawrykow@users.noreply.github.com>
alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
alwqx <kenan3015@gmail.com>
amd-lalithnc <lalithnc@amd.com>
andrijdavid <david@geek.mg>
anon998 <131767832+anon998@users.noreply.github.com>
anzz1 <anzz1@live.com>
apaz <aarpazdera@gmail.com>
apcameron <37645737+apcameron@users.noreply.github.com>
arch-btw <57669023+arch-btw@users.noreply.github.com>
arcrank <arcrank@gmail.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
@@ -514,13 +609,17 @@ cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
coezbek <c.oezbek@gmail.com>
comex <comexk@gmail.com>
compilade <113953597+compilade@users.noreply.github.com>
compilade <git@compilade.net>
cpumaxx <163466046+cpumaxx@users.noreply.github.com>
crasm <crasm@git.vczf.net>
crasm <crasm@git.vczf.us>
daboe01 <daboe01@googlemail.com>
david raistrick <keen99@users.noreply.github.com>
ddh0 <dylanhalladay02@icloud.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
divinity76 <divinity76@gmail.com>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
ds5t5 <145942675+ds5t5@users.noreply.github.com>
@@ -529,6 +628,7 @@ eastriver <lee@eastriver.dev>
ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
@@ -539,6 +639,7 @@ h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
hankcs <cnhankmc@gmail.com>
hoangmit <hoangmit@users.noreply.github.com>
hongbo.mo <352280764@qq.com>
hopkins385 <98618192+hopkins385@users.noreply.github.com>
howlger <eclipse@voormann.de>
howlger <github@voormann.de>
hutli <6594598+hutli@users.noreply.github.com>
@@ -549,14 +650,22 @@ hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jiez <373447296@qq.com>
jneem <joeneeman@gmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
johnson442 <56517414+johnson442@users.noreply.github.com>
jojorne <jojorne@users.noreply.github.com>
jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jukofyork <69222624+jukofyork@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
kalomaze <66376113+kalomaze@users.noreply.github.com>
kang <tpdns9032100@gmail.com>
@@ -575,11 +684,15 @@ ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
loonerin <132926317+loonerin@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
maor-ps <154728172+maor-ps@users.noreply.github.com>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
@@ -593,15 +706,19 @@ ngc92 <7938269+ngc92@users.noreply.github.com>
nhamanasu <45545786+nhamanasu@users.noreply.github.com>
niansa/tuxifan <anton-sa@web.de>
niansa/tuxifan <tuxifan@posteo.de>
nickp27 <nb.porter@gmail.com>
ningshanwutuobang <ningshanwutuobang@gmail.com>
nold <Nold360@users.noreply.github.com>
nopperl <54780682+nopperl@users.noreply.github.com>
nusu-github <29514220+nusu-github@users.noreply.github.com>
olexiyb <olexiyb@gmail.com>
omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
@@ -614,16 +731,19 @@ rhuddleston <ryan.huddleston@percona.com>
rimoliga <53384203+rimoliga@users.noreply.github.com>
runfuture <runfuture@users.noreply.github.com>
sandyiscool <sandyiscool@gmail.com>
sasha0552 <admin@sasha0552.org>
semidark <me@semidark.net>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
strawberrymelonpanda <152940198+strawberrymelonpanda@users.noreply.github.com>
swittk <switt1995@gmail.com>
takov751 <40316768+takov751@users.noreply.github.com>
tarcey <cey.tarik@gmail.com>
@@ -636,12 +756,16 @@ uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
valiray <133289098+valiray@users.noreply.github.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
whoreson <139810751+whoreson@users.noreply.github.com>
woachk <24752637+woachk@users.noreply.github.com>
wonjun Jang <strutive07@gmail.com>
woodx <124784234+woodx9@users.noreply.github.com>
wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
@@ -649,7 +773,10 @@ xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
yuiseki <yuiseki@gmail.com>
zakkor <edward.partenie@gmail.com>
zhangkaihuo <zhangkaihuo@gmail.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zhouwg <zhouwg2000@gmail.com>
zrm <trustiosity.zrm@gmail.com>
Ștefan-Gabriel Muscalu <legraphista@users.noreply.github.com>
源文雨 <41315874+fumiama@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
{
{
"version": 4,
"configurePresets": [
{
@@ -11,10 +11,23 @@
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{
"name": "sycl-base",
"hidden": true,
"generator": "Ninja",
"binaryDir": "${sourceDir}/build-${presetName}",
"cacheVariables": {
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"CMAKE_CXX_COMPILER": "icx",
"CMAKE_C_COMPILER": "cl",
"GGML_SYCL": "ON",
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{
"name": "arm64-windows-msvc", "hidden": true,
@@ -35,11 +48,18 @@
},
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
]
}

14
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,14 @@
# Contributing Guidelines
## Checklist
* Make sure your PR follows the [coding guidelines](https://github.com/ggerganov/llama.cpp/blob/master/README.md#coding-guidelines)
* Test your changes using the commands in the [`tests`](tests) folder. For instance, running the `./tests/test-backend-ops` command tests different backend implementations of the GGML library
* Execute [the full CI locally on your machine](ci/README.md) before publishing
## PR formatting
* Please rate the complexity of your PR (i.e. `Review Complexity : Low`, `Review Complexity : Medium`, `Review Complexity : High`). This makes it easier for maintainers to triage the PRs.
- The PR template has a series of review complexity checkboxes `[ ]` that you can mark as `[X]` for your conveience. Refer to [About task lists](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/about-task-lists) for more information.
* If the pull request only contains documentation changes (e.g., updating READMEs, adding new wiki pages), please add `[no ci]` to the commit title. This will skip unnecessary CI checks and help reduce build times.
* When squashing multiple commits on merge, use the following format for your commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : Fix typo in utils.py (#1234)`

1132
Makefile

File diff suppressed because it is too large Load Diff

View File

@@ -3,14 +3,13 @@
import PackageDescription
var sources = [
"ggml.c",
"sgemm.cpp",
"llama.cpp",
"unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
"src/llama.cpp",
"src/unicode.cpp",
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.c",
"ggml/src/ggml-quants.c",
]
var resources: [Resource] = []
@@ -26,8 +25,8 @@ var cSettings: [CSetting] = [
]
#if canImport(Darwin)
sources.append("ggml-metal.m")
resources.append(.process("ggml-metal.metal"))
sources.append("ggml/src/ggml-metal.m")
resources.append(.process("ggml/src/ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
@@ -63,8 +62,6 @@ let package = Package(
"models",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
],
sources: sources,

View File

@@ -1,6 +1,7 @@
# llama.cpp for SYCL
- [Background](#background)
- [Recommended Release](#recommended-release)
- [News](#news)
- [OS](#os)
- [Hardware](#hardware)
@@ -29,10 +30,25 @@ The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based o
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## Recommended Release
The SYCL backend would be broken by some PRs due to no online CI.
The following release is verified with good quality:
|Commit ID|Tag|Release|Verified Platform|
|-|-|-|-|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
## News
- 2024.5
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
- Arch Linux is verified successfully.
- 2024.4
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
@@ -54,10 +70,10 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
| Windows | Support | Windows 11 |
| OS | Status | Verified |
|---------|---------|------------------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
| Windows | Support | Windows 11 |
## Hardware
@@ -70,14 +86,14 @@ It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS,
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
- **Memory**
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`.
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
@@ -99,14 +115,14 @@ The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command.
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="GGML_SYCL_F16=ON"` argument from the previous command.
You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
### Run container
@@ -228,10 +244,10 @@ source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
@@ -248,10 +264,10 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
@@ -275,7 +291,7 @@ source /opt/intel/oneapi/setvars.sh
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```sh
./build/bin/ls-sycl-device
./build/bin/llama-ls-sycl-device
```
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
```
@@ -313,7 +329,7 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
@@ -324,7 +340,7 @@ or run by script:
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
Otherwise, you can run the script:
@@ -394,15 +410,9 @@ Output (example):
4. Install build tools
a. Download & install cmake for Windows: https://cmake.org/download/
a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)
b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
- Extract `w64devkit` on your pc.
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
### II. Build llama.cpp
@@ -412,10 +422,10 @@ On the oneAPI command line window, step into the llama.cpp main directory and ru
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON
cmake --build build --config Release -j
```
@@ -425,9 +435,23 @@ Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former in
.\examples\sycl\win-build-sycl.bat
```
Or, use CMake presets to build:
```sh
cmake --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
Or, you can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
*Notes:*
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`.
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
### III. Run the inference
@@ -488,13 +512,13 @@ Examples:
- Use device 0:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
Otherwise, run the following wrapper script:
@@ -520,9 +544,9 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|--------------------|-----------------------------------|---------------------------------------------|
| LLAMA_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
| LLAMA_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |

334
README.md
View File

@@ -2,14 +2,20 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT) [![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg?branch=master&event=schedule)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![Conan Center](https://shields.io/conan/v/llama-cpp)](https://conan.io/center/llama-cpp)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
### Recent API changes
- [2024 Jun 26] The source code and CMake build scripts have been restructured https://github.com/ggerganov/llama.cpp/pull/8006
- [2024 Apr 21] `llama_token_to_piece` can now optionally render special tokens https://github.com/ggerganov/llama.cpp/pull/6807
- [2024 Apr 4] State and session file functions reorganized under `llama_state_*` https://github.com/ggerganov/llama.cpp/pull/6341
- [2024 Mar 26] Logits and embeddings API updated for compactness https://github.com/ggerganov/llama.cpp/pull/6122
@@ -20,7 +26,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
@@ -50,7 +57,6 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
<li><a href="#quantization">Quantization</a></li>
<li><a href="#interactive-mode">Interactive mode</a></li>
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
<li><a href="#instruct-mode">Instruct mode</a></li>
<li><a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a></li>
<li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
<li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
@@ -74,7 +80,7 @@ variety of hardware - locally and in the cloud.
- AVX, AVX2 and AVX512 support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
- Vulkan, SYCL, and (partial) OpenCL backend support
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
Since its [inception](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022), the project has
@@ -102,6 +108,7 @@ Typically finetunes of the base models below are supported as well.
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
@@ -147,6 +154,8 @@ Typically finetunes of the base models below are supported as well.
[llama.cpp web server](./examples/server) is a lightweight [OpenAI API](https://github.com/openai/openai-openapi) compatible HTTP server that can be used to serve local models and easily connect them to existing clients.
[simplechat](./examples/server/public_simplechat) is a simple chat client, which can be used to chat with the model exposed using above web server (use --path to point to simplechat), from a local web browser.
**Bindings:**
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
@@ -188,6 +197,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [RAGNA Desktop](https://ragna.app/) (proprietary)
- [RecurseChat](https://recurse.chat/) (proprietary)
- [semperai/amica](https://github.com/semperai/amica)
- [withcatai/catai](https://github.com/withcatai/catai)
@@ -200,19 +210,26 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
- [AIKit](https://github.com/sozercan/aikit) (MIT)
- [LARS - The LLM & Advanced Referencing Solution](https://github.com/abgulati/LARS) (AGPL)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
**Tools:**
- [akx/ggify](https://github.com/akx/ggify) download PyTorch models from HuggingFace Hub and convert them to GGML
- [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
**Infrastructure:**
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
---
Here is a typical run using LLaMA v2 13B on M2 Ultra:
```
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S: Darwin
I UNAME_P: arm
@@ -315,8 +332,6 @@ In order to build llama.cpp you have four different options.
make
```
**Note**: for `Debug` builds, run `make LLAMA_DEBUG=1`
- On Windows:
1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
@@ -328,40 +343,38 @@ In order to build llama.cpp you have four different options.
make
```
- Notes:
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `make -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, run `make LLAMA_DEBUG=1`
- Using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
```bash
cmake -B build
cmake --build build --config Release
```
**Note**: for `Debug` builds, there are two cases:
**Notes**:
- Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
- For faster compilation, add the `-j` argument to run multiple jobs in parallel. For example, `cmake --build build --config Release -j 8` will run 8 jobs in parallel.
- For faster repeated compilation, install [ccache](https://ccache.dev/).
- For debug builds, there are two cases:
1. Single-config generators (e.g. default = `Unix Makefiles`; note that they just ignore the `--config` flag):
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
- Multi-config generators (`-G` param set to Visual Studio, XCode...):
2. Multi-config generators (`-G` param set to Visual Studio, XCode...):
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
- Using `Zig` (version 0.11 or later):
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
it's also possible to cross compile for other operating systems and architectures:
```bash
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
```
The `zig targets` command will give you valid options to use.
- Using `gmake` (FreeBSD):
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
@@ -369,27 +382,54 @@ In order to build llama.cpp you have four different options.
3. Install compilation dependencies.
```bash
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
opencl clblast openblas
sudo pkg install gmake automake autoconf pkgconf llvm15 openblas
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
```
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
the instructions for use and activate this options in this document below.
### Homebrew
On Mac and Linux, the homebrew package manager can be used via
```
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
### Nix
On Mac and Linux, the Nix package manager can be used via
```
nix profile install nixpkgs#llama-cpp
```
For flake enabled installs.
Or
```
nix-env --file '<nixpkgs>' --install --attr llama-cpp
```
For non-flake enabled installs.
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
#### Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
```
flox install llama-cpp
```
Flox follows the nixpkgs build of llama.cpp.
### Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
To disable the Metal build at compile time use the `GGML_NO_METAL=1` flag or the `GGML_METAL=OFF` cmake option.
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
argument.
### BLAS Build
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS. There are currently several different BLAS implementations available for build and use:
- #### Accelerate Framework:
@@ -402,7 +442,7 @@ Building the program with BLAS support may lead to some performance improvements
- Using `make`:
- On Linux:
```bash
make LLAMA_OPENBLAS=1
make GGML_OPENBLAS=1
```
- On Windows:
@@ -417,13 +457,13 @@ Building the program with BLAS support may lead to some performance improvements
8. From here you can run:
```bash
make LLAMA_OPENBLAS=1
make GGML_OPENBLAS=1
```
- Using `CMake` on Linux:
```bash
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release
```
@@ -442,10 +482,10 @@ Building the program with BLAS support may lead to some performance improvements
Building through oneAPI compilers will make avx_vnni instruction set available for intel processors that do not support avx512 and avx512_vnni. Please note that this build config **does not support Intel GPU**. For Intel GPU support, please refer to [llama.cpp for SYCL](./README-sycl.md).
- Using manual oneAPI installation:
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
By default, `GGML_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DGGML_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. Otherwise please install oneAPI and follow the below steps:
```bash
source /opt/intel/oneapi/setvars.sh # You can skip this step if in oneapi-basekit docker image, only required for manual installation
cmake -B build -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_NATIVE=ON
cmake -B build -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_NATIVE=ON
cmake --build build --config Release
```
@@ -462,25 +502,28 @@ Building the program with BLAS support may lead to some performance improvements
- Using `make`:
```bash
make LLAMA_CUDA=1
make GGML_CUDA=1
```
- Using `CMake`:
```bash
cmake -B build -DLLAMA_CUDA=ON
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|--------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
- #### hipBLAS
@@ -490,15 +533,15 @@ Building the program with BLAS support may lead to some performance improvements
- Using `make`:
```bash
make LLAMA_HIPBLAS=1
make GGML_HIPBLAS=1
```
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON`.
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
Note that if you get the following error:
@@ -512,19 +555,19 @@ Building the program with BLAS support may lead to some performance improvements
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `make` (example for target gfx1030, build with 16 CPU threads):
```bash
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
make -j16 GGML_HIPBLAS=1 GGML_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
@@ -535,116 +578,11 @@ Building the program with BLAS support may lead to some performance improvements
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|-------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### CLBlast
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
- For Ubuntu, Debian, and Fedora the packages `opencl-headers`, `ocl-icd` may be needed.
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
- <details>
<summary>Installing the OpenCL SDK from source</summary>
```sh
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
cd OpenCL-SDK
cmake -B build -DBUILD_DOCS=OFF \
-DBUILD_EXAMPLES=OFF \
-DBUILD_TESTING=OFF \
-DOPENCL_SDK_BUILD_SAMPLES=OFF \
-DOPENCL_SDK_TEST_SAMPLES=OFF
cmake --build build
cmake --install build --prefix /some/path
```
</details>
##### Installing CLBlast
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
Linux packaging:
Fedora Linux:
```bash
sudo dnf install clblast
```
Alternatively, they may be built from source.
- <details>
<summary>Windows:</summary>
```cmd
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
git clone https://github.com/CNugteren/CLBlast.git
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/CLBlast
```
(note: `--config Release` at build time is the default and only relevant for Visual Studio builds - or multi-config Ninja builds)
- <details>
<summary>Unix:</summary>
```sh
git clone https://github.com/CNugteren/CLBlast.git
cd CLBlast
cmake -B build -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
cmake --build build --config Release
cmake --install build --prefix /some/path
```
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
</details>
##### Building Llama with CLBlast
- Build with make:
```sh
make LLAMA_CLBLAST=1
```
- CMake (Unix):
```sh
cmake -B build -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
cmake --build build --config Release
```
- CMake (Windows):
```cmd
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
cmake -B build -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
cmake --build build --config Release
cmake --install build --prefix C:/LlamaCPP
```
##### Running Llama with CLBlast
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`.
The selection can be a number (starting from 0) or a text string to search:
```sh
GGML_OPENCL_PLATFORM=1 ./main ...
GGML_OPENCL_DEVICE=2 ./main ...
GGML_OPENCL_PLATFORM=Intel ./main ...
GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
```
The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful.
Using the variables it is possible to select a CPU-based driver as well, if so desired.
You can get a list of platforms and devices from the `clinfo -l` command, etc.
| Option | Legal values | Default | Description |
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
- #### Vulkan
@@ -654,7 +592,7 @@ Building the program with BLAS support may lead to some performance improvements
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/main-vulkan.Dockerfile .
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
@@ -675,15 +613,17 @@ Building the program with BLAS support may lead to some performance improvements
vulkaninfo
```
Alternatively your package manager might be able to provide the appropiate libraries. For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
Alternatively your package manager might be able to provide the appropriate libraries.
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
Then, build llama.cpp using the cmake command below:
```bash
cmake -B build -DLLAMA_VULKAN=1
cmake -B build -DGGML_VULKAN=1
cmake --build build --config Release
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/main -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
# You should see in the output, ggml_vulkan detected your GPU. For example:
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
@@ -696,7 +636,8 @@ Building the program with BLAS support may lead to some performance improvements
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derivatives.
It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
```bash
# obtain the official LLaMA model weights and place them in ./models
@@ -713,23 +654,20 @@ ls ./models
python3 -m pip install -r requirements.txt
# convert the model to ggml FP16 format
python3 convert.py models/mymodel/
# [Optional] for models using BPE tokenizers
python convert.py models/mymodel/ --vocab-type bpe
python3 convert-hf-to-gguf.py models/mymodel/
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
./llama-quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
# update the gguf filetype to current version if older version is now unsupported
./quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
./llama-quantize ./models/mymodel/ggml-model-Q4_K_M.gguf ./models/mymodel/ggml-model-Q4_K_M-v2.gguf COPY
```
### Run the quantized model
```bash
# start inference on a gguf model
./main -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
./llama-cli -m ./models/mymodel/ggml-model-Q4_K_M.gguf -n 128
```
When running the larger models, make sure you have enough disk space to store all the intermediate files.
@@ -804,7 +742,7 @@ The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 thread
#### How to run
1. Download/extract: https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
2. Run `./llama-perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
3. Output:
```
perplexity : calculating perplexity over 655 chunks
@@ -828,16 +766,16 @@ Here is an example of a few-shot interaction, invoked with the command
./examples/chat-13B.sh
# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `llama-cli` example program.
![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)
### Persistent Interaction
The prompt, user inputs, and model generations can be saved and resumed across calls to `./main` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
The prompt, user inputs, and model generations can be saved and resumed across calls to `./llama-cli` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
```bash
# Start a new chat
@@ -859,41 +797,13 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
```bash
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
./llama-cli -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
```
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
### Instruct mode
1. First, download and place the `ggml` model into the `./models` folder
2. Run the `main` tool like this:
```
./examples/alpaca.sh
```
Sample run:
```
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- Press Return to return control to LLaMA.
- If you want to submit another line, end your input in '\'.
Below is an instruction that describes a task. Write a response that appropriately completes the request.
> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
```
### Obtaining and using the Facebook LLaMA 2 model
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
@@ -966,7 +876,7 @@ $mv /sdcard/llama.cpp/llama-2-7b-chat.Q4_K_M.gguf /data/data/com.termux/files/ho
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./main -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
$./llama-cli -m ../model/llama-2-7b-chat.Q4_K_M.gguf -n 128 -cml
```
Here's a demo of an interactive session running on Pixel 5 phone:
@@ -1033,8 +943,8 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/server-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
@@ -1084,7 +994,7 @@ docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m
### Docs
- [main](./examples/main/README.md)
- [main (cli)](./examples/main/README.md)
- [server](./examples/server/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [BLIS](./docs/BLIS.md)

238
ci/run.sh
View File

@@ -36,11 +36,11 @@ SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUDA=1"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
@@ -50,7 +50,7 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
## helpers
@@ -284,10 +284,10 @@ function gg_run_open_llama_7b_v2 {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -303,47 +303,47 @@ function gg_run_open_llama_7b_v2 {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -437,45 +437,45 @@ function gg_run_pythia_1_4b {
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -550,7 +550,7 @@ function gg_run_pythia_2_8b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@@ -569,47 +569,47 @@ function gg_run_pythia_2_8b {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -688,15 +688,15 @@ function gg_run_embd_bge_small {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}

View File

@@ -9,7 +9,7 @@ set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast" )
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast -fno-finite-math-only" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

22
cmake/git-vars.cmake Normal file
View File

@@ -0,0 +1,22 @@
find_package(Git)
# the commit's SHA1
execute_process(COMMAND
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_SHA1
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the date of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_DATE
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the subject of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%s
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)

View File

@@ -1,46 +1,43 @@
set(LLAMA_VERSION @LLAMA_INSTALL_VERSION@)
set(LLAMA_VERSION @LLAMA_INSTALL_VERSION@)
set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(LLAMA_BLAS @LLAMA_BLAS@)
set(LLAMA_CUDA @LLAMA_CUDA@)
set(LLAMA_METAL @LLAMA_METAL@)
set(LLAMA_CLBLAST @LLAMA_CLBLAST@)
set(LLAMA_HIPBLAS @LLAMA_HIPBLAS@)
set(LLAMA_ACCELERATE @LLAMA_ACCELERATE@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
@PACKAGE_INIT@
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND LLAMA_ACCELERATE)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
if (LLAMA_BLAS)
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
if (LLAMA_CUDA)
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (LLAMA_METAL)
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
if (LLAMA_CLBLAST)
find_package(CLBlast REQUIRED)
endif()
if (LLAMA_HIPBLAS)
if (GGML_HIPBLAS)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
@@ -52,7 +49,9 @@ find_library(llama_LIBRARY llama
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"

10
cmake/llama.pc.in Normal file
View File

@@ -0,0 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
Name: llama
Description: Port of Facebook's LLaMA model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lllama
Cflags: -I${includedir}

View File

@@ -1,14 +0,0 @@
comment: off
coverage:
status:
project:
default:
target: auto
threshold: 0
base: auto
patch:
default:
target: auto
threshold: 0
base: auto

View File

@@ -1,5 +1,6 @@
# common
find_package(Threads REQUIRED)
# Build info header
#
@@ -36,7 +37,7 @@ add_custom_command(
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/../scripts/gen-build-info-cpp.cmake"
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
@@ -83,5 +84,5 @@ if (LLAMA_CURL)
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama)
target_compile_features (${TARGET} PUBLIC cxx_std_11)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@@ -1,7 +1,7 @@
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
# Only write the build info if it changed
if(EXISTS ${OUTPUT_FILE})

File diff suppressed because it is too large Load Diff

View File

@@ -52,70 +52,76 @@ int32_t cpu_get_num_math();
// CLI argument parsing
//
// dimensionality reduction methods, used by cvector-generator
enum dimre_method {
DIMRE_METHOD_PCA,
DIMRE_METHOD_MEAN,
};
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 0; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
std::string rpc_servers = ""; // comma separated list of RPC servers
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
// // sampling parameters
struct llama_sampling_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::string logits_file = ""; // file for saving *all* logits
std::string rpc_servers = ""; // comma separated list of RPC servers
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
// TODO: avoid tuple, use struct
@@ -124,37 +130,35 @@ struct gpt_params {
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
//
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false; // compute KL divergence
bool kl_divergence = false; // compute KL divergence
bool random_prompt = false; // do not randomize prompt if none provided
bool usage = false; // print usage
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
bool special = false; // enable special token output
bool interactive = false; // interactive mode
bool interactive_first = false; // wait for user input immediately
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
bool embedding = false; // get only sentence embedding
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool interactive_first = false; // wait for user input immediately
bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
@@ -162,7 +166,6 @@ struct gpt_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
bool instruct = false; // instruction mode (used for Alpaca models)
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
@@ -180,6 +183,76 @@ struct gpt_params {
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embendings
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests
std::string hostname = "127.0.0.1";
std::string public_path = "";
std::string chat_template = "";
std::string system_prompt = "";
bool enable_chat_template = true;
std::vector<std::string> api_keys;
std::string ssl_file_key = "";
std::string ssl_file_cert = "";
bool endpoint_slots = true;
bool endpoint_metrics = false;
bool log_json = false;
std::string slot_save_path;
float slot_prompt_similarity = 0.5f;
// batched-bench params
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
std::vector<int32_t> n_pl;
// retrieval params
std::vector<std::string> context_files; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding
// passkey params
int32_t n_junk = 250; // number of times to repeat the junk text
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
// cvector-generator params
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
};
void gpt_params_handle_model_default(gpt_params & params);
@@ -199,7 +272,20 @@ std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_random_prompt(std::mt19937 & rng);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
std::vector<T> values;
std::istringstream str_stream(str);
std::string token;
while (std::getline(str_stream, token, delim)) {
T value;
std::istringstream token_stream(token);
token_stream >> value;
values.push_back(value);
}
return values;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
@@ -212,6 +298,7 @@ bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
//
// Model utils
@@ -282,6 +369,38 @@ std::string llama_detokenize_bpe(
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// Chat template utils
//
// same with llama_chat_message, but uses std::string
struct llama_chat_msg {
std::string role;
std::string content;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool llama_chat_verify_template(const std::string & tmpl);
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string llama_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & chat,
bool add_ass);
// Format single message, while taking into account the position of that message in chat history
std::string llama_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<llama_chat_msg> & past_msg,
const llama_chat_msg & new_msg,
bool add_ass);
// Returns an example of formatted chat
std::string llama_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
//
// KV cache utils
//
@@ -296,7 +415,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n);
void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
@@ -340,4 +459,3 @@ void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const cha
void yaml_dump_non_result_info(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);

View File

@@ -46,8 +46,12 @@ namespace grammar_parser {
state.rules[rule_id] = rule;
}
static bool is_digit_char(char c) {
return '0' <= c && c <= '9';
}
static bool is_word_char(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || is_digit_char(c);
}
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
@@ -99,6 +103,17 @@ namespace grammar_parser {
return pos;
}
static const char * parse_int(const char * src) {
const char * pos = src;
while (is_digit_char(*pos)) {
pos++;
}
if (pos == src) {
throw std::runtime_error(std::string("expecting integer at ") + src);
}
return pos;
}
static std::pair<uint32_t, const char *> parse_char(const char * src) {
if (*src == '\\') {
switch (src[1]) {
@@ -137,6 +152,60 @@ namespace grammar_parser {
bool is_nested) {
size_t last_sym_start = out_elements.size();
const char * pos = src;
auto handle_repetitions = [&](int min_times, int max_times) {
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/?/{ at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// the following rewrite rules:
// S{m,n} --> S S S (m times) S'(n-m)
// S'(x) ::= S S'(x-1) |
// (... n-m definitions of these S' rules ...)
// S'(1) ::= S |
// S{m,} --> S S S (m times) S'
// S' ::= S S' |
// S* --> S{0,}
// --> S' ::= S S' |
// S+ --> S{1,}
// --> S S'
// S' ::= S S' |
// S? --> S{0,1}
// --> S'
// S' ::= S |
std::vector<llama_grammar_element> previous_elements(out_elements.begin() + last_sym_start, out_elements.end());
if (min_times == 0) {
out_elements.resize(last_sym_start);
} else {
// Repeat the previous elements (min_times - 1) times
for (int i = 1; i < min_times; i++) {
out_elements.insert(out_elements.end(), previous_elements.begin(), previous_elements.end());
}
}
uint32_t last_rec_rule_id = 0;
auto n_opt = max_times < 0 ? 1 : max_times - min_times;
std::vector<llama_grammar_element> rec_rule(previous_elements);
for (int i = 0; i < n_opt; i++) {
rec_rule.resize(previous_elements.size());
uint32_t rec_rule_id = generate_symbol_id(state, rule_name);
if (i > 0 || max_times < 0) {
rec_rule.push_back({LLAMA_GRETYPE_RULE_REF, max_times < 0 ? rec_rule_id : last_rec_rule_id});
}
rec_rule.push_back({LLAMA_GRETYPE_ALT, 0});
rec_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, rec_rule_id, rec_rule);
last_rec_rule_id = rec_rule_id;
}
if (n_opt > 0) {
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, last_rec_rule_id});
}
};
while (*pos) {
if (*pos == '"') { // literal string
pos++;
@@ -197,40 +266,51 @@ namespace grammar_parser {
throw std::runtime_error(std::string("expecting ')' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
if (last_sym_start == out_elements.size()) {
throw std::runtime_error(std::string("expecting preceding item to */+/? at ") + pos);
}
// apply transformation to previous symbol (last_sym_start to end) according to
// rewrite rules:
// S* --> S' ::= S S' |
// S+ --> S' ::= S S' | S
// S? --> S' ::= S |
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
std::vector<llama_grammar_element> sub_rule;
// add preceding symbol to generated rule
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
if (*pos == '*' || *pos == '+') {
// cause generated rule to recurse
sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
}
// mark start of alternate def
sub_rule.push_back({LLAMA_GRETYPE_ALT, 0});
if (*pos == '+') {
// add preceding symbol as alternate only for '+' (otherwise empty)
sub_rule.insert(
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
}
sub_rule.push_back({LLAMA_GRETYPE_END, 0});
add_rule(state, sub_rule_id, sub_rule);
// in original rule, replace previous symbol with reference to generated rule
out_elements.resize(last_sym_start);
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
} else if (*pos == '.') { // any char
last_sym_start = out_elements.size();
out_elements.push_back({LLAMA_GRETYPE_CHAR_ANY, 0});
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '*') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, -1);
} else if (*pos == '+') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(1, -1);
} else if (*pos == '?') {
pos = parse_space(pos + 1, is_nested);
handle_repetitions(0, 1);
} else if (*pos == '{') {
pos = parse_space(pos + 1, is_nested);
if (!is_digit_char(*pos)) {
throw std::runtime_error(std::string("expecting an int at ") + pos);
}
const char * int_end = parse_int(pos);
int min_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
int max_times = -1;
if (*pos == '}') {
max_times = min_times;
pos = parse_space(pos + 1, is_nested);
} else if (*pos == ',') {
pos = parse_space(pos + 1, is_nested);
if (is_digit_char(*pos)) {
const char * int_end = parse_int(pos);
max_times = std::stoul(std::string(pos, int_end - pos));
pos = parse_space(int_end, is_nested);
}
if (*pos != '}') {
throw std::runtime_error(std::string("expecting '}' at ") + pos);
}
pos = parse_space(pos + 1, is_nested);
} else {
throw std::runtime_error(std::string("expecting ',' at ") + pos);
}
handle_repetitions(min_times, max_times);
} else {
break;
}
@@ -325,6 +405,7 @@ namespace grammar_parser {
case LLAMA_GRETYPE_CHAR_NOT: return true;
case LLAMA_GRETYPE_CHAR_ALT: return true;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
case LLAMA_GRETYPE_CHAR_ANY: return true;
default: return false;
}
}
@@ -339,6 +420,7 @@ namespace grammar_parser {
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
@@ -350,6 +432,7 @@ namespace grammar_parser {
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, "(\"");
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
@@ -407,11 +490,15 @@ namespace grammar_parser {
}
print_grammar_char(file, elem.value);
break;
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
case LLAMA_GRETYPE_CHAR_ALT:
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
case LLAMA_GRETYPE_CHAR_ANY:
break;
default:
fprintf(file, "] ");

View File

@@ -16,92 +16,282 @@ static std::string join(Iterator begin, Iterator end, const std::string & separa
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "", bool item_rule_is_literal = false) {
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
}
if (separator_rule.empty()) {
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
} else if (min_items == 1 && max_items == std::numeric_limits<int>::max()) {
if (min_items == 1 && !has_max) {
return item_rule + "+";
}
}
std::string result;
if (min_items > 0) {
if (item_rule_is_literal && separator_rule.empty()) {
result = "\"" + repeat(std::string(item_rule.begin() + 1, item_rule.end() - 1), min_items) + "\"";
} else if (min_items == 0 && !has_max) {
return item_rule + "*";
} else {
std::vector<std::string> items(min_items, item_rule);
result = join(items.begin(), items.end(), separator_rule.empty() ? " " : " " + separator_rule + " ");
return item_rule + "{" + std::to_string(min_items) + "," + (has_max ? std::to_string(max_items) : "") + "}";
}
}
std::function<std::string(int, bool)> opt_repetitions = [&](int up_to_n, bool prefix_with_sep) -> std::string {
auto content = prefix_with_sep && !separator_rule.empty() ? separator_rule + " " + item_rule : item_rule;
if (up_to_n == 0) {
return "";
} else if (up_to_n == 1) {
return "(" + content + ")?";
} else if (!separator_rule.empty() && !prefix_with_sep) {
return "(" + content + " " + opt_repetitions(up_to_n - 1, true) + ")?";
} else {
std::string res = repeat("(" + content + " ", up_to_n);
// strip trailing space
res = res.substr(0, res.length() - 1);
res += repeat(")?", up_to_n);
return res;
}
};
if (min_items > 0 && max_items != min_items) {
result += " ";
auto result = item_rule + " " + build_repetition("(" + separator_rule + " " + item_rule + ")", min_items == 0 ? 0 : min_items - 1, has_max ? max_items - 1 : max_items);
if (min_items == 0) {
result = "(" + result + ")?";
}
if (max_items != std::numeric_limits<int>::max()) {
result += opt_repetitions(max_items - min_items, min_items > 0);
} else {
std::string item_operator = "(" + (separator_rule.empty() ? "" : separator_rule + " ") + item_rule + ")";
if (min_items == 0 && !separator_rule.empty()) {
result = "(" + item_rule + " " + item_operator + "*)?";
} else {
result += item_operator + "*";
}
}
return result;
}
const std::string SPACE_RULE = "\" \"?";
/* Minimalistic replacement for std::string_view, which is only available from C++17 onwards */
class string_view {
const std::string & _str;
const size_t _start;
const size_t _end;
public:
string_view(const std::string & str, size_t start = 0, size_t end = std::string::npos) : _str(str), _start(start), _end(end == std::string::npos ? str.length() : end) {}
size_t size() const {
return _end - _start;
}
size_t length() const {
return size();
}
operator std::string() const {
return str();
}
std::string str() const {
return _str.substr(_start, _end - _start);
}
string_view substr(size_t pos, size_t len = std::string::npos) const {
return string_view(_str, _start + pos, len == std::string::npos ? _end : _start + pos + len);
}
char operator[](size_t pos) const {
auto index = _start + pos;
if (index >= _end) {
throw std::out_of_range("string_view index out of range");
}
return _str[_start + pos];
}
bool operator==(const string_view & other) const {
std::string this_str = *this;
std::string other_str = other;
return this_str == other_str;
}
};
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int>::min();
auto has_max = max_value != std::numeric_limits<int>::max();
auto digit_range = [&](char from, char to) {
out << "[";
if (from == to) {
out << from;
} else {
out << from << "-" << to;
}
out << "]";
};
auto more_digits = [&](int min_digits, int max_digits) {
out << "[0-9]";
if (min_digits == max_digits && min_digits == 1) {
return;
}
out << "{";
out << min_digits;
if (max_digits != min_digits) {
out << ",";
if (max_digits != std::numeric_limits<int>::max()) {
out << max_digits;
}
}
out << "}";
};
std::function<void(const string_view &, const string_view &)> uniform_range =
[&](const string_view & from, const string_view & to) {
size_t i = 0;
while (i < from.length() && i < to.length() && from[i] == to[i]) {
i++;
}
if (i > 0) {
out << "\"" << from.substr(0, i).str() << "\"";
}
if (i < from.length() && i < to.length()) {
if (i > 0) {
out << " ";
}
auto sub_len = from.length() - i - 1;
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto to_reached = false;
out << "(";
if (from_sub == sub_zeros) {
digit_range(from[i], to[i] - 1);
out << " ";
more_digits(sub_len, sub_len);
} else {
out << "[" << from[i] << "] ";
out << "(";
uniform_range(from_sub, sub_nines);
out << ")";
if (from[i] < to[i] - 1) {
out << " | ";
if (to_sub == sub_nines) {
digit_range(from[i] + 1, to[i]);
to_reached = true;
} else {
digit_range(from[i] + 1, to[i] - 1);
}
out << " ";
more_digits(sub_len, sub_len);
}
}
if (!to_reached) {
out << " | ";
digit_range(to[i], to[i]);
out << " ";
uniform_range(sub_zeros, to_sub);
}
out << ")";
} else {
out << "[" << from[i] << "-" << to[i] << "]";
}
}
};
if (has_min && has_max) {
if (min_value < 0 && max_value < 0) {
out << "\"-\" (";
_build_min_max_int(-max_value, -min_value, out, decimals_left, /* top_level= */ true);
out << ")";
return;
}
if (min_value < 0) {
out << "\"-\" (";
_build_min_max_int(0, -min_value, out, decimals_left, /* top_level= */ true);
out << ") | ";
min_value = 0;
}
auto min_s = std::to_string(min_value);
auto max_s = std::to_string(max_value);
auto min_digits = min_s.length();
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
return;
}
auto less_decimals = std::max(decimals_left - 1, 1);
if (has_min) {
if (min_value < 0) {
out << "\"-\" (";
_build_min_max_int(std::numeric_limits<int>::min(), -min_value, out, decimals_left, /* top_level= */ false);
out << ") | [0] | [1-9] ";
more_digits(0, decimals_left - 1);
} else if (min_value == 0) {
if (top_level) {
out << "[0] | [1-9] ";
more_digits(0, less_decimals);
} else {
more_digits(1, decimals_left);
}
} else if (min_value <= 9) {
char c = '0' + min_value;
auto range_start = top_level ? '1' : '0';
if (c > range_start) {
digit_range(range_start, c - 1);
out << " ";
more_digits(1, less_decimals);
out << " | ";
}
digit_range(c, '9');
out << " ";
more_digits(0, less_decimals);
} else {
auto min_s = std::to_string(min_value);
auto len = min_s.length();
auto c = min_s[0];
if (c > '1') {
digit_range(top_level ? '1' : '0', c - 1);
out << " ";
more_digits(len, less_decimals);
out << " | ";
}
digit_range(c, c);
out << " (";
_build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits<int>::max(), out, less_decimals, /* top_level= */ false);
out << ")";
if (c < '9') {
out << " | ";
digit_range(c + 1, '9');
out << " ";
more_digits(len - 1, less_decimals);
}
}
return;
}
if (has_max) {
if (max_value >= 0) {
if (top_level) {
out << "\"-\" [1-9] ";
more_digits(0, less_decimals);
out << " | ";
}
_build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true);
} else {
out << "\"-\" (";
_build_min_max_int(-max_value, std::numeric_limits<int>::max(), out, decimals_left, /* top_level= */ false);
out << ")";
}
return;
}
throw std::runtime_error("At least one of min_value or max_value must be set");
}
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
struct BuiltinRule {
std::string content;
std::vector<std::string> deps;
};
const std::string _up_to_15_digits = build_repetition("[0-9]", 0, 15);
std::unordered_map<std::string, BuiltinRule> PRIMITIVE_RULES = {
{"boolean", {"(\"true\" | \"false\") space", {}}},
{"decimal-part", {"[0-9] " + _up_to_15_digits, {}}},
{"integral-part", {"[0-9] | [1-9] " + _up_to_15_digits, {}}},
{"decimal-part", {"[0-9]{1,16}", {}}},
{"integral-part", {"[0] | [1-9] [0-9]{0,15}", {}}},
{"number", {"(\"-\"? integral-part) (\".\" decimal-part)? ([eE] [-+]? integral-part)? space", {"integral-part", "decimal-part"}}},
{"integer", {"(\"-\"? integral-part) space", {"integral-part"}}},
{"value", {"object | array | string | number | boolean | null", {"object", "array", "string", "number", "boolean", "null"}}},
{"object", {"\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space", {"string", "value"}}},
{"array", {"\"[\" space ( value (\",\" space value)* )? \"]\" space", {"value"}}},
{"uuid", {"\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space", {}}},
{"char", {"[^\"\\\\] | \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])", {}}},
{"uuid", {"\"\\\"\" [0-9a-fA-F]{8} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{4} \"-\" [0-9a-fA-F]{12} \"\\\"\" space", {}}},
{"char", {"[^\"\\\\\\x7F\\x00-\\x1F] | [\\\\] ([\"\\\\bfnrt] | \"u\" [0-9a-fA-F]{4})", {}}},
{"string", {"\"\\\"\" char* \"\\\"\" space", {"char"}}},
{"null", {"\"null\" space", {}}},
};
std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
{"date", {"[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}},
{"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}},
{"date", {"[0-9]{4} \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}},
{"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9]{3} )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}},
{"date-time", {"date \"T\" time", {"date", "time"}}},
{"date-string", {"\"\\\"\" date \"\\\"\" space", {"date"}}},
{"time-string", {"\"\\\"\" time \"\\\"\" space", {"time"}}},
@@ -126,7 +316,7 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
@@ -197,7 +387,6 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\"";
}
class SchemaConverter {
private:
std::function<json(const std::string &)> _fetch_json;
@@ -385,8 +574,7 @@ private:
sub_is_literal ? "\"" + sub + "\"" : sub,
min_times,
max_times,
"",
sub_is_literal
""
);
seq.back().second = false;
} else {
@@ -426,6 +614,75 @@ private:
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
}
/*
Returns a rule that matches a JSON string that is none of the provided strings
not_strings({"a"})
-> ["] ( [a] char+ | [^"a] char* )? ["] space
not_strings({"and", "also"})
-> ["] ( [a] ([l] ([s] ([o] char+ | [^"o] char*) | [^"s] char*) | [n] ([d] char+ | [^"d] char*) | [^"ln] char*) | [^"a] char* )? ["] space
*/
std::string _not_strings(const std::vector<std::string> & strings) {
struct TrieNode {
std::map<char, TrieNode> children;
bool is_end_of_string;
TrieNode() : is_end_of_string(false) {}
void insert(const std::string & string) {
auto node = this;
for (char c : string) {
node = &node->children[c];
}
node->is_end_of_string = true;
}
};
TrieNode trie;
for (const auto & s : strings) {
trie.insert(s);
}
std::string char_rule = _add_primitive("char", PRIMITIVE_RULES.at("char"));
std::ostringstream out;
out << "[\"] ( ";
std::function<void(const TrieNode &)> visit = [&](const TrieNode & node) {
std::ostringstream rejects;
auto first = true;
for (const auto & kv : node.children) {
rejects << kv.first;
if (first) {
first = false;
} else {
out << " | ";
}
out << "[" << kv.first << "]";
if (!kv.second.children.empty()) {
out << " (";
visit(kv.second);
out << ")";
} else if (kv.second.is_end_of_string) {
out << " " << char_rule << "+";
}
}
if (!node.children.empty()) {
if (!first) {
out << " | ";
}
out << "[^\"" << rejects.str() << "] " << char_rule << "*";
}
};
visit(trie);
out << " )";
if (!trie.is_end_of_string) {
out << "?";
}
out << " [\"] space";
return out.str();
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
@@ -446,6 +703,7 @@ private:
std::vector<std::string> required_props;
std::vector<std::string> optional_props;
std::unordered_map<std::string, std::string> prop_kv_rule_names;
std::vector<std::string> prop_names;
for (const auto & kv : properties) {
const auto &prop_name = kv.first;
const auto &prop_schema = kv.second;
@@ -460,11 +718,18 @@ private:
} else {
optional_props.push_back(prop_name);
}
prop_names.push_back(prop_name);
}
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
if ((additional_properties.is_boolean() && additional_properties.get<bool>()) || additional_properties.is_object()) {
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
std::string kv_rule = _add_rule(sub_name + "-kv", _add_primitive("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
std::string value_rule =
additional_properties.is_object() ? visit(additional_properties, sub_name + "-value")
: _add_primitive("value", PRIMITIVE_RULES.at("value"));
auto key_rule =
prop_names.empty() ? _add_primitive("string", PRIMITIVE_RULES.at("string"))
: _add_rule(sub_name + "-k", _not_strings(prop_names));
std::string kv_rule = _add_rule(sub_name + "-kv", key_rule + " \":\" space " + value_rule);
prop_kv_rule_names["*"] = kv_rule;
optional_props.push_back("*");
}
@@ -490,15 +755,11 @@ private:
}
std::string k = ks[0];
std::string kv_rule_name = prop_kv_rule_names[k];
if (k == "*") {
res = _add_rule(
name + (name.empty() ? "" : "-") + "additional-kvs",
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
);
} else if (first_is_optional) {
res = "( \",\" space " + kv_rule_name + " )?";
std::string comma_ref = "( \",\" space " + kv_rule_name + " )";
if (first_is_optional) {
res = comma_ref + (k == "*" ? "*" : "?");
} else {
res = kv_rule_name;
res = kv_rule_name + (k == "*" ? " " + comma_ref + "*" : "");
}
if (ks.size() > 1) {
res += " " + _add_rule(
@@ -632,17 +893,19 @@ public:
} else if (schema_type.is_array()) {
std::vector<json> schema_types;
for (const auto & t : schema_type) {
schema_types.push_back({{"type", t}});
json schema_copy(schema);
schema_copy["type"] = t;
schema_types.push_back(schema_copy);
}
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
} else if (schema.contains("const")) {
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
return _add_rule(rule_name, _generate_constant_rule(schema["const"]) + " space");
} else if (schema.contains("enum")) {
std::vector<std::string> enum_values;
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@@ -724,6 +987,24 @@ public:
int min_len = schema.contains("minLength") ? schema["minLength"].get<int>() : 0;
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) {
int min_value = std::numeric_limits<int>::min();
int max_value = std::numeric_limits<int>::max();
if (schema.contains("minimum")) {
min_value = schema["minimum"].get<int>();
} else if (schema.contains("exclusiveMinimum")) {
min_value = schema["exclusiveMinimum"].get<int>() + 1;
}
if (schema.contains("maximum")) {
max_value = schema["maximum"].get<int>();
} else if (schema.contains("exclusiveMaximum")) {
max_value = schema["exclusiveMaximum"].get<int>() - 1;
}
std::stringstream out;
out << "(";
_build_min_max_int(min_value, max_value, out);
out << ") space";
return _add_rule(rule_name, out.str());
} else if (schema.empty() || schema_type == "object") {
return _add_rule(rule_name, _add_primitive("object", PRIMITIVE_RULES.at("object")));
} else {

View File

@@ -28,9 +28,13 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
result->grammar = llama_grammar_init(
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
result->grammar = grammar;
}
result->prev.resize(params.n_prev);
@@ -59,9 +63,13 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
if (!ctx->parsed_grammar.rules.empty()) {
std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
ctx->grammar = llama_grammar_init(
struct llama_grammar * grammar = llama_grammar_init(
grammar_rules.data(),
grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
if (grammar == nullptr) {
throw std::runtime_error("Failed to initialize llama_grammar");
}
ctx->grammar = grammar;
}
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,5 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
@@ -44,6 +45,7 @@ class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
UGM = auto()
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
@@ -82,6 +84,13 @@ models = [
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
]
@@ -103,9 +112,13 @@ def download_model(model):
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")
if tokt == TOKENIZER_TYPE.UGM:
files.append("spiece.model")
for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
@@ -128,7 +141,7 @@ for model in models:
name = model["name"]
tokt = model["tokt"]
if tokt == TOKENIZER_TYPE.SPM:
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
continue
# Skip if the tokenizer folder does not exist or there are other download issues previously
@@ -138,7 +151,10 @@ for model in models:
# create the tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
@@ -211,7 +227,7 @@ src_func = f"""
"""
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
convert_py = convert_py_pth.read_text()
convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
@@ -219,7 +235,7 @@ convert_py = re.sub(
flags=re.DOTALL | re.MULTILINE,
)
convert_py_pth.write_text(convert_py)
convert_py_pth.write_text(convert_py, encoding="utf-8")
logger.info("+++ convert-hf-to-gguf.py was updated")
@@ -259,6 +275,7 @@ tests = [
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"!!!!!!",
"3",
"33",
"333",
@@ -268,7 +285,8 @@ tests = [
"3333333",
"33333333",
"333333333",
# "Cửa Việt", # llama-bpe fails on this
"Cửa Việt", # llama-bpe fails on this
" discards",
chktxt,
]
@@ -296,7 +314,10 @@ for model in models:
# create the tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop

View File

@@ -30,8 +30,8 @@ We recommend using openmp since it's easier to modify the cores being used.
Makefile:
```bash
make LLAMA_BLIS=1 -j
# make LLAMA_BLIS=1 benchmark-matmult
make GGML_BLIS=1 -j
# make GGML_BLIS=1 llama-benchmark-matmult
```
CMake:
@@ -39,7 +39,7 @@ CMake:
```bash
mkdir build
cd build
cmake -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=FLAME ..
cmake -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=FLAME ..
make -j
```

View File

@@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
@@ -100,7 +100,7 @@ Have a look at existing implementation like `build_llama`, `build_dbrx` or `buil
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback).
Note: to debug the inference graph: you can use [llama-eval-callback](../examples/eval-callback).
## GGUF specification

View File

@@ -3,7 +3,7 @@
## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
./llama-cli -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
```
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
@@ -27,7 +27,7 @@ RAM: 32GB
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Run command: `./llama-cli -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
Result:

View File

@@ -12,44 +12,45 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR})
if (EMSCRIPTEN)
else()
add_subdirectory(cvector-generator)
add_subdirectory(baby-llama)
add_subdirectory(batched)
add_subdirectory(batched-bench)
add_subdirectory(beam-search)
add_subdirectory(batched)
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(export-lora)
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(gbnf-validator)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(imatrix)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)
if (LLAMA_SYCL)
add_subdirectory(sycl)
endif()
add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(retrieval)
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(passkey)
add_subdirectory(speculative)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(gguf)
add_subdirectory(train-text-from-scratch)
add_subdirectory(imatrix)
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
add_subdirectory(export-lora)
if (LLAMA_RPC)
add_subdirectory(main)
add_subdirectory(parallel)
add_subdirectory(passkey)
add_subdirectory(perplexity)
add_subdirectory(quantize-stats)
add_subdirectory(quantize)
add_subdirectory(retrieval)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
if (GGML_SYCL)
add_subdirectory(sycl)
endif()
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(speculative)
add_subdirectory(tokenize)
add_subdirectory(train-text-from-scratch)
endif()

View File

@@ -22,7 +22,7 @@ if [ -n "$N_THREAD" ]; then
GEN_OPTIONS+=(--threads "$N_THREAD")
fi
./main "${GEN_OPTIONS[@]}" \
./llama-cli "${GEN_OPTIONS[@]}" \
--model "$MODEL" \
--in-prefix " " \
--in-suffix "${AI_NAME}:" \

View File

@@ -1,19 +0,0 @@
#!/bin/bash
#
# Temporary script - will be removed in the future
#
cd `dirname $0`
cd ..
./main -m ./models/alpaca.13b.ggmlv3.q8_0.bin \
--color \
-f ./prompts/alpaca.txt \
--ctx_size 2048 \
-n -1 \
-ins -b 256 \
--top_k 10000 \
--temp 0.2 \
--repeat_penalty 1.1 \
-t 7

View File

@@ -1,4 +1,4 @@
set(TARGET baby-llama)
set(TARGET llama-baby-llama)
add_executable(${TARGET} baby-llama.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})

View File

@@ -522,8 +522,8 @@ static struct ggml_tensor * forward(
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, 1]
// Kcur shape [n_embd/n_head, n_head, N, 1]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0);
// store key and value to memory
{
@@ -759,8 +759,8 @@ static struct ggml_tensor * forward_batch(
// wk shape [n_embd, n_embd, 1, 1]
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
// Kcur shape [n_embd/n_head, n_head, N, n_batch]
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0);
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
@@ -1056,7 +1056,7 @@ static struct ggml_tensor * forward_lora(
model->layers[il].wqb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0);
KQ_pos, n_rot, 0);
struct ggml_tensor * Kcur = ggml_rope(ctx0,
ggml_reshape_3d(ctx0,
ggml_mul_mat(ctx0,
@@ -1065,7 +1065,7 @@ static struct ggml_tensor * forward_lora(
model->layers[il].wkb,
cur)),
n_embd/n_head, n_head, N),
KQ_pos, n_rot, 0, 0);
KQ_pos, n_rot, 0);
// store key and value to memory
{

View File

@@ -58,4 +58,4 @@ echo "$2
model=$1
# generate the most likely continuation until the string "===" is found
./main -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs
./llama-cli -m $model -f $ftmp -n 64 --temp 0 --repeat-penalty 1.0 --no-penalize-nl -r "===" $eargs

View File

@@ -1,4 +1,4 @@
set(TARGET batched-bench)
set(TARGET llama-batched-bench)
add_executable(${TARGET} batched-bench.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})

View File

@@ -10,16 +10,16 @@ There are 2 modes of operation:
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash
./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
./llama-batched-bench -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99
./llama-batched-bench -m ./models/llama-7b/ggml-model-f16.gguf -c 16384 -b 2048 -ub 512 -ngl 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99
./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 16384 -b 2048 -ub 512 -ngl 99 -pps
# custom set of batches
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32
./llama-batched-bench -m ./models/llama-7b/ggml-model-q8_0.gguf -c 2048 -b 512 -ub 512 -ngl 999 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32
```
## Sample results

View File

@@ -28,67 +28,27 @@ static std::vector<int> parse_list(char * p) {
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
int n_kv_max = 2048;
int n_batch = 2048;
int n_ubatch = 512;
bool flash_attn = false;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int is_pp_shared = params.is_pp_shared;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
n_kv_max = std::atoi(argv[2]);
}
if (argc >= 4) {
n_batch = std::atoi(argv[3]);
}
if (argc >= 5) {
n_ubatch = std::atoi(argv[4]);
}
if (argc >= 6) {
flash_attn = std::atoi(argv[5]);
}
if (argc >= 7) {
is_pp_shared = std::atoi(argv[6]);
}
if (argc >= 8) {
n_gpu_layers = std::atoi(argv[7]);
}
if (argc >= 9) {
n_pp = parse_list(argv[8]);
}
if (argc >= 10) {
n_tg = parse_list(argv[9]);
}
if (argc >= 11) {
n_pl = parse_list(argv[10]);
}
std::vector<int> n_pp = params.n_pp;
std::vector<int> n_tg = params.n_tg;
std::vector<int> n_pl = params.n_pl;
// init LLM
@@ -97,12 +57,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@@ -111,16 +66,7 @@ int main(int argc, char ** argv) {
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = n_batch;
ctx_params.n_ubatch = n_ubatch;
ctx_params.flash_attn = flash_attn;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
// ensure enough sequences are available
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
@@ -132,6 +78,8 @@ int main(int argc, char ** argv) {
return 1;
}
const int32_t n_kv_max = llama_n_ctx(ctx);
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
// decode in batches of ctx_params.n_batch tokens
@@ -175,7 +123,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");

View File

@@ -1,6 +1,6 @@
.PHONY: build
build:
xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
rm -f ./batched_swift
ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
xcodebuild -scheme llama-batched-swift -destination "generic/platform=macOS" -derivedDataPath build
rm -f ./llama-batched-swift
ln -s ./build/Build/Products/Debug/llama-batched-swift ./llama-batched-swift

View File

@@ -4,7 +4,7 @@
import PackageDescription
let package = Package(
name: "batched_swift",
name: "llama-batched-swift",
platforms: [.macOS(.v12)],
dependencies: [
.package(name: "llama", path: "../../"),
@@ -13,7 +13,7 @@ let package = Package(
// Targets are the basic building blocks of a package, defining a module or a test suite.
// Targets can depend on other targets in this package and products from dependencies.
.executableTarget(
name: "batched_swift",
name: "llama-batched-swift",
dependencies: ["llama"],
path: "Sources",
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]

View File

@@ -1,4 +1,4 @@
This is a swift clone of `examples/batched`.
$ `make`
$ `./batched_swift MODEL_PATH [PROMPT] [PARALLEL]`
$ `./llama-batched-swift MODEL_PATH [PROMPT] [PARALLEL]`

View File

@@ -1,4 +1,4 @@
set(TARGET batched)
set(TARGET llama-batched)
add_executable(${TARGET} batched.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})

View File

@@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt
```bash
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
...

View File

@@ -7,48 +7,31 @@
#include <string>
#include <vector>
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
LOG_TEE("\nexample usage:\n");
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
LOG_TEE("\n");
}
int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL] [LEN] [NGL]\n" , argv[0]);
return 1 ;
params.prompt = "Hello my name is";
params.n_predict = 32;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
// number of parallel batches
int n_parallel = 1;
int n_parallel = params.n_parallel;
// total length of the sequences including the prompt
int n_len = 32;
// number of layers to offload to the GPU
int n_gpu_layers = 0;
if (argc >= 2) {
params.model = argv[1];
}
if (argc >= 3) {
params.prompt = argv[2];
}
if (argc >= 4) {
n_parallel = std::atoi(argv[3]);
}
if (argc >= 5) {
n_len = std::atoi(argv[4]);
}
if (argc >= 6) {
n_gpu_layers = std::atoi(argv[5]);
}
if (params.prompt.empty()) {
params.prompt = "Hello my name is";
}
string_process_escapes(params.prompt);
int n_predict = 32;
// init LLM
@@ -57,9 +40,7 @@ int main(int argc, char ** argv) {
// initialize the model
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = n_gpu_layers;
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@@ -73,18 +54,14 @@ int main(int argc, char ** argv) {
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize(model, params.prompt, true);
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
// initialize the context
llama_context_params ctx_params = llama_context_default_params();
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
@@ -93,9 +70,9 @@ int main(int argc, char ** argv) {
return 1;
}
const int n_ctx = llama_n_ctx(ctx);
const int n_ctx = llama_n_ctx(ctx);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
@@ -116,14 +93,34 @@ int main(int argc, char ** argv) {
// create a llama_batch
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
for (int32_t i = 0; i < n_parallel; ++i) {
seq_ids[i] = i;
}
// evaluate the initial prompt
for (size_t i = 0; i < tokens_list.size(); ++i) {
llama_batch_add(batch, tokens_list[i], i, { 0 }, false);
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
}
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
if (llama_model_has_encoder(model)) {
if (llama_encode(ctx, batch)) {
LOG_TEE("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == -1) {
decoder_start_token_id = llama_token_bos(model);
}
llama_batch_clear(batch);
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
}
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
@@ -132,11 +129,11 @@ int main(int argc, char ** argv) {
return 1;
}
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
//// assign the system KV cache to all parallel sequences
//// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
//for (int32_t i = 1; i < n_parallel; ++i) {
// llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
//}
if (n_parallel > 1) {
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
@@ -156,7 +153,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us();
while (n_cur <= n_len) {
while (n_cur <= n_predict) {
// prepare the next batch
llama_batch_clear(batch);
@@ -192,7 +189,7 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
i_batch[i] = -1;
LOG_TEE("\n");
if (n_parallel > 1) {

View File

@@ -1,188 +0,0 @@
#include "common.h"
#include "llama.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
// Used for debugging to print out beam tokens.
struct ostream_beam_view {
llama_context * ctx;
llama_beam_view beam_view;
};
static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) {
os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
}
return os << ')';
}
// Put here anything you want back in beam_search_callback().
struct beam_search_callback_data {
llama_context * ctx;
std::vector<llama_token> response;
};
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
}
// Function matching type llama_beam_search_callback_fn_t.
// Custom callback example is called each time the beams lengths increase:
// * Show progress by printing ',' following by number of convergent beam tokens if any.
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
// This is also called when the stop condition is met.
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
// Mark beams as EOS as needed.
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
llama_beam_view& beam_view = beams_state.beam_views[i];
if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
beam_view.eob = true;
}
}
printf(","); // Show progress
if (const size_t n = beams_state.common_prefix_length) {
callback_data.response.resize(callback_data.response.size() + n);
assert(0u < beams_state.n_beams);
const llama_token * tokens = beams_state.beam_views[0].tokens;
std::copy(tokens, tokens + n, callback_data.response.end() - n);
printf("%zu", n);
}
fflush(stdout);
#if 1 // DEBUG: print current beams for this iteration
std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
}
#endif
}
int main(int argc, char ** argv)
{
gpt_params params;
//params.n_gpu_layers = 200;
//---------------------------------
// Print help :
//---------------------------------
if ( argc < 2 || argv[1][0] == '-' )
{
printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
return 1 ;
}
//---------------------------------
// Load parameters :
//---------------------------------
params.model = argv[1];
params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
if ( argc > 3 )
{
params.prompt = argv[3];
}
if ( params.prompt.empty() )
{
params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
}
//---------------------------------
// Init LLM :
//---------------------------------
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params( params );
if ( model == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1;
}
//---------------------------------
// Tokenize the prompt :
//---------------------------------
std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
const size_t max_context_size = llama_n_ctx( ctx );
const size_t max_tokens_list_size = max_context_size - 4 ;
if (tokens_list.size() > max_tokens_list_size)
{
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
__func__ , tokens_list.size() , max_tokens_list_size );
return 1;
}
fprintf( stderr, "\n\n" );
// Print the tokens from the prompt :
for( auto id : tokens_list )
{
std::cout << llama_token_to_piece(ctx, id);
}
std::cout << std::flush;
int n_past = 0;
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
{
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
return 1;
}
n_past += tokens_list.size();
beam_search_callback_data callback_data{ctx, {}};
size_t const beam_width = static_cast<size_t>(params.n_beams);
int const n_predict = 256;
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);
std::cout << "\n\n";
for (llama_token const token_id : callback_data.response) {
std::cout << llama_token_to_piece(ctx,token_id);
}
std::cout << std::endl;
llama_free( ctx );
llama_free_model( model );
llama_backend_free();
return 0;
}

View File

@@ -1,4 +1,4 @@
set(TARGET benchmark)
set(TARGET llama-bench-matmult)
add_executable(${TARGET} benchmark-matmult.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})

View File

@@ -30,7 +30,7 @@ sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./main $GEN_OPTIONS \
./llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \

View File

@@ -62,7 +62,7 @@ fi
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
echo 'Prompt cache does not exist, building...'
# Default batch_size to 64 here for better user feedback during initial prompt processing
./main 2>>"$LOG" \
./llama-cli 2>>"$LOG" \
--batch_size 64 \
"${OPTS[@]}" \
--prompt-cache "$PROMPT_CACHE_FILE" \
@@ -109,13 +109,13 @@ while read -e line; do
printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE"
./main 2>>"$LOG" "${OPTS[@]}" \
./llama-cli 2>>"$LOG" "${OPTS[@]}" \
--prompt-cache "$CUR_PROMPT_CACHE" \
--prompt-cache-all \
--file "$CUR_PROMPT_FILE" \
--reverse-prompt "${USER_NAME}:" \
--n_predict "$n_predict" |
skip_bytes 1 | # skip BOS token added by ./main
skip_bytes 1 | # skip BOS token added by ./llama-cli
tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file
skip_bytes "$n_prompt_len_pre" # print generation
@@ -133,7 +133,7 @@ while read -e line; do
# TODO get both messages in one go
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
echo >&2 "Couldn't get number of tokens from ./main output!"
echo >&2 "Couldn't get number of tokens from ./llama-cli output!"
exit 1
fi
@@ -144,7 +144,7 @@ while read -e line; do
fi
# Update cache for next prompt in background, ideally during user input
./main >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
./llama-cli >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
--prompt-cache "$NEXT_PROMPT_CACHE" \
--file "$NEXT_PROMPT_FILE" \
--n_predict 1 &

View File

@@ -30,7 +30,7 @@ sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./bin/main $GEN_OPTIONS \
./bin/llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \

View File

@@ -11,6 +11,6 @@ cd ..
#
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
#
./main -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \
./llama-cli -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \
--repeat_penalty 1.0 --color -i \
-r "User:" -f prompts/chat-with-bob.txt

View File

@@ -24,14 +24,16 @@ from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
import numpy as np
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
# use .parent.parent since we are in "examples" directory
sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
import gguf
from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
if TYPE_CHECKING:
from typing_extensions import Self, TypeAlias
@@ -174,7 +176,7 @@ class Params:
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
n_ctx_orig: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
@@ -224,7 +226,7 @@ class Params:
with open(config_path) as f:
config = json.load(f)
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling_type = f_rope_scale = n_ctx_orig = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if rope_scaling is not None and (typ := rope_scaling.get("type")):
@@ -234,7 +236,7 @@ class Params:
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling['original_max_position_embeddings']
n_ctx_orig = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
@@ -270,7 +272,7 @@ class Params:
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
n_ctx_orig = n_ctx_orig,
rope_finetuned = rope_finetuned,
)
@@ -380,306 +382,6 @@ class Metadata:
return metadata
#
# vocab
#
@runtime_checkable
class BaseVocab(Protocol):
tokenizer_model: ClassVar[str]
name: ClassVar[str]
class NoVocab(BaseVocab):
tokenizer_model = "no_vocab"
name = "no_vocab"
def __repr__(self) -> str:
return "<NoVocab for a model without integrated vocabulary>"
@runtime_checkable
class Vocab(BaseVocab, Protocol):
vocab_size: int
added_tokens_dict: dict[str, int]
added_tokens_list: list[str]
fname_tokenizer: Path
def __init__(self, base_path: Path): ...
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
class BpeVocab(Vocab):
tokenizer_model = "gpt2"
name = "bpe"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'vocab.json').exists():
# "slow" tokenizer
with open(fname_tokenizer, encoding="utf-8") as f:
self.vocab = json.load(f)
try:
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
else:
# "fast" tokenizer
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding="utf-8") as f:
tokenizer_json = json.load(f)
tokenizer_model: dict[str, Any] = tokenizer_json['model']
if (
tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'ByteLevel'
):
raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
self.vocab = tokenizer_model["vocab"]
if (added := tokenizer_json.get('added_tokens')) is not None:
# Added tokens here can be duplicates of the main vocabulary.
added_tokens = {item['content']: item['id']
for item in added
if item['content'] not in self.vocab}
vocab_size = len(self.vocab)
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
actual_ids = sorted(added_tokens.values())
if expected_ids != actual_ids:
expected_end_id = vocab_size + len(actual_ids) - 1
raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
f"{vocab_size} - {expected_end_id}; got {actual_ids}")
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
self.added_tokens_dict = added_tokens
self.added_tokens_list = [text for (text, idx) in items]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
for i, _ in enumerate(self.vocab):
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.bpe_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class SentencePieceVocab(Vocab):
tokenizer_model = "llama"
name = "spm"
def __init__(self, base_path: Path):
added_tokens: dict[str, int] = {}
if (fname_tokenizer := base_path / 'tokenizer.model').exists():
# normal location
try:
with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
added_tokens = json.load(f)
except FileNotFoundError:
pass
elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
# not found in alternate location either
raise FileNotFoundError('Cannot find tokenizer.model')
self.sentencepiece_tokenizer = SentencePieceProcessor()
self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
vocab_size = self.sentencepiece_tokenizer.vocab_size()
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
actual_new_ids = sorted(new_tokens.keys())
if expected_new_ids != actual_new_ids:
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
# Token pieces that were added to the base vocabulary.
self.added_tokens_dict = added_tokens
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
self.vocab_size_base = vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.sentencepiece_tokenizer
for i in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(i)
text = piece.encode("utf-8")
score: float = tokenizer.GetScore(i)
toktype = gguf.TokenType.NORMAL
if tokenizer.IsUnknown(i):
toktype = gguf.TokenType.UNKNOWN
if tokenizer.IsControl(i):
toktype = gguf.TokenType.CONTROL
# NOTE: I think added_tokens are user defined.
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
if tokenizer.IsUnused(i):
toktype = gguf.TokenType.UNUSED
if tokenizer.IsByte(i):
toktype = gguf.TokenType.BYTE
yield text, score, toktype
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
score = -1000.0
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.sentencepiece_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
class LlamaHfVocab(Vocab):
tokenizer_model = "llama"
name = "hfft"
def __init__(self, base_path: Path):
fname_tokenizer = base_path / FAST_TOKENIZER_FILE
# if this fails, FileNotFoundError propagates to caller
with open(fname_tokenizer, encoding='utf-8') as f:
tokenizer_json = json.load(f)
# pre-check so we know if we need transformers
tokenizer_model: dict[str, Any] = tokenizer_json['model']
is_llama3 = (
tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
and not tokenizer_model.get('byte_fallback', True)
)
if is_llama3:
raise TypeError('Llama 3 must be converted with BpeVocab')
if not is_llama3 and (
tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
or tokenizer_json['decoder']['type'] != 'Sequence'
):
raise FileNotFoundError('Cannot find Llama BPE tokenizer')
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use LlamaHfVocab, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
# Allow the tokenizer to default to slow or fast versions.
# Explicitly set tokenizer to use local paths.
self.tokenizer = AutoTokenizer.from_pretrained(
base_path,
cache_dir=base_path,
local_files_only=True,
)
assert self.tokenizer.is_fast # assume tokenizer.json is used
# Initialize lists and dictionaries for added tokens
self.added_tokens_list = []
self.added_tokens_dict = dict()
self.added_tokens_ids = set()
# Process added tokens
for tok, tokidx in sorted(
self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
):
# Only consider added tokens that are not in the base vocabulary
if tokidx >= self.tokenizer.vocab_size:
self.added_tokens_list.append(tok)
self.added_tokens_dict[tok] = tokidx
self.added_tokens_ids.add(tokidx)
# Store special tokens and their IDs
self.specials = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids = set(self.tokenizer.all_special_ids)
# Set vocabulary sizes
self.vocab_size_base = self.tokenizer.vocab_size
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
self.fname_tokenizer = fname_tokenizer
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
reverse_vocab = {
id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
}
for token_id in range(self.vocab_size_base):
# Skip processing added tokens here
if token_id in self.added_tokens_ids:
continue
# Convert token text to bytes
token_text = reverse_vocab[token_id].encode("utf-8")
# Yield token text, score, and type
yield token_text, self.get_token_score(token_id), self.get_token_type(
token_id, token_text, self.special_ids # Reuse already stored special IDs
)
def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
# Special case for byte tokens
if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
return gguf.TokenType.BYTE
# Determine token type based on whether it's a special token
return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
def get_token_score(self, token_id: int) -> float:
# Placeholder for actual logic to determine the token's score
# This needs to be implemented based on specific requirements
return -1000.0 # Default score
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_list:
if text in self.specials:
toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self):
return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def __repr__(self) -> str:
return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
#
# data loading
# TODO: reuse (probably move to gguf.py?)
@@ -1162,8 +864,8 @@ class OutputFile:
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_orig_ctx is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
if params.n_ctx_orig is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_ctx_orig)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)

View File

@@ -1,4 +1,4 @@
set(TARGET convert-llama2c-to-ggml)
set(TARGET llama-convert-llama2c-to-ggml)
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})

View File

@@ -8,7 +8,7 @@ To convert the model first download the models from the [llama2.c](https://githu
After successful compilation, following usage options are available:
```
usage: ./convert-llama2c-to-ggml [options]
usage: ./llama-convert-llama2c-to-ggml [options]
options:
-h, --help show this help message and exit
@@ -19,10 +19,10 @@ options:
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
`$ ./llama-convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
Now you can use the model with a command like:
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
`$ ./llama-cli -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`

View File

@@ -1,5 +1,5 @@
set(TARGET beam-search)
add_executable(${TARGET} beam-search.cpp)
set(TARGET llama-cvector-generator)
add_executable(${TARGET} cvector-generator.cpp pca.hpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -0,0 +1,45 @@
# cvector-generator
This example demonstrates how to generate a control vector using gguf models.
Related PRs:
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
## Examples
```sh
# CPU only
./cvector-generator -m ./llama-3.Q4_K_M.gguf
# With GPU
./cvector-generator -m ./llama-3.Q4_K_M.gguf -ngl 99
# With advanced options
./cvector-generator -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100
# Using mean value instead of PCA
./cvector-generator -m ./llama-3.Q4_K_M.gguf --method mean
# To see help message
./cvector-generator -h
# Then, have a look at "cvector" section
```
## Tips and tricks
If you have multiple lines per prompt, you can escape the newline character (change it to `\n`). For example:
```
<|im_start|>system\nAct like a person who is extremely happy.<|im_end|>
<|im_start|>system\nYou are in a very good mood today<|im_end|>
```
Example to use output file with `llama-cli`:
(Tips: The control vector works better when apply to layers higher than 10)
```sh
./llama-cli -m ./llama-3.Q4_K_M.gguf -p "<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nSing a song<|im_end|><|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" --special --control-vector-scaled ./control_vector.gguf 0.8 --control-vector-layer-range 10 31
```

View File

@@ -0,0 +1,582 @@
That game
I can see
Hmm, this
I can relate to
Who is
I understand the
Ugh,
What the hell was
Hey, did anyone
Although
Thank you for choosing
What are you
Oh w
How dare you open
It was my pleasure
I'm hon
I appreciate that you
Are you k
Whoever left this
It's always
Ew,
Hey, I l
Hello? Is someone
I understand that
That poem
Aww, poor
Hey, it
Alright, who
I didn't
Well, life
The document
Oh no, this
I'm concerned
Hello, this is
This art
Hmm, this drink
Hi there!
It seems
Is
Good
I can't
Ex
Who are
I can see that
Wow,
Today is a
Hey friend
Sometimes friends
Oh, this old
The weather outside
This place is sur
I appreciate your input
Thank you for the
Look at
I'm disappoint
To my
How dare you
That's an
This piece of art
Eww
This park is
This is incredible
Oh no, someone
Exc
Well, it'
I warned
Hey, I understand
Hey, I saw
How dare you go
What the he
Hey
It's
Hello? Hello?
It
Oh no!
This is the perfect
Good morning,
Oh no, there
It's so
Yeah
Uh,
Hello everyone
Who turned off
The weather
Who'
Hey, this
Wait,
Eww, gross
Excuse
It seems like you
Thank you so
What happened?
Oh my g
I am deeply sad
I war
Okay, let'
Hey, that
That was a beautiful
Oh no! That
What happened
Hey there
The artist'
What?!
Hey, it'
I am disappoint
It seems like
Oh no! The
This park is a
If you
Yes! I did
It sounds
What
Who is it
Hmm, that
That's strange
Yeah, that was
That's interesting
This park
What the hell
Who is that
I feel like my
Oh well
What the hell is
Hello? Hello
To my dearest
Bless you!\"
Thank you for
Oh, looks like
Can you please
This place is
Eww, what
Bless you
Is everything
Hey, I just
Whoever left these
Well, that'
I feel
Hey, do you
It's sad
Oh no, it
Hey, that'
Oh my god,
Thank you,
Hello little one,
I apolog
Hey team, I
How dare you read
Who is this and
Whoever left
Hi there! W
A
If you have
I was
U
Bless
Well, this
Oh, I'
It's a
Eww,
Is everything okay?
Oh, I
Hello, can you
Al
That was a great
What are
I understand that not
Oh no, not
Who is it?\"
Hey, can we
Whoever is taking
I would love to
Hey, I noticed
Hey, could
I understand that there
Hello?
D
Oh man, I
Thank you so much
Oh no, my
Dear [Name
Uh
I remember
Hey, who
Well, it
Are you
I understand that it
Hey, is
I would
Who is this
Excuse me
Alright
I am thrilled
Sometimes friends have
Who the
It's interesting
I would love
E
Hello? Is anyone
Well, this is
This place
Well,
I warned you
Hey, watch where
Oh my
That'
Sometimes friends have different
I understand that everyone
What?
What do these notes
I can relate
I'm not
I understand
To my dear
Guys
Well
Hey, I appreciate
Wow, what
Dear
That melody
Who the hell
Today is
Hello little
Wow, look
That's great
Love is never wrong
I'm having
Whoa, did
Ugh
Can you please provide
I miss you,
I feel uncom
I know
Ugh, this
Hey, watch
Oh great, a
I didn
Okay
That game of char
Oh
I appreciate
Who's there
I am so
Oh great, someone
Hey, could you
I remember wondering
Wait, what?
What do
Hello? Can
Hey there,
That game of
This is incred
Oh my gosh
Oh great, f
I appreciate your
It sounds like
What the heck
Okay, I understand
Ew
I understand that this
Uh, hi
Hi everyone!
What the hell?
Thank you for your
Oh no, the
Wow, I
Who turned
Dear [
Whoever
This is a
Whoa, he
What in the world
Although the physical
Hello, who is
That's amaz
Hey, I know
Okay, that
Hi everyone
Hey, is everything
I understand your fr
Oh no, poor
Oh, look
Good morning
Ew, gross
Oh no, did
Look at the family
Hey team
Yes!
Hey, can I
Okay, that'
It's great
Love is
Hey, what
Good morning, world
Who is it?
That poem really reson
I
That's
I understand the task
Gu
Hello? Who'
This postcard is
Whoa,
Oh, that
I understand that I
Whoever is
Hello? Who is
I'm really
Wow, this
Can
This artwork really
This is a shame
I miss you too
Who are you?
Today is a difficult
Hey, just
Are you okay
I am
Hi,
Wow, that
Hey there! Can
Okay, stay
Oh great, just
Yeah,
Hello? Can you
Oh, looks
Thank you for sharing
I'm glad
Hey, is that
Hmm
It was my
It sounds like you
Wow, your
I was promised certain
That was such a
Thank
Excuse you
That was
Hey team,
I feel un
It was
What'
Hey friend, I
How
Saying goodbye
That
It's heart
How dare
Oh,
Hello, may
What's this
Thank you for recogn
Aww, that
Oh, I remember
Hmm, that'
I miss
I know this
Wait
Is everything okay
Who is that person
Wow, you
Oh great
I'm sad
Wow, the
I am very disappoint
Who turned off the
I understand that things
I'm very
Hi
That's very
Okay, I
Oh no,
Wow, there
What's wrong
I apologize for
Hey, I
Can I help you
Oh, I didn
Alright,
Oh wow,
Oh my goodness
I know this event
What in the
Saying
Yeah, that
Guys, I
Hey, this v
This post
Are
Hey, can
Hello? Is
I can only imagine
Oh, that sounds
Hey, is anyone
I am disappointed
Hello,
Hey everyone, I
That was such
It's okay
The artist
Whoa
I understand that mistakes
Can I help
Who
Hi everyone! I
Hey, can you
Wow, how
Today
Oh no, I
Oh well, I
Well, that
This is the
Yes! I finally
Hey there little
Hello everyone!
Love is never
Look at the
This postcard
Oh great,
Can I
Hmm, this is
I understand your
Oh, look at
B
I'm so
Whoa, this
W
Oh, this
Sometimes
This piece of
What the
That was a
Hey, do
Oh no
Whoa, what
I feel like I
The documentary
Hello
Hello little one
I understand that my
Eww, that
Wow, an
Yes! Finally,
Although the physical location
Whoever is watching
That movie
I remember wondering about
Hey there, little
Who's
Hello, who
Hello everyone! Thank
Hello, can
That's too
Hey, just wanted
Hey there, I
Saying good
Hey there!
Who is there?
Oh my good
I am very
Oh no, what
Wow, thank
I was promised
Hi, is
Hey, I'
Guys, the
Oh no, that
Who is there
Hello, this
That movie really touched
If you have something
The documentary was
I'm starting
Are you kidd
That movie really
Hey everyone,
Thank you for considering
I didn'
Yes! I
Can you
Oh my god
Hey, whoever
That melody really
Thank you, little
Hello, may I
Look
Wow, we
It looks
What do these
Oh wow
I apologize
What are you all
It's such
It's clear
Hey, I was
Hey friend,
I can only
The weather outside is
Eww, this
I miss you
Wow
Aww,
Hi, is there
This artwork
Okay,
Oh well,
This
I'
Say
Hey there little gu
Hmm,
Whoa, who
I am thr
Oh man
Okay, stay calm
I'm happy
Oh, this cur
Oh man,
I'm sorry
Hello? Who
What?! That
This piece
Hey everyone
That's so
Are you okay?
What happened? Where
Hi there
The
Who the hell entered
I can
Guys,
What's
What in
It's important
I'm
I'm coming
It'
Yes! Finally
Wait, what
Wow, reading
I'm surprised
Hey, did
Hey,
Okay, let
I understand that you
Who the hell threw
Eww, who
Thank you for thinking
Who is this?\"
I am deeply
Thank you for including
Oh no, an
It looks like you
Aww
I'm confused
Wow, it
That poem really
Yes
Hey there, is
Hey, what'
Thank you for remember
To
This is
Thank you for making
I can'
That mel
Wow, they
I feel like
Although the
Who are you
Love
If
What the hell are
I am so sad
Oh, I found
Thank you
It looks like
Well, life is
I appreciate that
The artist's
Whoa, that
It's never

View File

@@ -0,0 +1,503 @@
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include "pca.hpp"
#include "mean.hpp"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#include <cstdio>
#include <string>
#include <tuple>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <climits>
//////////////////////////////////////////////////
// utils
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
std::string ret;
for (; begin != end; ++begin) {
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
static void print_usage(int argc, char ** argv, const gpt_params & params) {
gpt_params_print_usage(argc, argv, params);
printf("\nexample usage:\n");
printf("\n CPU only: %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
printf("\n with GPU: %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
printf("\n advanced: %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100\n", argv[0]);
printf("\n using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean\n", argv[0]);
printf("\n");
}
//////////////////////////////////////////////////
// cb_eval is reused for each pair of positive - negative prompt
struct callback_data {
ggml_context * ctx_ggml = nullptr; // holds v_pos, v_neg, v_diff_filtered
int n_layers = 0;
int n_tokens = 0;
bool is_eval_pos = true;
// each element of the vector correspond to one layer
std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
std::vector<struct ggml_tensor *> v_diff_filtered; // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer
// save a tensor into either v_pos or v_neg (decided by is_eval_pos)
void save_tensor_for_layer(struct ggml_tensor * t) {
GGML_ASSERT(t->type == GGML_TYPE_F32);
if (ctx_ggml == nullptr) {
// alloc a new ctx_ggml if needed
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead() * n_layers * 3u,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_ggml = ggml_init(params_ggml);
}
// copy tensor data
auto n_bytes = ggml_nbytes(t);
struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
ggml_set_name(t_layer, ggml_get_name(t));
//print_debug_tensor(t_layer);
if (is_eval_pos) {
v_pos.push_back(t_layer);
} else {
v_neg.push_back(t_layer);
}
}
// calculate diff (v_pos - v_neg) and place the result back to v_pos
// all zero rows in the diff tensor will also be removed
// NOTE: final layer is ignored. we only have (n_layers - 1) to process
std::vector<struct ggml_tensor *> calc_diff() {
for (float il = 0; il < v_pos.size(); il++) {
float * a = (float *) v_pos[il]->data;
float * b = (float *) v_neg[il]->data;
size_t n_elem = ggml_nelements(v_pos[il]);
for (size_t j = 0; j < n_elem; j++) {
a[j] -= b[j];
}
//print_debug_tensor(v_pos[i]);
auto diff_filtered = filter_nonzero_rows(v_pos[il]);
v_diff_filtered.push_back(diff_filtered);
}
return v_diff_filtered; // for convinient, we return the result std::vector
}
// delete zero rows from a given 2D tensor
struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
//printf("filter_nonzero_rows\n");
auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
// check if given row containing all zero elements
int n_cols = t->ne[0]; // hint: should be equal to n_embd
for (int col = 0; col < n_cols; ++col) {
if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
return false;
}
}
return true;
};
std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
for (int i_row = 0; i_row < a->ne[1]; i_row++) {
if (!is_row_all_zeros(a, i_row, 1e-6)) {
rows_to_copy.push_back(i_row);
}
}
// get "n_nonzero_rows" for the output "diff_filtered"
int n_nonzero_rows = rows_to_copy.size();
//printf("n_nonzero_rows: %d\n", n_nonzero_rows);
int n_embd = a->ne[0];
GGML_ASSERT(n_nonzero_rows > 0);
// diff_filtered: [n_embd, n_nonzero_rows]
struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
diff_filtered->data = malloc(ggml_nbytes(diff_filtered));
// copy non-zero rows
for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
int src_row = rows_to_copy[dest_row];
for (int i = 0; i < n_embd; i++) {
float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
}
}
//print_debug_tensor(diff_filtered);
return diff_filtered;
}
// we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
void reset() {
for (auto ptr : v_pos) free(ptr->data);
for (auto ptr : v_neg) free(ptr->data);
for (auto ptr : v_diff_filtered) free(ptr->data);
v_pos.clear();
v_neg.clear();
v_diff_filtered.clear();
if (ctx_ggml) {
ggml_free(ctx_ggml);
}
ctx_ggml = nullptr;
}
};
/**
* process_ctx is used to store the ggml context for pre-post processing the diff vectors
* in short, input => v_diff and output => v_final
*/
struct train_context {
ggml_context * ctx_ggml;
int n_embd;
int n_layers;
/* pair of prompts to be used for generating final vector */
std::vector<std::string> positive_entries;
std::vector<std::string> negative_entries;
// each element of the vector correspond to one layer
// NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
// NOTE (2): v_diff is transposed from v_diff_tmp
std::vector<struct ggml_tensor *> v_diff; // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file
// to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
// v_diff_tmp will get converted unto v_diff later on
std::vector<std::vector<uint8_t>> v_diff_tmp;
train_context(int n_embd_, int n_layers_) {
n_embd = n_embd_;
n_layers = n_layers_;
struct ggml_init_params params_ggml = {
/*.mem_size =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_ggml = ggml_init(params_ggml);
for (int il = 0; il < n_layers - 1; il++) {
std::vector<uint8_t> empty;
v_diff_tmp.push_back(empty);
auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
v_final.push_back(t);
}
}
// add new rows into existing tensor in v_diff_tmp
void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
for (int il = 0; il < n_layers - 1; il++) {
auto t = diff_filtered[il];
auto & diff_tmp = v_diff_tmp[il];
size_t curr_size = diff_tmp.size();
diff_tmp.resize(curr_size + ggml_nbytes(t));
memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
}
}
// build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
// TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
void build_v_diff(bool transpose) {
printf("build_v_diff\n");
for (int il = 0; il < n_layers - 1; il++) {
auto & diff_tmp = v_diff_tmp[il];
int n_elem = diff_tmp.size() / sizeof(float);
GGML_ASSERT(n_elem % n_embd == 0);
int n_rows = n_elem / n_embd;
struct ggml_tensor * diff = transpose
? ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd)
: ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_embd, n_rows);
ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
if (transpose) {
// copy data & transpose
float * arr = (float *) diff_tmp.data();
for (int ir = 0; ir < n_rows; ++ir) {
for (int ic = 0; ic < n_embd; ++ic) {
float f = arr[ir*n_embd + ic];
ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
}
}
} else {
// only copy
memcpy(diff->data, diff_tmp.data(), ggml_nbytes(diff));
}
v_diff.push_back(diff);
print_debug_tensor(diff);
// free memory of diff_tmp
diff_tmp.resize(0);
}
}
~train_context() {
for (auto ptr : v_final) free(ptr->data);
for (auto ptr : v_diff) free(ptr->data);
// no need to free v_diff_tmp, since we didn't use malloc
ggml_free(ctx_ggml);
}
};
struct tokenized_prompt {
std::vector<llama_token> tokens_pos;
std::vector<llama_token> tokens_neg;
size_t max_seq_len;
tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
tokens_pos = ::llama_tokenize(ctx, pos, add_bos, true);
tokens_neg = ::llama_tokenize(ctx, neg, add_bos, true);
max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
padding_seq(ctx, tokens_pos, max_seq_len);
padding_seq(ctx, tokens_neg, max_seq_len);
}
void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
// TODO: customize padding token
std::vector<llama_token> pad_tokens = ::llama_tokenize(ctx, " ", false);
llama_token pad_tok = pad_tokens.back();
while (tokens.size() < len) {
tokens.push_back(pad_tok);
}
}
};
//////////////////////////////////////////////////
template <typename T>
static std::string to_string(const T & val) {
std::stringstream ss;
ss << val;
return ss.str();
}
static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
std::vector<std::string> output;
std::ifstream file(path);
if (!file.is_open()) {
fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
exit(1);
}
std::string line;
while (std::getline(file, line)) {
bool is_skip = skip_empty_lines && line.empty();
if (!is_skip) {
string_process_escapes(line);
output.push_back(line);
}
}
file.close();
return output;
}
//////////////////////////////////////////////////
static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
static const char * l_out_name = "l_out";
const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;
if (ask) {
return is_l_out;
}
if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
return true;
}
// save the tensor to current context
cb_data->save_tensor_for_layer(t);
return true;
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
struct gguf_context * ctx = gguf_init_empty();
const std::string arch = "controlvector";
gguf_set_val_str(ctx, "general.architecture", arch.c_str());
gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());
for (size_t i = 0; i < v_ctrl.size(); ++i) {
gguf_add_tensor(ctx, v_ctrl[i]);
print_debug_tensor(v_ctrl[i]);
printf("Added tensor: %s\n", v_ctrl[i]->name);
}
printf("%s: writing file...\n", __func__);
gguf_write_to_file(ctx, fname.c_str(), false);
printf("%s: wrote file '%s'\n", __func__, fname.c_str());
gguf_free(ctx);
}
/**
* Load prompt files and completion file.
* Then format each pair of prompt + completion to make an entry.
*/
static int prepare_entries(gpt_params & params, train_context & ctx_train) {
// load prompts
std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
if (positive_prompts.size() != negative_prompts.size()) {
fprintf(stderr, "number of positive and negative prompts must be equal\n");
return 1;
}
if (positive_prompts.empty()) {
fprintf(stderr, "must provide at least one prompt pair\n");
return 1;
}
ctx_train.positive_entries = positive_prompts;
ctx_train.negative_entries = negative_prompts;
return 0;
}
int main(int argc, char ** argv) {
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
print_usage(argc, argv, params);
return 1;
}
if (params.n_pca_iterations % params.n_pca_batch != 0) {
fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
return 1;
}
callback_data cb_data;
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = cb_eval;
params.cb_eval_user_data = &cb_data;
params.warmup = false;
print_build_info();
llama_backend_init();
llama_numa_init(params.numa);
// load the model to get hparams
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_n_layer(model);
int n_embd = llama_n_embd(model);
// get model hint param (a.k.a model arch name)
char model_hint[128];
llama_model_meta_val_str(model, "general.architecture", model_hint, 128);
// init train_context
train_context ctx_train(n_embd, n_layers);
// load and prepare entries for training
prepare_entries(params, ctx_train);
// we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
std::vector<tokenized_prompt> tokenized_prompts;
size_t n_total_tokens = 0;
for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
n_total_tokens += 2 * t.max_seq_len;
tokenized_prompts.push_back(std::move(t));
}
std::cout << "n_total_tokens: " << n_total_tokens << std::endl;
for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
bool success = false;
tokenized_prompt t = tokenized_prompts[i];
cb_data.n_layers = n_layers;
cb_data.n_tokens = t.max_seq_len;
printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
(int) i+1, (int) ctx_train.positive_entries.size(),
tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
(int) t.max_seq_len);
cb_data.is_eval_pos = true;
success = get_hidden_layers(ctx, t.tokens_pos);
if (!success) break;
cb_data.is_eval_pos = false;
success = get_hidden_layers(ctx, t.tokens_neg);
if (!success) break;
// calculate diff and remove all zero rows
auto v_diff_filtered = cb_data.calc_diff();
// save & concat the filtered v_diff to ctx_train
ctx_train.concat_diff_tmp(v_diff_filtered);
// reset for next iteration
cb_data.reset();
}
// done with the model, we can now free it to make gain some memory
printf("Done evaluate prompts, unload model...\n");
llama_free(ctx);
llama_free_model(model);
bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;
// prepare ctx_train for PCA
ctx_train.build_v_diff(use_pca);
if (use_pca) {
// run PCA
PCA::pca_params pca_params;
pca_params.n_threads = params.n_threads;
pca_params.n_batch = params.n_pca_batch;
pca_params.n_iterations = params.n_pca_iterations;
PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
} else {
// run mean
mean::run(ctx_train.v_diff, ctx_train.v_final);
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
llama_backend_free();
return 0;
}

Some files were not shown because too many files have changed in this diff Show More