Compare commits

..

7 Commits

Author SHA1 Message Date
Georgi Gerganov
d57cb9c294 passkey : add readme 2024-01-08 11:13:44 +02:00
Georgi Gerganov
164d7a0546 passkey : add "self-extend"-like context extension (#4810)
* llama : "self-extend"-like context extension

* passkey : add comment
2024-01-08 11:10:32 +02:00
Georgi Gerganov
a42feb1885 make : add passkey target 2024-01-08 11:09:07 +02:00
Georgi Gerganov
f2c9800dfb passkey : simplify n_past logic 2024-01-07 17:52:12 +02:00
Georgi Gerganov
bda3f2c892 passkey : select pass key pos from CLI 2024-01-07 14:49:33 +02:00
Georgi Gerganov
fbb999f592 passkey : better prints 2024-01-07 14:30:03 +02:00
Georgi Gerganov
21196da114 examples : add passkey test 2024-01-07 14:30:03 +02:00
549 changed files with 40387 additions and 221169 deletions

View File

@@ -12,7 +12,6 @@ Checks: >
-readability-implicit-bool-conversion,
-readability-magic-numbers,
-readability-uppercase-literal-suffix,
-readability-simplify-boolean-expr,
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,

View File

@@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements requirements
@@ -26,10 +26,8 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
RUN make

View File

@@ -40,11 +40,6 @@ ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip git libcurl4-openssl-dev
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt
COPY requirements requirements
@@ -15,9 +15,6 @@ WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make
ENV LC_ALL=C.utf8

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
@@ -12,7 +12,7 @@
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
# It is up to the user to install the correct vendor-specific support.
Name: llama.cpp-cuda
Name: llama.cpp-cublas
Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
@@ -32,16 +32,16 @@ CPU inference for Meta's Lllama2 models using default options.
%setup -n llama.cpp-master
%build
make -j LLAMA_CUDA=1
make -j LLAMA_CUBLAS=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p main %{buildroot}%{_bindir}/llamacppcuda
cp -p server %{buildroot}%{_bindir}/llamacppcudaserver
cp -p simple %{buildroot}%{_bindir}/llamacppcudasimple
cp -p main %{buildroot}%{_bindir}/llamacppcublas
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
mkdir -p %{buildroot}/usr/lib/systemd/system
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacuda.service
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service
[Unit]
Description=Llama.cpp server, CPU only (no GPU support in this build).
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
@@ -49,7 +49,7 @@ After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.t
[Service]
Type=simple
EnvironmentFile=/etc/sysconfig/llama
ExecStart=/usr/bin/llamacppcudaserver $LLAMA_ARGS
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS
ExecReload=/bin/kill -s HUP $MAINPID
Restart=never
@@ -67,10 +67,10 @@ rm -rf %{buildroot}
rm -rf %{_builddir}/*
%files
%{_bindir}/llamacppcuda
%{_bindir}/llamacppcudaserver
%{_bindir}/llamacppcudasimple
/usr/lib/systemd/system/llamacuda.service
%{_bindir}/llamacppcublas
%{_bindir}/llamacppcublasserver
%{_bindir}/llamacppcublassimple
/usr/lib/systemd/system/llamacublas.service
%config /etc/sysconfig/llama
%pre

View File

@@ -1,5 +1,5 @@
# SRPM for building from source and packaging an RPM for RPM-based distros.
# https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
# Built and maintained by John Boero - boeroboy@gmail.com
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal

View File

@@ -20,8 +20,8 @@ COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
# Enable cuBLAS
ENV LLAMA_CUBLAS=1
RUN make

View File

@@ -1,26 +0,0 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ${OPT_SYCL_F16} && \
cmake --build build --config Release --target main
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
COPY --from=build /app/build/bin/main /main
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -1,27 +0,0 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 && \
cmake --build build --config Release --target main
# Clean up
WORKDIR /
RUN cp /app/build/bin/main /main && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -1,37 +0,0 @@
{
lib,
dockerTools,
buildEnv,
llama-cpp,
interactive ? true,
coreutils,
}:
# A tar that can be fed into `docker load`:
#
# $ nix build .#llamaPackages.docker
# $ docker load < result
# For details and variations cf.
# - https://nixos.org/manual/nixpkgs/unstable/#ssec-pkgs-dockerTools-buildLayeredImage
# - https://discourse.nixos.org/t/a-faster-dockertools-buildimage-prototype/16922
# - https://nixery.dev/
# Approximate (compressed) sizes, at the time of writing, are:
#
# .#llamaPackages.docker: 125M;
# .#llamaPackagesCuda.docker: 537M;
# .#legacyPackages.aarch64-linux.llamaPackagesXavier.docker: 415M.
dockerTools.buildLayeredImage {
name = llama-cpp.pname;
tag = "latest";
contents =
[ llama-cpp ]
++ lib.optionals interactive [
coreutils
dockerTools.binSh
dockerTools.caCertificates
];
}

View File

@@ -7,18 +7,6 @@
{ system, ... }:
{
_module.args = {
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
# again, the below creates several nixpkgs instances which the
# flake-centric CLI will be forced to evaluate e.g. on `nix flake show`.
#
# This is currently "slow" and "expensive", on a certain scale.
# This also isn't "right" in that this hinders dependency injection at
# the level of flake inputs. This might get removed in the foreseeable
# future.
#
# Note that you can use these expressions without Nix
# (`pkgs.callPackage ./devops/nix/scope.nix { }` is the entry point).
pkgsCuda = import inputs.nixpkgs {
inherit system;
# Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc,

View File

@@ -1,43 +1,31 @@
{
lib,
glibc,
config,
stdenv,
mkShell,
runCommand,
cmake,
ninja,
pkg-config,
git,
python3,
mpi,
blas,
openblas, # TODO: Use the generic `blas` so users could switch between alternative implementations
cudaPackages,
darwin,
rocmPackages,
vulkan-headers,
vulkan-loader,
clblast,
useBlas ? builtins.all (x: !x) [
useCuda
useMetalKit
useOpenCL
useRocm
useVulkan
] && blas.meta.available,
],
useCuda ? config.cudaSupport,
useMetalKit ? stdenv.isAarch64 && stdenv.isDarwin && !useOpenCL,
useMpi ? false, # Increases the runtime closure size by ~700M
useOpenCL ? false,
useRocm ? config.rocmSupport,
useVulkan ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
effectiveStdenv ? if useCuda then cudaPackages.backendStdenv else stdenv,
enableStatic ? effectiveStdenv.hostPlatform.isStatic,
precompileMetalShaders ? false
}@inputs:
let
@@ -49,7 +37,10 @@ let
versionOlder
;
# It's necessary to consistently use backendStdenv when building with CUDA support,
# otherwise we get libstdc++ errors downstream.
stdenv = throw "Use effectiveStdenv instead";
effectiveStdenv = if useCuda then cudaPackages.backendStdenv else inputs.stdenv;
suffices =
lib.optionals useBlas [ "BLAS" ]
@@ -57,8 +48,7 @@ let
++ lib.optionals useMetalKit [ "MetalKit" ]
++ lib.optionals useMpi [ "MPI" ]
++ lib.optionals useOpenCL [ "OpenCL" ]
++ lib.optionals useRocm [ "ROCm" ]
++ lib.optionals useVulkan [ "Vulkan" ];
++ lib.optionals useRocm [ "ROCm" ];
pnameSuffix =
strings.optionalString (suffices != [ ])
@@ -67,15 +57,10 @@ let
strings.optionalString (suffices != [ ])
", accelerated with ${strings.concatStringsSep ", " suffices}";
executableSuffix = effectiveStdenv.hostPlatform.extensions.executable;
# TODO: package the Python in this repository in a Nix-like way.
# It'd be nice to migrate to buildPythonPackage, as well as ensure this repo
# is PEP 517-compatible, and ensure the correct .dist-info is generated.
# https://peps.python.org/pep-0517/
#
# TODO: Package up each Python script or service appropriately, by making
# them into "entrypoints"
llama-python = python3.withPackages (
ps: [
ps.numpy
@@ -88,17 +73,11 @@ let
ps: [
ps.numpy
ps.sentencepiece
ps.tiktoken
ps.torchWithoutCuda
ps.transformers
]
);
xcrunHost = runCommand "xcrunHost" {} ''
mkdir -p $out/bin
ln -s /usr/bin/xcrun $out/bin
'';
# apple_sdk is supposed to choose sane defaults, no need to handle isAarch64
# separately
darwinBuildInputs =
@@ -128,11 +107,6 @@ let
hipblas
rocblas
];
vulkanBuildInputs = [
vulkan-headers
vulkan-loader
];
in
effectiveStdenv.mkDerivation (
@@ -140,39 +114,26 @@ effectiveStdenv.mkDerivation (
pname = "llama-cpp${pnameSuffix}";
version = llamaVersion;
# Note: none of the files discarded here are visible in the sandbox or
# affect the output hash. This also means they can be modified without
# triggering a rebuild.
src = lib.cleanSourceWith {
filter =
name: type:
let
noneOf = builtins.all (x: !x);
baseName = baseNameOf name;
in
noneOf [
!(builtins.any (_: _) [
(lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths
(lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." baseName) # Skip hidden files and directories
(baseName == "flake.lock")
];
(name == "README.md") # Ignore *.md changes whe computing outPaths
(lib.hasPrefix "." name) # Skip hidden files and directories
]);
src = lib.cleanSource ../../.;
};
postPatch = ''
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
# `default.metallib` may be compiled with Metal compiler from XCode
# and we need to escape sandbox on MacOS to access Metal compiler.
# `xcrun` is used find the path of the Metal compiler, which is varible
# and not on $PATH
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
# TODO: Package up each Python script or service appropriately.
# If we were to migrate to buildPythonPackage and prepare the `pyproject.toml`,
# we could make those *.py into setuptools' entrypoints
substituteInPlace ./*.py --replace "/usr/bin/env python" "${llama-python}/bin/python"
'';
nativeBuildInputs =
[
@@ -187,11 +148,6 @@ effectiveStdenv.mkDerivation (
# TODO: Replace with autoAddDriverRunpath
# once https://github.com/NixOS/nixpkgs/pull/275241 has been merged
cudaPackages.autoAddOpenGLRunpathHook
]
++ optionals (effectiveStdenv.hostPlatform.isGnu && enableStatic) [
glibc.static
] ++ optionals (effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders) [
xcrunHost
];
buildInputs =
@@ -199,23 +155,20 @@ effectiveStdenv.mkDerivation (
++ optionals useCuda cudaBuildInputs
++ optionals useMpi [ mpi ]
++ optionals useOpenCL [ clblast ]
++ optionals useRocm rocmBuildInputs
++ optionals useBlas [ blas ]
++ optionals useVulkan vulkanBuildInputs;
++ optionals useRocm rocmBuildInputs;
cmakeFlags =
[
(cmakeBool "LLAMA_NATIVE" false)
(cmakeBool "LLAMA_NATIVE" true)
(cmakeBool "LLAMA_BUILD_SERVER" true)
(cmakeBool "BUILD_SHARED_LIBS" (!enableStatic))
(cmakeBool "BUILD_SHARED_LIBS" true)
(cmakeBool "CMAKE_SKIP_BUILD_RPATH" true)
(cmakeBool "LLAMA_BLAS" useBlas)
(cmakeBool "LLAMA_CLBLAST" useOpenCL)
(cmakeBool "LLAMA_CUDA" useCuda)
(cmakeBool "LLAMA_CUBLAS" useCuda)
(cmakeBool "LLAMA_HIPBLAS" useRocm)
(cmakeBool "LLAMA_METAL" useMetalKit)
(cmakeBool "LLAMA_VULKAN" useVulkan)
(cmakeBool "LLAMA_STATIC" enableStatic)
(cmakeBool "LLAMA_MPI" useMpi)
]
++ optionals useCuda [
(
@@ -226,25 +179,23 @@ effectiveStdenv.mkDerivation (
)
]
++ optionals useRocm [
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
]
++ optionals useMetalKit [
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
];
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
# Environment variables needed for ROCm
env = optionals useRocm {
ROCM_PATH = "${rocmPackages.clr}";
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
};
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
# and select the line that matches the current nixpkgs version of rocBLAS.
# Should likely use `rocmPackages.clr.gpuTargets`.
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
]
++ optionals useMetalKit [ (lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1") ]
++ optionals useBlas [ (lib.cmakeFeature "LLAMA_BLAS_VENDOR" "OpenBLAS") ];
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
# if they haven't been added yet.
postInstall = ''
mv $out/bin/main${executableSuffix} $out/bin/llama${executableSuffix}
mv $out/bin/server${executableSuffix} $out/bin/llama-server${executableSuffix}
mv $out/bin/main $out/bin/llama
mv $out/bin/server $out/bin/llama-server
mkdir -p $out/include
cp $src/llama.h $out/include/
'';
@@ -258,7 +209,6 @@ effectiveStdenv.mkDerivation (
useMpi
useOpenCL
useRocm
useVulkan
;
shell = mkShell {
@@ -266,9 +216,6 @@ effectiveStdenv.mkDerivation (
description = "contains numpy and sentencepiece";
buildInputs = [ llama-python ];
inputsFrom = [ finalAttrs.finalPackage ];
shellHook = ''
addToSearchPath "LD_LIBRARY_PATH" "${lib.getLib effectiveStdenv.cc.cc}/lib"
'';
};
shell-extra = mkShell {

View File

@@ -4,16 +4,9 @@
llamaVersion ? "0.0.0",
}:
# We're using `makeScope` instead of just writing out an attrset
# because it allows users to apply overlays later using `overrideScope'`.
# Cf. https://noogle.dev/f/lib/makeScope
lib.makeScope newScope (
self: {
inherit llamaVersion;
llama-cpp = self.callPackage ./package.nix { };
docker = self.callPackage ./docker.nix { };
docker-min = self.callPackage ./docker.nix { interactive = false; };
sif = self.callPackage ./sif.nix { };
}
)

View File

@@ -1,27 +0,0 @@
{
lib,
singularity-tools,
llama-cpp,
bashInteractive,
interactive ? false,
}:
let
optionalInt = cond: x: if cond then x else 0;
in
singularity-tools.buildImage rec {
inherit (llama-cpp) name;
contents = [ llama-cpp ] ++ lib.optionals interactive [ bashInteractive ];
# These are excessive (but safe) for most variants. Building singularity
# images requires superuser privileges, so we build them inside a VM in a
# writable image of pre-determined size.
#
# ROCm is currently affected by https://github.com/NixOS/nixpkgs/issues/276846
#
# Expected image sizes:
# - cpu/blas: 150M,
# - cuda, all gencodes: 560M,
diskSize = 4096 + optionalInt llama-cpp.useRocm 16384;
memSize = diskSize;
}

View File

@@ -1,37 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=11.7.1
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
# Target the CUDA runtime image
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_CUDA_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
RUN make
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/server /server
ENTRYPOINT [ "/server" ]

View File

@@ -1,29 +0,0 @@
ARG ONEAPI_VERSION=2024.0.1-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION as build
ARG LLAMA_SYCL_F16=OFF
RUN apt-get update && \
apt-get install -y git libcurl4-openssl-dev
WORKDIR /app
COPY . .
RUN if [ "${LLAMA_SYCL_F16}" = "ON" ]; then \
echo "LLAMA_SYCL_F16 is set" && \
export OPT_SYCL_F16="-DLLAMA_SYCL_F16=ON"; \
fi && \
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target server
FROM intel/oneapi-basekit:$ONEAPI_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/build/bin/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -1,50 +0,0 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=5.6
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
FROM ${BASE_ROCM_DEV_CONTAINER} as build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
ARG ROCM_DOCKER_ARCH=\
gfx803 \
gfx900 \
gfx906 \
gfx908 \
gfx90a \
gfx1010 \
gfx1030 \
gfx1100 \
gfx1101 \
gfx1102
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Set nvcc architecture
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Enable cURL
ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
RUN make
ENTRYPOINT [ "/app/server" ]

View File

@@ -1,31 +0,0 @@
ARG UBUNTU_VERSION=jammy
FROM ubuntu:$UBUNTU_VERSION as build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
apt update -y && \
apt-get install -y vulkan-sdk
# Install cURL
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DLLAMA_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target server
# Clean up
WORKDIR /
RUN cp /app/build/bin/server /server && \
rm -rf /app
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

View File

@@ -1,25 +0,0 @@
ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION as build
RUN apt-get update && \
apt-get install -y build-essential git libcurl4-openssl-dev
WORKDIR /app
COPY . .
ENV LLAMA_CURL=1
RUN make
FROM ubuntu:$UBUNTU_VERSION as runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
COPY --from=build /app/server /server
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/server" ]

1
.ecrc
View File

@@ -1,5 +1,4 @@
{
"Exclude": ["^\\.gitmodules$"],
"Disable": {
"IndentSize": true
}

15
.flake8
View File

@@ -1,17 +1,2 @@
[flake8]
max-line-length = 125
ignore = E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704,W503
exclude =
# Do not traverse examples
examples,
# Do not include package initializers
__init__.py,
# No need to traverse our git directory
.git,
# There's no value in checking cache directories
__pycache__,
# No need to include the build path
build,
# This contains builds that we don't want to check
dist # This is generated with `python build .` for package releases
# max-complexity = 10

View File

@@ -7,5 +7,3 @@ assignees: ''
---
Please include information about your system, the steps to reproduce the bug, and the version of llama.cpp that you are using. If possible, please provide a minimal code example that reproduces the bug.
If the bug concerns the server, please try to reproduce it first using the [server test scenario framework](https://github.com/ggerganov/llama.cpp/tree/master/examples/server/tests).

90
.github/labeler.yml vendored
View File

@@ -1,90 +0,0 @@
# https://github.com/actions/labeler
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml-kompute.h
- ggml-kompute.cpp
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
- ggml-metal.h
- ggml-metal.cpp
- README-metal.md
SYCL:
- changed-files:
- any-glob-to-any-file:
- ggml-sycl.h
- ggml-sycl.cpp
- README-sycl.md
Nvidia GPU:
- changed-files:
- any-glob-to-any-file:
- ggml-cuda.h
- ggml-cuda/**
Vulkan:
- changed-files:
- any-glob-to-any-file:
- ggml_vk_generate_shaders.py
- ggml-vulkan*
documentation:
- changed-files:
- any-glob-to-any-file:
- docs/**
- media/**
testing:
- changed-files:
- any-glob-to-any-file:
- tests/**
build:
- changed-files:
- any-glob-to-any-file:
- cmake/**
- CMakeLists.txt
- CMakePresets.json
- codecov.yml
examples:
- changed-files:
- any-glob-to-any-file: examples/**
devops:
- changed-files:
- any-glob-to-any-file:
- .devops/**
- .github/**
- ci/**
python:
- changed-files:
- any-glob-to-any-file:
- "**/*.py"
- requirements/**
- gguf-py/**
- .flake8
script:
- changed-files:
- any-glob-to-any-file:
- scripts/**
android:
- changed-files:
- any-glob-to-any-file:
- examples/llama.android/**
server:
- changed-files:
- any-glob-to-any-file:
- examples/server/**
ggml:
- changed-files:
- any-glob-to-any-file:
- ggml.c
- ggml.h
- ggml-*.c
- ggml-*.h
- ggml-cuda/**
nix:
- changed-files:
- any-glob-to-any-file:
- "**/*.nix"
- .github/workflows/nix-*.yml
- .devops/nix/nixpkgs-instances.nix
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/

View File

@@ -1,310 +0,0 @@
# Benchmark
name: Benchmark
on:
workflow_dispatch:
inputs:
gpu-series:
description: 'Azure GPU series to run with'
required: true
type: choice
options:
- Standard_NC4as_T4_v3
- Standard_NC24ads_A100_v4
- Standard_NC80adis_H100_v5
sha:
description: 'Commit SHA1 to build'
required: false
type: string
duration:
description: 'Duration of the bench'
type: string
default: 10m
push:
branches:
- master
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
schedule:
- cron: '04 2 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}-${{ github.event.inputs.sha }}
cancel-in-progress: true
jobs:
bench-server-baseline:
runs-on: Standard_NC4as_T4_v3
env:
RUNNER_LABEL: Standard_NC4as_T4_v3 # FIXME Do not find a way to not duplicate it
N_USERS: 8
DURATION: 10m
strategy:
matrix:
model: [phi-2]
ftype: [q4_0, q8_0, f16]
include:
- model: phi-2
ftype: q4_0
pr_comment_enabled: "true"
if: |
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|| (
github.event_name == 'schedule'
&& github.ref_name == 'master'
&& github.repository_owner == 'ggerganov'
)
|| github.event_name == 'pull_request_target'
|| (
github.event_name == 'push'
&& github.event.ref == 'refs/heads/master'
&& github.repository_owner == 'ggerganov'
)
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Install python env
id: pipenv
run: |
cd examples/server/bench
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
- name: Prometheus
id: install_prometheus
run: |
wget --quiet https://github.com/prometheus/prometheus/releases/download/v2.51.0/prometheus-2.51.0.linux-amd64.tar.gz
tar xzf prometheus*.tar.gz --strip-components=1
./prometheus --config.file=examples/server/bench/prometheus.yml &
while ! nc -z localhost 9090; do
sleep 0.1
done
- name: Set up Go
uses: actions/setup-go@v5
with:
go-version: '1.21'
- name: Install k6 and xk6-sse
id: k6_installation
run: |
cd examples/server/bench
go install go.k6.io/xk6/cmd/xk6@latest
xk6 build master \
--with github.com/phymbert/xk6-sse
- name: Build
id: cmake_build
run: |
set -eux
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \
-DCMAKE_CUDA_ARCHITECTURES=75 \
-DLLAMA_FATAL_WARNINGS=OFF \
-DLLAMA_ALL_WARNINGS=OFF \
-DCMAKE_BUILD_TYPE=Release;
cmake --build build --config Release -j $(nproc) --target server
- name: Download the dataset
id: download_dataset
run: |
cd examples/server/bench
wget --quiet https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
- name: Server bench
id: server_bench
run: |
set -eux
cd examples/server/bench
source venv/bin/activate
python bench.py \
--runner-label ${{ env.RUNNER_LABEL }} \
--name ${{ github.job }} \
--branch ${{ github.head_ref || github.ref_name }} \
--commit ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha }} \
--scenario script.js \
--duration ${{ github.event.inputs.duration || env.DURATION }} \
--hf-repo ggml-org/models \
--hf-file ${{ matrix.model }}/ggml-model-${{ matrix.ftype }}.gguf \
--model-path-prefix /models \
--parallel ${{ env.N_USERS }} \
-ngl 33 \
--batch-size 2048 \
--ubatch-size 256 \
--ctx-size 16384 \
--n-prompts 1000 \
--max-prompt-tokens 1024 \
--max-tokens 2048
cat results.github.env >> $GITHUB_ENV
# Remove dataset as we do not want it in the artefact
rm ShareGPT_V3_unfiltered_cleaned_split.json
- uses: actions/upload-artifact@v4
with:
name: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
compression-level: 9
path: |
examples/server/bench/*.jpg
examples/server/bench/*.json
examples/server/bench/*.log
- name: Commit status
uses: Sibz/github-status-action@v1
with:
authToken: ${{secrets.GITHUB_TOKEN}}
sha: ${{ inputs.sha || github.event.pull_request.head.sha || github.sha }}
context: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
description: |
${{ env.BENCH_RESULTS }}
state: 'success'
- name: Upload benchmark images
uses: devicons/public-upload-to-imgur@v2.2.2
continue-on-error: true # Important as it looks unstable: 503
id: imgur_step
with:
client_id: ${{secrets.IMGUR_CLIENT_ID}}
path: |
examples/server/bench/prompt_tokens_seconds.jpg
examples/server/bench/predicted_tokens_seconds.jpg
examples/server/bench/kv_cache_usage_ratio.jpg
examples/server/bench/requests_processing.jpg
- name: Extract mermaid
id: set_mermaid
run: |
set -eux
cd examples/server/bench
PROMPT_TOKENS_SECONDS=$(cat prompt_tokens_seconds.mermaid)
echo "PROMPT_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PROMPT_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
PREDICTED_TOKENS_SECONDS=$(cat predicted_tokens_seconds.mermaid)
echo "PREDICTED_TOKENS_SECONDS<<EOF" >> $GITHUB_ENV
echo "$PREDICTED_TOKENS_SECONDS" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
KV_CACHE_USAGE_RATIO=$(cat kv_cache_usage_ratio.mermaid)
echo "KV_CACHE_USAGE_RATIO<<EOF" >> $GITHUB_ENV
echo "$KV_CACHE_USAGE_RATIO" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
REQUESTS_PROCESSING=$(cat requests_processing.mermaid)
echo "REQUESTS_PROCESSING<<EOF" >> $GITHUB_ENV
echo "$REQUESTS_PROCESSING" >> $GITHUB_ENV
echo "EOF" >> $GITHUB_ENV
- name: Extract image url
id: extract_image_url
continue-on-error: true
run: |
set -eux
echo "IMAGE_O=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[0] }}" >> $GITHUB_ENV
echo "IMAGE_1=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[1] }}" >> $GITHUB_ENV
echo "IMAGE_2=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[2] }}" >> $GITHUB_ENV
echo "IMAGE_3=${{ fromJSON(steps.imgur_step.outputs.imgur_urls)[3] }}" >> $GITHUB_ENV
- name: Comment PR
uses: mshick/add-pr-comment@v2
id: comment_pr
if: ${{ github.event.pull_request != '' && matrix.pr_comment_enabled == 'true' }}
with:
message-id: bench-server-${{ github.job }}-${{ env.RUNNER_LABEL }}-${{ matrix.model }}-${{ matrix.ftype }}
message: |
<p align="center">
📈 **llama.cpp server** for _${{ github.job }}_ on _${{ env.RUNNER_LABEL }}_ for `${{ matrix.model }}`-`${{ matrix.ftype }}`: **${{ env.BENCH_ITERATIONS}} iterations** 🚀
</p>
<details>
<summary>Expand details for performance related PR only</summary>
- Concurrent users: ${{ env.N_USERS }}, duration: ${{ github.event.inputs.duration || env.DURATION }}
- HTTP request : avg=${{ env.HTTP_REQ_DURATION_AVG }}ms p(95)=${{ env.HTTP_REQ_DURATION_P_95_ }}ms fails=${{ env.HTTP_REQ_FAILED_PASSES }}, finish reason: stop=${{ env.LLAMACPP_COMPLETIONS_STOP_RATE_PASSES }} truncated=${{ env.LLAMACPP_COMPLETIONS_TRUNCATED_RATE_PASSES }}
- Prompt processing (pp): avg=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_PROMPT_PROCESSING_SECOND_P_95_ }}tk/s
- Token generation (tg): avg=${{ env.LLAMACPP_TOKENS_SECOND_AVG }}tk/s p(95)=${{ env.LLAMACPP_TOKENS_SECOND_P_95_ }}tk/s
- ${{ env.BENCH_GRAPH_XLABEL }}
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_O }}" alt="prompt_tokens_seconds" />
<details>
<summary>More</summary>
```mermaid
${{ env.PROMPT_TOKENS_SECONDS }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_1 }}" alt="predicted_tokens_seconds"/>
<details>
<summary>More</summary>
```mermaid
${{ env.PREDICTED_TOKENS_SECONDS }}
```
</details>
</p>
<details>
<summary>Details</summary>
<p align="center">
<img width="100%" height="100%" src="${{ env.IMAGE_2 }}" alt="kv_cache_usage_ratio" />
<details>
<summary>More</summary>
```mermaid
${{ env.KV_CACHE_USAGE_RATIO }}
```
</details>
<img width="100%" height="100%" src="${{ env.IMAGE_3 }}" alt="requests_processing"/>
<details>
<summary>More</summary>
```mermaid
${{ env.REQUESTS_PROCESSING }}
```
</details>
</p>
</details>
</details>

File diff suppressed because it is too large Load Diff

View File

@@ -1,23 +0,0 @@
name: Close inactive issues
on:
schedule:
- cron: "42 0 * * *"
jobs:
close-issues:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"
close-issue-message: "This issue was closed because it has been inactive for 14 days since being marked as stale."
days-before-pr-stale: -1
days-before-pr-close: -1
operations-per-run: 10000
repo-token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -5,16 +5,12 @@ env:
GGML_NLOOP: 3
GGML_N_THREADS: 1
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
run:
runs-on: ubuntu-20.04
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Dependencies
run: |

View File

@@ -15,10 +15,6 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
push_to_registry:
name: Push Docker image to Docker Hub
@@ -32,22 +28,16 @@ jobs:
config:
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server", dockerfile: ".devops/server.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
# have disabled them for now until the reason why
# is understood.
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-cuda", dockerfile: ".devops/server-cuda.Dockerfile", platforms: "linux/amd64" }
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
@@ -92,12 +82,6 @@ jobs:
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Downcase github.repository_owner
run: |
echo "repository_owner_lowercase=${GITHUB_REPOSITORY_OWNER@L}" >> $GITHUB_ENV
env:
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Build and push Docker image (versioned)
if: github.event_name == 'push'
uses: docker/build-push-action@v4
@@ -105,7 +89,7 @@ jobs:
context: .
push: true
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
file: ${{ matrix.config.dockerfile }}
- name: Build and push Docker image (tagged)
@@ -114,5 +98,5 @@ jobs:
context: .
push: ${{ github.event_name == 'push' }}
platforms: ${{ matrix.config.platforms }}
tags: "ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ env.repository_owner_lowercase }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
tags: "ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }},ghcr.io/${{ github.repository_owner }}/llama.cpp:${{ matrix.config.tag }}-${{ steps.tag.outputs.name }}"
file: ${{ matrix.config.dockerfile }}

View File

@@ -1,12 +1,6 @@
name: EditorConfig Checker
on:
workflow_dispatch: # allows manual triggering
inputs:
create_release:
description: 'Create new release'
required: true
type: boolean
push:
branches:
- master
@@ -14,14 +8,10 @@ on:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
editorconfig:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: editorconfig-checker/action-editorconfig-checker@main
- run: editorconfig-checker

View File

@@ -24,9 +24,9 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- name: Set up Python
uses: actions/setup-python@v5
uses: actions/setup-python@v2
with:
python-version: '3.9.x'
- name: Install dependencies

View File

@@ -1,17 +0,0 @@
name: "Pull Request Labeler"
on:
- pull_request_target
jobs:
labeler:
permissions:
contents: read
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
repository: "ggerganov/llama.cpp"
- uses: actions/labeler@v5
with:
configuration-path: '.github/labeler.yml'

View File

@@ -1,65 +0,0 @@
name: Nix aarch64 builds
on:
workflow_dispatch: # allows manual triggering
schedule:
# Rebuild daily rather than on every push because QEMU is expensive (e.g.
# 1.5h instead of minutes with the cold cache).
#
# randint(0, 59), randint(0, 23)
- cron: '26 12 * * *'
# But also rebuild if we touched any of the Nix expressions:
push:
branches:
- master
paths: ['**/*.nix', 'flake.lock']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/*.nix', 'flake.lock']
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
nix-build-aarch64:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get update
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

View File

@@ -5,12 +5,10 @@ on:
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
pull_request:
types: [opened, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix']
jobs:
nix-eval:
@@ -27,8 +25,8 @@ jobs:
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
@@ -41,6 +39,7 @@ jobs:
--flake
".#packages.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build:
if: ${{ vars.CACHIX_NAME != '' }}
strategy:
fail-fast: false
matrix:
@@ -54,8 +53,8 @@ jobs:
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-substituters = https://llama-cpp.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = llama-cpp.cachix.org-1:H75X+w83wUKTIPSO1KWy9ADUrzThyGs8P5tmAbkWhQc= cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
@@ -63,10 +62,51 @@ jobs:
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: llama-cpp
name: ${{ vars.CACHIX_NAME }}
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--flake
".#checks.$(nix eval --raw --impure --expr builtins.currentSystem)"
nix-build-aarch64:
if: ${{ vars.CACHIX_NAME != '' }}
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install QEMU
# Copy-paste from https://github.com/orgs/community/discussions/8305#discussioncomment-5888654
run: |
sudo apt-get install -y qemu-user-static qemu-system-aarch64
sudo usermod -a -G kvm $USER
- name: Install Nix
uses: DeterminateSystems/nix-installer-action@v9
with:
github-token: ${{ secrets.GITHUB_TOKEN }}
extra-conf: |
extra-platforms = aarch64-linux
extra-system-features = nixos-test kvm
extra-substituters = https://${{ vars.CACHIX_NAME }}.cachix.org https://cuda-maintainers.cachix.org
extra-trusted-public-keys = ${{ vars.CACHIX_PUBLIC_KEY }} cuda-maintainers.cachix.org-1:0dq3bujKpuEPMCX6U4WylrUDZ9JyUG0VpVZa7CNfq5E=
- uses: DeterminateSystems/magic-nix-cache-action@v2
with:
upstream-cache: https://${{ matrix.cachixName }}.cachix.org
- name: Set-up cachix to push the results to
uses: cachix/cachix-action@v13
with:
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
name: ${{ vars.CACHIX_NAME }}
- name: Show all output paths
run: >
nix run github:nix-community/nix-eval-jobs
-- --gc-roots-dir gcroot
--flake
".#packages.aarch64-linux"
- name: Build
run: >
nix run github:Mic92/nix-fast-build
-- --skip-cached --no-nom
--systems aarch64-linux
--flake
".#checks.aarch64-linux"

View File

@@ -19,4 +19,4 @@ jobs:
pr-labels: |
nix
pr-reviewers: philiptaron,SomeoneSerge
token: ${{ secrets.FLAKE_TOKEN }}
token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -3,33 +3,27 @@ name: Python check requirements.txt
on:
push:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
pull_request:
paths:
- '.github/workflows/python-check-requirements.yml'
- 'scripts/check-requirements.sh'
- 'convert*.py'
- 'requirements.txt'
- 'requirements/*.txt'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
python-check-requirements:
runs-on: ubuntu-latest
name: check-requirements
steps:
- name: Check out source repository
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Run check-requirements.sh script
run: bash scripts/check-requirements.sh
run: bash scripts/check-requirements.sh nocleanup

View File

@@ -2,22 +2,19 @@ name: flake8 Lint
on: [push, pull_request]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
flake8-lint:
runs-on: ubuntu-latest
name: Lint
steps:
- name: Check out source repository
uses: actions/checkout@v4
uses: actions/checkout@v3
- name: Set up Python environment
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: flake8 Lint
uses: py-actions/flake8@v2
with:
plugins: "flake8-no-print"
ignore: "E203,E211,E221,E225,E231,E241,E251,E261,E266,E501,E701,E704"
exclude: "examples/*,examples/*/**,*/**/__init__.py"

View File

@@ -1,171 +0,0 @@
# Server build and tests
name: Server
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
pull_request_target:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'examples/server/**.*']
schedule:
- cron: '2 4 * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
server:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Verify server deps
id: verify_server_deps
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server
git ls-files --others --modified
git status
./deps.sh
git status
not_ignored_files="$(git ls-files --others --modified)"
echo "Modified files: ${not_ignored_files}"
if [ -n "${not_ignored_files}" ]; then
echo "Repository is dirty or server deps are not built as expected"
echo "${not_ignored_files}"
exit 1
fi
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server
- name: Tests
id: server_integration_tests
run: |
cd examples/server/tests
PORT=8888 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow
server-windows:
runs-on: windows-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target server
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r examples/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
run: |
cd examples/server/tests
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow

20
.github/workflows/tidy-post.yml vendored Normal file
View File

@@ -0,0 +1,20 @@
name: clang-tidy review post comments
on:
workflow_dispatch:
workflows: ["clang-tidy-review"]
types:
- completed
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: ZedThree/clang-tidy-review/post@v0.13.0
# lgtm_comment_body, max_comments, and annotations need to be set on the posting workflow in a split setup
with:
# adjust options as necessary
lgtm_comment_body: ''
annotations: false
max_comments: 25

23
.github/workflows/tidy-review.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: clang-tidy-review
on:
pull_request:
branches:
- master
jobs:
clang-tidy-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: ZedThree/clang-tidy-review@v0.13.0
id: review
with:
lgtm_comment_body: ''
build_dir: build
cmake_command: cmake . -B build -DCMAKE_EXPORT_COMPILE_COMMANDS=on
split_workflow: true
- uses: ZedThree/clang-tidy-review/upload@v0.13.0

25
.github/workflows/zig-build.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
name: Zig CI
on:
pull_request:
push:
branches:
- master
jobs:
build:
strategy:
fail-fast: false
matrix:
runs-on: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.runs-on }}
steps:
- uses: actions/checkout@v3
with:
submodules: recursive
fetch-depth: 0
- uses: goto-bus-stop/setup-zig@v2
with:
version: 0.11.0
- name: Build Summary
run: zig build --summary all -freference-trace

28
.gitignore vendored
View File

@@ -2,7 +2,6 @@
*.a
*.so
*.gguf
*.gguf.json
*.bin
*.exe
*.dll
@@ -12,10 +11,7 @@
*.gcda
*.dot
*.bat
*.tmp
*.metallib
*.etag
*.lastModified
.DS_Store
.build/
.cache/
@@ -27,16 +23,11 @@
.clang-tidy
.vs/
.vscode/
.idea/
ggml-metal-embed.metal
lcov-report/
gcovr-report/
build*
!build.zig
cmake-build-*
build*/
out/
tmp/
@@ -50,21 +41,14 @@ models-mnt
/convert-llama2c-to-ggml
/embd-input-test
/embedding
/eval-callback
/gguf
/gguf-llama-simple
/gguf-split
/gritlm
/imatrix
/infill
/libllama.so
/llama-bench
/llava-cli
/lookahead
/lookup
/lookup-create
/lookup-merge
/lookup-stats
/main
/metal
/passkey
@@ -80,7 +64,6 @@ models-mnt
/batched-bench
/export-lora
/finetune
/retrieval
/speculative
/parallel
/train-text-from-scratch
@@ -102,13 +85,9 @@ qnt-*.txt
perf-*.txt
examples/jeopardy/results.txt
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
poetry.lock
poetry.toml
nppBackup
# Test binaries
/tests/test-grammar-parser
@@ -119,8 +98,9 @@ nppBackup
/tests/test-quantize-fns
/tests/test-quantize-perf
/tests/test-sampling
/tests/test-tokenizer-0
/tests/test-tokenizer-1-spm
/tests/test-tokenizer-0-llama
/tests/test-tokenizer-0-falcon
/tests/test-tokenizer-1-llama
/tests/test-tokenizer-1-bpe
/tests/test-rope
/tests/test-backend-ops

3
.gitmodules vendored
View File

@@ -1,3 +0,0 @@
[submodule "kompute"]
path = kompute
url = https://github.com/nomic-ai/kompute.git

View File

@@ -3,14 +3,13 @@
exclude: prompts/.*.txt
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.6.0
rev: v3.2.0
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
- id: check-yaml
- id: check-added-large-files
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
rev: 6.0.0
hooks:
- id: flake8
additional_dependencies: [flake8-no-print]

655
AUTHORS
View File

@@ -1,655 +0,0 @@
# date: Tue Apr 9 09:17:14 EEST 2024
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
0xspringtime <110655352+0xspringtime@users.noreply.github.com>
2f38b454 <dxf@protonmail.com>
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
Abhishek Gopinath K <31348521+overtunned@users.noreply.github.com>
Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
Aisuko <urakiny@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
Alex Petenchea <alex.petenchea@gmail.com>
Alex Renda <alexrenda@users.noreply.github.com>
Alex von Gluck IV <kallisti5@unixzen.com>
Alexey Parfenov <zxed@alkatrazstudio.net>
Ali Chraghi <63465728+alichraghi@users.noreply.github.com>
Ali Nehzat <ali.nehzat@thanks.dev>
Ali Tariq <ali.tariq@10xengineers.ai>
Alon <alonfaraj@gmail.com>
AlpinDale <52078762+AlpinDale@users.noreply.github.com>
AmirAli Mirian <37371367+amiralimi@users.noreply.github.com>
Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Duffy <a10y@users.noreply.github.com>
Andrew Godfrey <AndrewGodfrey@users.noreply.github.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Artem <guinmoon@gmail.com>
Artyom Lebedev <vagran.ast@gmail.com>
Asbjørn Olling <asbjornolling@gmail.com>
Ásgeir Bjarni Ingvarsson <asgeir@fundinn.org>
Ashok Gelal <401055+ashokgelal@users.noreply.github.com>
Ashraful Islam <ashraful.meche@gmail.com>
Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
Behnam M <58621210+ibehnam@users.noreply.github.com>
Ben Garney <bengarney@users.noreply.github.com>
Ben Siraphob <bensiraphob@gmail.com>
Ben Williams <ben@719ben.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Bernat Vadell <hounter.caza@gmail.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Branden Butler <bwtbutler@hotmail.com>
Brian <mofosyne@gmail.com>
Bruce MacDonald <brucewmacdonald@gmail.com>
CJ Pais <cj@cjpais.com>
CRD716 <crd716@gmail.com>
Cameron <csteele@steelecameron.com>
Cameron Kaiser <classilla@users.noreply.github.com>
Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
Chad Brewbaker <crb002@gmail.com>
Cheng Shao <terrorjack@type.dance>
Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Kögler <ck3d@gmx.de>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clint Herron <hanclinto@gmail.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
DAN™ <dranger003@gmail.com>
Damian Stewart <d@damianstewart.com>
Dane Madsen <dane_madsen@hotmail.com>
DaniAndTheWeb <57776841+DaniAndTheWeb@users.noreply.github.com>
Daniel Bevenius <daniel.bevenius@gmail.com>
Daniel Drake <drake@endlessos.org>
Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
David Sommers <12738+databyte@users.noreply.github.com>
David Yang <davidyang6us@gmail.com>
Dawid Wysocki <62249621+TortillaZHawaii@users.noreply.github.com>
Dean <Dean.Sinaean@gmail.com>
Deins <deinsegle@gmail.com>
Didzis Gosko <didzis@users.noreply.github.com>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
Doomsdayrs <38189170+Doomsdayrs@users.noreply.github.com>
Douglas Hanley <thesecretaryofwar@gmail.com>
Dr. Tom Murphy VII Ph.D <499244+tom7@users.noreply.github.com>
Ebey Abraham <ebey97@gmail.com>
Ed Lee <edilee@mozilla.com>
Ed Lepedus <ed.lepedus@googlemail.com>
Edward Taylor <edeetee@gmail.com>
Elbios <141279586+Elbios@users.noreply.github.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Sommerlade <es0m@users.noreply.github.com>
Eric Zhang <34133756+EZForever@users.noreply.github.com>
Erik Garrison <erik.garrison@gmail.com>
Erik Scholz <Green-Sky@users.noreply.github.com>
Ettore Di Giacinto <mudler@users.noreply.github.com>
Evan Jones <evan.q.jones@gmail.com>
Evan Miller <emmiller@gmail.com>
Eve <139727413+netrunnereve@users.noreply.github.com>
Evgeny Kurnevsky <kurnevsky@gmail.com>
Ewout ter Hoeven <E.M.terHoeven@student.tudelft.nl>
ExtReMLapin <3909752+ExtReMLapin@users.noreply.github.com>
FK <sozforex@gmail.com>
Fabian <cmdrf@users.noreply.github.com>
Fabio R. Sluzala <Fabio3rs@users.noreply.github.com>
Faez Shakil <faez.shakil@gmail.com>
FantasyGmm <16450052+FantasyGmm@users.noreply.github.com>
Fattire <528174+fat-tire@users.noreply.github.com>
Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
FrankHB <frankhb1989@gmail.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
Gary Mulder <gjmulder@gmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gilad S <giladgd@users.noreply.github.com>
GiviMAD <GiviMAD@users.noreply.github.com>
Govlzkoy <gotope@users.noreply.github.com>
Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
Harald Fernengel <harald.fernengel@here.com>
Hatsune Miku <129688334+at8u@users.noreply.github.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
Hoang Nguyen <hugo53@users.noreply.github.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
Howard Su <howard0su@gmail.com>
Hua Jiang <allenhjiang@outlook.com>
Huawei Lin <huaweilin.cs@gmail.com>
Ian Bull <irbull@eclipsesource.com>
Ian Bull <irbull@gmail.com>
Ian Scrivener <github@zilogy.asia>
Ido S <ido.pluto@gmail.com>
IgnacioFDM <ignaciofdm@gmail.com>
Igor Okulist <okigan@gmail.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Ionoclast Laboratories <brigham@ionoclast.com>
Isaac McFadyen <isaac@imcf.me>
IsaacDynamo <61521674+IsaacDynamo@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
James Reynolds <magnusviri@users.noreply.github.com>
Jan Boon <jan.boon@kaetemi.be>
Jan Boon <kaetemi@gmail.com>
Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason McCartney <jmac@theroot.org>
Jean-Christophe Hoelt <hoelt@fovea.cc>
Jean-Michaël Celerier <jeanmichael.celerier+github@gmail.com>
Jed Fox <git@jedfox.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Johannes Gäßler <johannesg@5d6.de>
Johannes Rudolph <johannes.rudolph@gmail.com>
John <78893154+cmp-nct@users.noreply.github.com>
John Balis <phobossystems@gmail.com>
John Smith <67539080+kingsidelee@users.noreply.github.com>
JohnnyB <jboero@users.noreply.github.com>
Jonas Wunderlich <32615971+jonas-w@users.noreply.github.com>
Jorge A <161275481+jorgealias@users.noreply.github.com>
Jose Maldonado <63384398+yukiteruamano@users.noreply.github.com>
Joseph Stahl <1269177+josephst@users.noreply.github.com>
Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
Juraj Bednar <juraj@bednar.io>
Justin Parker <jparkerweb@gmail.com>
Justin Suess <justin.suess@westpoint.edu>
Justine Tunney <jtunney@gmail.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
Karthik Sethuraman <k.seth1993@gmail.com>
Kasumi <90275229+kasumi-1@users.noreply.github.com>
Kawrakow <48489457+ikawrakow@users.noreply.github.com>
Keiichi Tabata <keiichi.tabata@outlook.com>
Kenvix ⭐ <kenvixzure@live.com>
Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
Kevin Ji <1146876+kevinji@users.noreply.github.com>
Kevin Kwok <antimatter15@gmail.com>
Kevin Lo <kevlo@kevlo.org>
Kolen Cheung <ickc@users.noreply.github.com>
Konstantin Herud <konstantin.herud@denkbares.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kunshang Ji <kunshang.ji@intel.com>
Kyle Liang <liangmanlai@gmail.com>
Kyle Mistele <kyle@mistele.com>
Kylin <56434533+KyL0N@users.noreply.github.com>
Lars Grammel <lars.grammel@gmail.com>
Laura <Tijntje_7@msn.com>
Lee <44310445+lx200916@users.noreply.github.com>
Lee Drake <b.lee.drake@gmail.com>
Leng Yue <lengyue@lengyue.me>
LeonEricsson <70749762+LeonEricsson@users.noreply.github.com>
Leonardo Neumann <leonardo@neumann.dev.br>
Li Tan <tanliboy@gmail.com>
Linwei Wang <wanix1988@gmail.com>
LoganDark <github@logandark.mozmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Maarten ter Huurne <maarten@treewalker.org>
Mack Straight <eiz@users.noreply.github.com>
Maël Kerbiriou <m431.kerbiriou@gmail.com>
MaggotHATE <clay1326@gmail.com>
Marc Köhlbrugge <subscriptions@marckohlbrugge.com>
Marco Matthies <71844+marcom@users.noreply.github.com>
Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com>
Marian Cepok <marian.cepok@gmail.com>
Mark Fairbairn <thebaron88@gmail.com>
Marko Tasic <mtasic85@gmail.com>
Martin Krasser <krasserm@googlemail.com>
Martin Schwaighofer <mschwaig@users.noreply.github.com>
Marvin Gießing <marvin.giessing@gmail.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
Mathijs de Bruin <mathijs@mathijsfietst.nl>
Matt Clayton <156335168+mattjcly@users.noreply.github.com>
Matt Pulver <matt.pulver@heavy.ai>
Matteo Boschini <12133566+mbosc@users.noreply.github.com>
Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
Meng, Hengyu <hengyu.meng@intel.com>
Merrick Christensen <merrick.christensen@gmail.com>
Michael Coppola <m18coppola@gmail.com>
Michael Hueschen <m@mhueschen.dev>
Michael Kesper <mkesper@schokokeks.org>
Michael Klimenko <mklimenko29@gmail.com>
Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Minsoo Cheong <54794500+mscheong01@users.noreply.github.com>
Mirko185 <mirkosig@gmail.com>
Mirror Azure <54669636+MirrorAzure@users.noreply.github.com>
Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
Nam D. Tran <42194884+namtranase@users.noreply.github.com>
NawafAlansari <72708095+NawafAlansari@users.noreply.github.com>
Nebula <infinitewormhole@gmail.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nigel Bosch <pnigelb@gmail.com>
Niklas Korz <niklas@niklaskorz.de>
Nindaleth <Nindaleth@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
Ondřej Čertík <ondrej@certik.us>
Ouadie EL FAROUKI <ouadie.elfarouki@codeplay.com>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavol Rusnak <pavol@rusnak.io>
Pedro Cuenca <pedro@huggingface.co>
Peter Sugihara <peter@campsh.com>
Phil H <5756783+phiharri@users.noreply.github.com>
Philip Taron <philip.taron@gmail.com>
Phillip Kravtsov <phillip@kravtsov.net>
Pierre Alexandre SCHEMBRI <pa.schembri@gmail.com>
Pierrick Hymbert <pierrick.hymbert@gmail.com>
Przemysław Pawełczyk <przemoc@gmail.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
RJ Adriaansen <adriaansen@eshcc.eur.nl>
Radoslav Gerganov <rgerganov@gmail.com>
Radosław Gryta <radek.gryta@gmail.com>
Rahul Vivek Nair <68507071+RahulVivekNair@users.noreply.github.com>
Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Reinforce-II <fate@eastal.com>
Riceball LEE <snowyu.lee@gmail.com>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
Rickard Edén <rickardeden@gmail.com>
Rickard Hallerbäck <rickard.hallerback@gmail.com>
Rickey Bowers Jr <bitRAKE@gmail.com>
Riley Stewart <ristew@users.noreply.github.com>
Rinne <AsakusaRinne@gmail.com>
Rinne <liu_yaohui1998@126.com>
Robert Brisita <986796+rbrisita@users.noreply.github.com>
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain D <90720+Artefact2@users.noreply.github.com>
Romain Neutron <romain@neutron.io>
Roman Parykin <donderom@gmail.com>
Ron Evans <ron@hybridgroup.com>
Ron Jailall <rojailal@gmail.com>
Ronny Brendel <ronnybrendel@gmail.com>
Ronsor <ronsor@ronsor.pw>
Rowan Hart <rowanbhart@gmail.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SakuraUmi <yukinon244@gmail.com>
Salvador E. Tropea <stropea@inti.gob.ar>
Sam Spilsbury <smspillaz@gmail.com>
Sami Farin <3876865+Safari77@users.noreply.github.com>
Samuel Maynard <samwmaynard@gmail.com>
Sang-Kil Park <sang.park@42dot.ai>
Seb C <47074056+Sebby37@users.noreply.github.com>
Sebastián A <sebastian.aedo29@gmail.com>
SebastianApel <13675545+SebastianApel@users.noreply.github.com>
Senemu <10880819+Senemu@users.noreply.github.com>
Sergey Alirzaev <zl29ah@gmail.com>
Sergio López <slp@sinrega.org>
SeungWon Jeong <65549245+redlion0929@users.noreply.github.com>
ShadovvBeast <ShadovvBeast@gmail.com>
Shakhar Dasgupta <shakhardasgupta@gmail.com>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
Shouzheng Liu <lshzh.hi@gmail.com>
Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Simon Willison <swillison@gmail.com>
Siwen Yu <yusiwen@gmail.com>
Sky Yan <skyan83@gmail.com>
Slaren <2141330+slaren@users.noreply.github.com>
Slava Primenko <primenko.s@gmail.com>
SoftwareRenderer <138734813+SoftwareRenderer@users.noreply.github.com>
Someone <sergei.kozlukov@aalto.fi>
Someone Serge <sergei.kozlukov@aalto.fi>
Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
Spencer Sutton <spencersutton@users.noreply.github.com>
Srinivas Billa <nivibilla@gmail.com>
Stefan Sydow <stefan@sydow.email>
Stephan Walter <stephan@walter.name>
Stephen Nichols <snichols@users.noreply.github.com>
Steve Grubb <ausearch.1@gmail.com>
Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
SuperUserNameMan <yoann@terminajones.com>
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
Taikono-Himazin <kazu@po.harenet.ne.jp>
Tameem <113388789+AhmadTameem@users.noreply.github.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
Thatcher Chamberlin <j.thatcher.c@gmail.com>
Theia Vogel <theia@vgel.me>
Thérence <13496987+Royalphax@users.noreply.github.com>
Thibault Terrasson <thibault.terrasson@gmail.com>
Thomas Klausner <wiz@gatalith.at>
Tim Miller <drasticactions@users.noreply.github.com>
Timmy Knight <r2d2fish@gmail.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Ting Lou <ting.lou@gmail.com>
Ting Sun <suntcrick@gmail.com>
Tobias Lütke <tobi@shopify.com>
Tom C <tom.corelis@gmail.com>
Tom Jobbins <784313+TheBloke@users.noreply.github.com>
Tomas <tom.tomas.36478119@gmail.com>
Tomáš Pazdiora <tomas.pazdiora@gmail.com>
Tristan Ross <rosscomputerguy@protonmail.com>
Tungsten842 <886724vf@anonaddy.me>
Tungsten842 <quantmint@protonmail.com>
Tushar <ditsuke@protonmail.com>
UEXTM.com <84163508+uextm@users.noreply.github.com>
Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Zorin <vladimir@deviant.guru>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
Willy Tarreau <w@1wt.eu>
Wu Jian Ping <wujjpp@hotmail.com>
Wu Jian Ping <wujp@greatld.com>
Xiake Sun <xiake.sun@intel.com>
Xiang (Kevin) Li <kevinli020508@gmail.com>
Xiao-Yong Jin <jinxiaoyong@gmail.com>
XiaotaoChen <chenxiaotao1234@gmail.com>
Xiaoyi Chen <cxychina@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xuan Son Nguyen <thichthat@gmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yiming Cui <conandiy@vip.qq.com>
Yishuo Wang <MeouSker77@outlook.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
Yui <dev@sleepyyui.com>
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
ZHAOKAI WANG <sanxianwei@163.com>
Zane Shannon <z@zcs.me>
Zay <95888118+isaiahbjork@users.noreply.github.com>
Zenix <zenixls2@gmail.com>
Zhang Peiyuan <a1286225768@gmail.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
Zsapi <martin1.zsapka@gmail.com>
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
adel boussaken <netdur@gmail.com>
afrideva <95653597+afrideva@users.noreply.github.com>
akawrykow <142945436+akawrykow@users.noreply.github.com>
alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
andrijdavid <david@geek.mg>
anon998 <131767832+anon998@users.noreply.github.com>
anzz1 <anzz1@live.com>
apaz <aarpazdera@gmail.com>
apcameron <37645737+apcameron@users.noreply.github.com>
arcrank <arcrank@gmail.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
bandoti <141645996+bandoti@users.noreply.github.com>
beiller <beiller@gmail.com>
bhubbb <79117352+bhubbb@users.noreply.github.com>
bmwl <brian.marshall@tolko.com>
bobqianic <129547291+bobqianic@users.noreply.github.com>
bryanSwk <93190252+bryanSwk@users.noreply.github.com>
bsilvereagle <bsilvereagle@users.noreply.github.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cebtenzzre <cebtenzzre@gmail.com>
chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
coezbek <c.oezbek@gmail.com>
comex <comexk@gmail.com>
compilade <113953597+compilade@users.noreply.github.com>
crasm <crasm@git.vczf.net>
crasm <crasm@git.vczf.us>
daboe01 <daboe01@googlemail.com>
david raistrick <keen99@users.noreply.github.com>
ddpasa <112642920+ddpasa@users.noreply.github.com>
deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
divinity76 <divinity76@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
ds5t5 <145942675+ds5t5@users.noreply.github.com>
dylan <canardleteer@users.noreply.github.com>
eastriver <lee@eastriver.dev>
ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
goerch <jhr.walter@t-online.de>
grahameth <96447521+grahameth@users.noreply.github.com>
gwjr <502526+gwjr@users.noreply.github.com>
h-h-h-h <13482553+h-h-h-h@users.noreply.github.com>
hankcs <cnhankmc@gmail.com>
hoangmit <hoangmit@users.noreply.github.com>
hongbo.mo <352280764@qq.com>
howlger <eclipse@voormann.de>
howlger <github@voormann.de>
hutli <6594598+hutli@users.noreply.github.com>
hutli <hutli@hutli.hu>
hutli <jensstaermose@hotmail.com>
hxer7963 <hxer7963@gmail.com>
hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
iohub <rickyang.pro@gmail.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jneem <joeneeman@gmail.com>
johnson442 <56517414+johnson442@users.noreply.github.com>
jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
kaizau <kaizau@users.noreply.github.com>
kalomaze <66376113+kalomaze@users.noreply.github.com>
kang <tpdns9032100@gmail.com>
katsu560 <118887472+katsu560@users.noreply.github.com>
kchro3 <62481661+kchro3@users.noreply.github.com>
khimaros <me@khimaros.com>
kiltyj <kiltyj@gmail.com>
klosax <131523366+klosax@users.noreply.github.com>
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
kunnis <kunnis@users.noreply.github.com>
kuronekosaiko <EvanChanJ@163.com>
kuvaus <22169537+kuvaus@users.noreply.github.com>
kwin1412 <42286931+kwin1412@users.noreply.github.com>
l3utterfly <gc.pthzfoldr@gmail.com>
ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
momonga <115213907+mmnga@users.noreply.github.com>
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
mzcu <milos.cubrilo@gmail.com>
nanahi <130121847+na-na-hi@users.noreply.github.com>
ngc92 <7938269+ngc92@users.noreply.github.com>
nhamanasu <45545786+nhamanasu@users.noreply.github.com>
niansa/tuxifan <anton-sa@web.de>
niansa/tuxifan <tuxifan@posteo.de>
ningshanwutuobang <ningshanwutuobang@gmail.com>
nold <Nold360@users.noreply.github.com>
nopperl <54780682+nopperl@users.noreply.github.com>
nusu-github <29514220+nusu-github@users.noreply.github.com>
olexiyb <olexiyb@gmail.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
perserk <perserk@gmail.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
qouoq <qouoq@fastmail.com>
qunash <anzoria@gmail.com>
rabidcopy <rabidcopy@yahoo.com>
rankaiyx <rankaiyx@rankaiyx.com>
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
rhuddleston <ryan.huddleston@percona.com>
rimoliga <53384203+rimoliga@users.noreply.github.com>
runfuture <runfuture@users.noreply.github.com>
sandyiscool <sandyiscool@gmail.com>
semidark <me@semidark.net>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
swittk <switt1995@gmail.com>
takov751 <40316768+takov751@users.noreply.github.com>
tarcey <cey.tarik@gmail.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
tslmy <tslmy@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
valiray <133289098+valiray@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
wbpxre150 <100937007+wbpxre150@users.noreply.github.com>
whoreson <139810751+whoreson@users.noreply.github.com>
wonjun Jang <strutive07@gmail.com>
wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
yuiseki <yuiseki@gmail.com>
zakkor <edward.partenie@gmail.com>
zhouwg <6889919+zhouwg@users.noreply.github.com>
zrm <trustiosity.zrm@gmail.com>
源文雨 <41315874+fumiama@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

File diff suppressed because it is too large Load Diff

View File

@@ -1,45 +0,0 @@
{
"version": 4,
"configurePresets": [
{
"name": "base",
"hidden": true,
"generator": "Ninja",
"binaryDir": "${sourceDir}/build-${presetName}",
"cacheVariables": {
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
}
},
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
{
"name": "arm64-windows-msvc", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
}
},
{
"name": "arm64-windows-llvm", "hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
}
},
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }
]
}

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023 Georgi Gerganov
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

519
Makefile
View File

@@ -1,28 +1,15 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama beam-search \
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey tests/test-c.o
# Binaries only useful for tests
TEST_TARGETS = \
tests/test-autorelease \
tests/test-backend-ops \
tests/test-double-float \
tests/test-grad0 \
tests/test-grammar-integration \
tests/test-grammar-parser \
tests/test-json-schema-to-grammar \
tests/test-llama-grammar \
tests/test-model-load-cancel \
tests/test-opt \
tests/test-quantize-fns \
tests/test-quantize-perf \
tests/test-rope \
tests/test-sampling \
tests/test-tokenizer-0 \
tests/test-tokenizer-1-bpe \
tests/test-tokenizer-1-spm
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe tests/test-rope \
tests/test-backend-ops
# Code coverage output files
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
@@ -39,17 +26,6 @@ ifndef UNAME_M
UNAME_M := $(shell uname -m)
endif
# In GNU make default CXX is g++ instead of c++. Let's fix that so that users
# of non-gcc compilers don't have to provide g++ alias or wrapper.
DEFCC := cc
DEFCXX := c++
ifeq ($(origin CC),default)
CC := $(DEFCC)
endif
ifeq ($(origin CXX),default)
CXX := $(DEFCXX)
endif
# Mac OS + Arm can report x86_64
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
ifeq ($(UNAME_S),Darwin)
@@ -67,21 +43,20 @@ ifeq ($(UNAME_S),Darwin)
endif
endif
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
BUILD_TARGETS += metal
endif
default: $(BUILD_TARGETS)
test: $(TEST_TARGETS)
@failures=0; \
for test_target in $(TEST_TARGETS); do \
if [ "$$test_target" = "tests/test-tokenizer-0" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-llama-spm.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-llama-bpe.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-phi-3.gguf; \
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-bert-bge.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-starcoder.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-gpt-2.gguf; \
./$$test_target $(CURDIR)/models/ggml-vocab-refact.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-1-spm" ]; then \
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
continue; \
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
continue; \
@@ -126,10 +101,9 @@ endif
#
# keep standard at C11 and C++11
MK_CPPFLAGS = -I. -Icommon
MK_CFLAGS = -std=c11 -fPIC
MK_CXXFLAGS = -std=c++11 -fPIC
MK_NVCCFLAGS = -std=c++11
MK_CPPFLAGS = -I. -Icommon
MK_CFLAGS = -std=c11 -fPIC
MK_CXXFLAGS = -std=c++11 -fPIC
# -Ofast tends to produce faster code, but may not be available for some compilers.
ifdef LLAMA_FAST
@@ -139,21 +113,8 @@ MK_NVCCFLAGS += -O3
else
MK_CFLAGS += -O3
MK_CXXFLAGS += -O3
MK_NVCCFLAGS += -O3
endif
ifndef LLAMA_NO_CCACHE
CCACHE := $(shell which ccache)
ifdef CCACHE
export CCACHE_SLOPPINESS = time_macros
$(info I ccache found, compilation results will be cached. Disable with LLAMA_NO_CCACHE.)
CC := $(CCACHE) $(CC)
CXX := $(CCACHE) $(CXX)
else
$(info I ccache not found. Consider installing it for faster compilation.)
endif # CCACHE
endif # LLAMA_NO_CCACHE
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
@@ -196,17 +157,13 @@ ifeq ($(UNAME_S),OpenBSD)
MK_CPPFLAGS += -D_BSD_SOURCE
endif
ifdef LLAMA_SCHED_MAX_COPIES
MK_CPPFLAGS += -DGGML_SCHED_MAX_COPIES=$(LLAMA_SCHED_MAX_COPIES)
endif
ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
MK_LDFLAGS += -g
ifeq ($(UNAME_S),Linux)
MK_CPPFLAGS += -D_GLIBCXX_ASSERTIONS
MK_CXXFLAGS += -Wp,-D_GLIBCXX_ASSERTIONS
endif
else
MK_CPPFLAGS += -DNDEBUG
@@ -234,10 +191,6 @@ ifdef LLAMA_SERVER_VERBOSE
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
endif
ifdef LLAMA_SERVER_SSL
MK_CPPFLAGS += -DCPPHTTPLIB_OPENSSL_SUPPORT
MK_LDFLAGS += -lssl -lcrypto
endif
ifdef LLAMA_CODE_COVERAGE
MK_CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
@@ -253,11 +206,6 @@ MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmis
-Werror=implicit-function-declaration
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
ifeq ($(LLAMA_FATAL_WARNINGS),1)
MK_CFLAGS += -Werror
MK_CXXFLAGS += -Werror
endif
# this version of Apple ld64 is buggy
ifneq '' '$(findstring dyld-1015.7,$(shell $(CC) $(LDFLAGS) -Wl,-v 2>&1))'
MK_CPPFLAGS += -DHAVE_BUGGY_APPLE_LINKER
@@ -379,16 +327,15 @@ ifneq ($(filter ppc64le%,$(UNAME_M)),)
CUDA_POWER_ARCH = 1
endif
ifneq ($(filter loongarch64%,$(UNAME_M)),)
MK_CFLAGS += -mlasx
MK_CXXFLAGS += -mlasx
endif
else
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifdef LLAMA_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
ifndef LLAMA_NO_ACCELERATE
# Mac OS - include Accelerate framework.
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
@@ -400,41 +347,29 @@ ifndef LLAMA_NO_ACCELERATE
endif
endif # LLAMA_NO_ACCELERATE
ifdef LLAMA_MPI
MK_CPPFLAGS += -DGGML_USE_MPI
MK_CFLAGS += -Wno-cast-qual
MK_CXXFLAGS += -Wno-cast-qual
OBJS += ggml-mpi.o
endif # LLAMA_MPI
ifdef LLAMA_OPENBLAS
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
MK_LDFLAGS += $(shell pkg-config --libs openblas)
endif # LLAMA_OPENBLAS
ifndef LLAMA_NO_LLAMAFILE
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJS += sgemm.o
endif
ifdef LLAMA_BLIS
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib
endif # LLAMA_BLIS
ifdef LLAMA_CUBLAS
# LLAMA_CUBLAS is deprecated and will be removed in the future
LLAMA_CUDA := 1
endif
ifdef LLAMA_CUDA
ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda
else
CUDA_PATH ?= /usr/local/cuda
endif
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include -DGGML_CUDA_USE_GRAPHS
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include -I/usr/local/cuda/targets/aarch64-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib -L/usr/local/cuda/targets/aarch64-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
MK_NVCCFLAGS += -use_fast_math
ifdef LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS += -Werror all-warnings
endif # LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS = -use_fast_math
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
@@ -442,9 +377,9 @@ ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
endif # LLAMA_DEBUG
ifdef LLAMA_CUDA_NVCC
NVCC = $(CCACHE) $(LLAMA_CUDA_NVCC)
NVCC = $(LLAMA_CUDA_NVCC)
else
NVCC = $(CCACHE) nvcc
NVCC = nvcc
endif #LLAMA_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
MK_NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
@@ -485,31 +420,22 @@ ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
else
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
ifdef LLAMA_CUDA_NO_PEER_COPY
MK_NVCCFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # LLAMA_CUDA_NO_PEER_COPY
#ifdef LLAMA_CUDA_CUBLAS
# MK_NVCCFLAGS += -DGGML_CUDA_CUBLAS
#endif # LLAMA_CUDA_CUBLAS
ifdef LLAMA_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
ifdef JETSON_EOL_MODULE_DETECT
define NVCC_COMPILE
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
else
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
$(NVCC) $(BASE_CXXFLAGS) $(NVCCFLAGS) -Wno-pedantic -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endif # JETSON_EOL_MODULE_DETECT
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(NVCC_COMPILE)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(NVCC_COMPILE)
endif # LLAMA_CUDA
endif # LLAMA_CUBLAS
ifdef LLAMA_CLBLAST
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
@@ -526,68 +452,35 @@ ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # LLAMA_CLBLAST
ifdef LLAMA_VULKAN
MK_CPPFLAGS += -DGGML_USE_VULKAN
MK_LDFLAGS += -lvulkan
OBJS += ggml-vulkan.o
ifdef LLAMA_VULKAN_CHECK_RESULTS
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
endif
ifdef LLAMA_VULKAN_DEBUG
MK_CPPFLAGS += -DGGML_VULKAN_DEBUG
endif
ifdef LLAMA_VULKAN_VALIDATE
MK_CPPFLAGS += -DGGML_VULKAN_VALIDATE
endif
ifdef LLAMA_VULKAN_RUN_TESTS
MK_CPPFLAGS += -DGGML_VULKAN_RUN_TESTS
endif
ggml-vulkan.o: ggml-vulkan.cpp ggml-vulkan.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # LLAMA_VULKAN
ifdef LLAMA_HIPBLAS
ifeq ($(wildcard /opt/rocm),)
ROCM_PATH ?= /usr
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
else
ROCM_PATH ?= /opt/rocm
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
HIPCC ?= $(ROCM_PATH)/bin/hipcc
LLAMA_CUDA_DMMV_X ?= 32
LLAMA_CUDA_MMV_Y ?= 1
LLAMA_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
ifdef LLAMA_CUDA_FORCE_DMMV
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # LLAMA_CUDA_FORCE_DMMV
ifdef LLAMA_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # LLAMA_CUDA_NO_PEER_COPY
OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS
ifdef LLAMA_METAL
@@ -597,58 +490,33 @@ ifdef LLAMA_METAL
ifdef LLAMA_METAL_NDEBUG
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
endif
ifdef LLAMA_METAL_EMBED_LIBRARY
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
OBJS += ggml-metal-embed.o
endif
endif # LLAMA_METAL
ifdef LLAMA_METAL
ggml-metal.o: ggml-metal.m ggml-metal.h ggml.h
ggml-metal.o: ggml-metal.m ggml-metal.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef LLAMA_METAL_EMBED_LIBRARY
ggml-metal-embed.o: ggml-metal.metal ggml-common.h
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)
@echo ".incbin \"ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)
@$(AS) $(TEMP_ASSEMBLY) -o $@
@rm -f ${TEMP_ASSEMBLY}
endif
endif # LLAMA_METAL
ifndef LLAMA_NO_LLAMAFILE
sgemm.o: sgemm.cpp sgemm.h ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
ifdef LLAMA_MPI
ggml-mpi.o: ggml-mpi.c ggml-mpi.h
$(CC) $(CFLAGS) -c $< -o $@
endif # LLAMA_MPI
GF_CC := $(CC)
include scripts/get-flags.mk
# combine build flags with cmdline overrides
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
override CFLAGS := $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
BASE_CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS) $(CPPFLAGS)
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(GF_CFLAGS) $(CFLAGS)
BASE_CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
override CXXFLAGS := $(BASE_CXXFLAGS) $(HOST_CXXFLAGS) $(GF_CXXFLAGS)
override NVCCFLAGS := $(MK_NVCCFLAGS) $(NVCCFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
# identify CUDA host compiler
ifdef LLAMA_CUDA
ifdef LLAMA_CUBLAS
GF_CC := $(NVCC) $(NVCCFLAGS) 2>/dev/null .c -Xcompiler
include scripts/get-flags.mk
CUDA_CXXFLAGS := $(BASE_CXXFLAGS) $(GF_CXXFLAGS) -Wno-pedantic
endif
ifdef LLAMA_CURL
override CXXFLAGS := $(CXXFLAGS) -DLLAMA_USE_CURL
override LDFLAGS := $(LDFLAGS) -lcurl
CUDA_CXXFLAGS := $(GF_CXXFLAGS)
endif
#
@@ -663,28 +531,10 @@ $(info I CFLAGS: $(CFLAGS))
$(info I CXXFLAGS: $(CXXFLAGS))
$(info I NVCCFLAGS: $(NVCCFLAGS))
$(info I LDFLAGS: $(LDFLAGS))
$(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef LLAMA_CUDA
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH
ifndef CUDA_POWER_ARCH
$(error I ERROR: For CUDA versions < 11.7 a target CUDA architecture must be explicitly provided via environment variable CUDA_DOCKER_ARCH, e.g. by running "export CUDA_DOCKER_ARCH=compute_XX" on Unix-like systems, where XX is the minimum compute capability that the code needs to run on. A list with compute capabilities can be found here: https://developer.nvidia.com/cuda-gpus )
endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
endif # LLAMA_CUDA
$(info I CC: $(shell $(CC) --version | head -n 1))
$(info I CXX: $(shell $(CXX) --version | head -n 1))
$(info )
ifdef LLAMA_CUBLAS
$(info !!!!)
$(info LLAMA_CUBLAS is deprecated and will be removed in the future. Use LLAMA_CUDA instead.)
$(info !!!!)
$(info )
endif
#
# Build library
#
@@ -698,22 +548,16 @@ ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
$(CC) $(CFLAGS) -c $< -o $@
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h ggml-common.h
ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h
$(CC) $(CFLAGS) -c $< -o $@
unicode.o: unicode.cpp unicode.h
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
unicode-data.o: unicode-data.cpp unicode-data.h
$(CXX) $(CXXFLAGS) -c $< -o $@
OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o unicode.o unicode-data.o
llama.o: llama.cpp unicode.h ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h llama.h
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o json-schema-to-grammar.o
COMMON_H_DEPS = common/common.h common/sampling.h common/log.h
COMMON_DEPS = common.o sampling.o grammar-parser.o build-info.o
common.o: common/common.cpp $(COMMON_H_DEPS)
$(CXX) $(CXXFLAGS) -c $< -o $@
@@ -727,187 +571,107 @@ console.o: common/console.cpp common/console.h
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
$(CXX) $(CXXFLAGS) -c $< -o $@
json-schema-to-grammar.o: common/json-schema-to-grammar.cpp common/json-schema-to-grammar.h
$(CXX) $(CXXFLAGS) -c $< -o $@
train.o: common/train.cpp common/train.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ngram-cache.o: common/ngram-cache.cpp common/ngram-cache.h
$(CXX) $(CXXFLAGS) -c $< -o $@
libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS)
clean:
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf ggml-cuda/*.o
find examples pocs -type f -name "*.o" -delete
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
#
# Examples
#
# $< is the first prerequisite, i.e. the source file.
# Explicitly compile this to an object file so that it can be cached with ccache.
# The source file is then filtered out from $^ (the list of all prerequisites) and the object file is added instead.
# Helper function that replaces .c, .cpp, and .cu file endings with .o:
GET_OBJ_FILE = $(patsubst %.c,%.o,$(patsubst %.cpp,%.o,$(patsubst %.cu,%.o,$(1))))
main: examples/main/main.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./main -h for help. ===='
@echo
infill: examples/infill/infill.cpp ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
simple: examples/simple/simple.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tokenize: examples/tokenize/tokenize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched: examples/batched/batched.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
batched-bench: examples/batched-bench/batched-bench.cpp build-info.o ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
quantize: examples/quantize/quantize.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.o ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
imatrix: examples/imatrix/imatrix.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
embedding: examples/embedding/embedding.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
gritlm: examples/gritlm/gritlm.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
save-load-state: examples/save-load-state/save-load-state.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
server: examples/server/server.cpp examples/server/utils.hpp examples/server/httplib.h common/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/server/json-schema-to-grammar.mjs.hpp common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
# Portable equivalent of `cd examples/server/public && xxd -i $(notdir $<) ../$(notdir $<).hpp`:
examples/server/%.hpp: examples/server/public/% Makefile
@( export NAME=$(subst .,_,$(subst -,_,$(notdir $<))) && \
echo "unsigned char $${NAME}[] = {" && \
cat $< | od -v -t x1 -An | sed -E 's/([0-9a-fA-F]+)/0x\1, /g' && \
echo "};" && \
echo "unsigned int $${NAME}_len = $(shell cat $< | wc -c );" \
) > $@
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2) -Wno-cast-qual
gguf: examples/gguf/gguf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
gguf-split: examples/gguf-split/gguf-split.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
eval-callback: examples/eval-callback/eval-callback.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
llama-bench: examples/llama-bench/llama-bench.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
libllava.a: examples/llava/llava.cpp examples/llava/llava.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h common/base64.hpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -static -fPIC -c $< -o $@ -Wno-cast-qual
llava-cli: examples/llava/llava-cli.cpp examples/llava/clip.h examples/llava/clip.cpp examples/llava/llava.h examples/llava/llava.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) -c examples/llava/clip.cpp -o $(call GET_OBJ_FILE, examples/llava/clip.cpp) -Wno-cast-qual
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
beam-search: examples/beam-search/beam-search.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
finetune: examples/finetune/finetune.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
parallel: examples/parallel/parallel.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
lookahead: examples/lookahead/lookahead.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
lookup: examples/lookup/lookup.cpp ggml.o llama.o ngram-cache.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-create.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-create.cpp) -o lookup-create $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-merge.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-merge.cpp) -o lookup-merge $(LDFLAGS)
$(CXX) $(CXXFLAGS) -c examples/lookup/lookup-stats.cpp -o $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, examples/lookup/lookup-stats.cpp) -o lookup-stats $(LDFLAGS)
lookup: examples/lookup/lookup.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
passkey: examples/passkey/passkey.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
gbnf-validator: examples/gbnf-validator/gbnf-validator.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
ifdef LLAMA_METAL
metal: examples/metal/metal.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
endif
ifeq ($(UNAME_S),Darwin)
swift: examples/batched.swift
@@ -915,7 +679,7 @@ swift: examples/batched.swift
endif
common/build-info.cpp: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh "$(CC)" > $@.tmp
@sh scripts/build-info.sh $(CC) > $@.tmp
@if ! cmp -s $@.tmp $@; then \
mv $@.tmp $@; \
else \
@@ -932,8 +696,7 @@ build-info.o: common/build-info.cpp
tests: $(TEST_TARGETS)
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
run-benchmark-matmult: benchmark-matmult
./$@
@@ -941,84 +704,52 @@ run-benchmark-matmult: benchmark-matmult
.PHONY: run-benchmark-matmult swift
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
tests/test-llama-grammar: tests/test-llama-grammar.cpp ggml.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grammar-parser: tests/test-grammar-parser.cpp ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grammar-integration: tests/test-grammar-integration.cpp ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-double-float: tests/test-double-float.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp json-schema-to-grammar.o ggml.o llama.o grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-fns: tests/test-quantize-fns.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-quantize-perf: tests/test-quantize-perf.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-sampling: tests/test-sampling.cpp ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0: tests/test-tokenizer-0.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-spm: tests/test-tokenizer-1-spm.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp ggml.o llama.o $(COMMON_DEPS) console.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-rope: tests/test-rope.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
tests/test-c.o: tests/test-c.c llama.h
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
tests/test-backend-ops: tests/test-backend-ops.cpp ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-model-load-cancel: tests/test-model-load-cancel.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-autorelease: tests/test-autorelease.cpp ggml.o llama.o tests/get-model.cpp $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-chat-template: tests/test-chat-template.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)

View File

@@ -2,45 +2,6 @@
import PackageDescription
var sources = [
"ggml.c",
"sgemm.cpp",
"llama.cpp",
"unicode.cpp",
"unicode-data.cpp",
"ggml-alloc.c",
"ggml-backend.c",
"ggml-quants.c",
]
var resources: [Resource] = []
var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
]
#if canImport(Darwin)
sources.append("ggml-metal.m")
resources.append(.process("ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
.define("GGML_USE_ACCELERATE"),
.define("GGML_USE_METAL")
]
)
#endif
#if os(Linux)
cSettings.append(.define("_GNU_SOURCE"))
#endif
let package = Package(
name: "llama",
platforms: [
@@ -52,26 +13,33 @@ let package = Package(
products: [
.library(name: "llama", targets: ["llama"]),
],
dependencies: [
.package(url: "https://github.com/ggerganov/ggml.git", .branch("master"))
],
targets: [
.target(
name: "llama",
dependencies: ["ggml"],
path: ".",
exclude: [
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"ggml-cuda.cu",
"ggml-cuda.h",
"Makefile"
exclude: [],
sources: [
"llama.cpp",
],
sources: sources,
resources: resources,
publicHeadersPath: "spm-headers",
cSettings: cSettings,
linkerSettings: linkerSettings
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.define("GGML_USE_ACCELERATE"),
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_USE_METAL"),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
// .define("ACCELERATE_NEW_LAPACK"),
// .define("ACCELERATE_LAPACK_ILP64")
],
linkerSettings: [
.linkedFramework("Accelerate")
]
)
],
cxxLanguageStandard: .cxx11

View File

@@ -1,568 +0,0 @@
# llama.cpp for SYCL
- [Background](#background)
- [News](#news)
- [OS](#os)
- [Hardware](#hardware)
- [Docker](#docker)
- [Linux](#linux)
- [Windows](#windows)
- [Environment Variable](#environment-variable)
- [Known Issue](#known-issues)
- [Q&A](#qa)
- [TODO](#todo)
## Background
**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, CLBlast etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## News
- 2024.4
- Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.
- 2024.3
- Release binary files of Windows.
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
- Support OPs
- hardsigmoid
- hardswish
- pool2d
- 2024.1
- Create SYCL backend for Intel GPU.
- Support Windows build
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------|
| Linux | Support | Ubuntu 22.04, Fedora Silverblue 39 |
| Windows | Support | Windows 11 |
## Hardware
### Intel GPU
**Verified devices**
| Intel GPU | Status | Verified Model |
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
- **Memory**
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/main`.
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
- **Execution Unit (EU)**
- If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.
### Other Vendor GPU
**Verified devices**
| Nvidia GPU | Status | Verified Model |
|--------------------------|---------|----------------|
| Ampere Series | Support | A100, A4000 |
| Ampere Series *(Mobile)* | Support | RTX 40 Series |
## Docker
The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="LLAMA_SYCL_F16=ON" -f .devops/main-intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, you can remove the `--build-arg="LLAMA_SYCL_F16=ON"` argument from the previous command.
You can also use the `.devops/server-intel.Dockerfile`, which builds the *"server"* alternative.
### Run container
```sh
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
*Notes:*
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.
## Linux
### I. Setup Environment
1. **Install GPU drivers**
- **Intel GPU**
Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).
*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).
Once installed, add the user(s) to the `video` and `render` groups.
```sh
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
*Note*: logout/re-login for the changes to take effect.
Verify installation through `clinfo`:
```sh
sudo apt install clinfo
sudo clinfo -l
```
Sample output:
```sh
Platform #0: Intel(R) OpenCL Graphics
`-- Device #0: Intel(R) Arc(TM) A770 Graphics
Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
- **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
2. **Install Intel® oneAPI Base toolkit**
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
```
- **Intel GPU**
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
- **Nvidia GPU**
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
```
### II. Build llama.cpp
#### Intel GPU
```sh
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DLLAMA_SYCL=ON -DLLAMA_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
```
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
```sh
source /opt/intel/oneapi/setvars.sh
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```sh
./build/bin/ls-sycl-device
```
A example of such log in a system with 1 *intel CPU* and 1 *intel GPU* can look like the following:
```
found 6 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
```
| Attribute | Note |
|------------------------|-------------------------------------------------------------|
| compute capability 1.3 | Level-zero driver/runtime, recommended |
| compute capability 3.0 | OpenCL driver/runtime, slower than level-zero in most cases |
4. Launch inference
There are two device selection modes:
- Single device: Use one device target specified by the user.
- Multiple devices: Automatically select the devices with the same largest Max compute-units.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
or run by script:
```sh
./examples/sycl/run_llama2.sh 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/main -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
Otherwise, you can run the script:
```sh
./examples/sycl/run_llama2.sh
```
*Notes:*
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Windows
### I. Setup Environment
1. Install GPU driver
Intel GPU drivers instructions guide and download page can be found here: [Get intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).
2. Install Visual Studio
If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
b. Enable oneAPI running environment:
- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.
- On the command prompt, enable the runtime environment with the following:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
```
sycl-ls
```
There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:
Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
```
4. Install build tools
a. Download & install cmake for Windows: https://cmake.org/download/
b. Download & install mingw-w64 make for Windows provided by w64devkit
- Download the 1.19.0 version of [w64devkit](https://github.com/skeeto/w64devkit/releases/download/v1.19.0/w64devkit-1.19.0.zip).
- Extract `w64devkit` on your pc.
- Add the **bin** folder path in the Windows system PATH environment (for e.g. `C:\xxx\w64devkit\bin\`).
### II. Build llama.cpp
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
```
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
# Option 2: Or FP16
cmake -B build -G "MinGW Makefiles" -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
cmake --build build --config Release -j
```
Otherwise, run the `win-build-sycl.bat` wrapper which encapsulates the former instructions:
```sh
.\examples\sycl\win-build-sycl.bat
```
*Notes:*
- By default, calling `make` will build all target binary files. In case of a minimal experimental setup, the user can build the inference executable only through `make main`.
### III. Run the inference
1. Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README#prepare-and-quantize) guide for model prepration, or simply download [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) model as example.
2. Enable oneAPI running environment
On the oneAPI command line window, run the following and step into the llama.cpp directory:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
3. List devices information
Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:
```
build\bin\ls-sycl-device.exe
```
The output of this command in a system with 1 *intel CPU* and 1 *intel GPU* would look like the following:
```
found 6 SYCL devices:
| | | |Compute |Max compute|Max work|Max sub| |
|ID| Device Type| Name|capability|units |group |group |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 1.3| 512| 1024| 32| 16225243136|
| 1|[level_zero:gpu:1]| Intel(R) UHD Graphics 770| 1.3| 32| 512| 32| 53651849216|
| 2| [opencl:gpu:0]| Intel(R) Arc(TM) A770 Graphics| 3.0| 512| 1024| 32| 16225243136|
| 3| [opencl:gpu:1]| Intel(R) UHD Graphics 770| 3.0| 32| 512| 32| 53651849216|
| 4| [opencl:cpu:0]| 13th Gen Intel(R) Core(TM) i7-13700K| 3.0| 24| 8192| 64| 67064815616|
| 5| [opencl:acc:0]| Intel(R) FPGA Emulation Device| 1.2| 24|67108864| 64| 67064815616|
```
| Attribute | Note |
|------------------------|-----------------------------------------------------------|
| compute capability 1.3 | Level-zero running time, recommended |
| compute capability 3.0 | OpenCL running time, slower than level-zero in most cases |
4. Launch inference
There are two device selection modes:
- Single device: Use one device assigned by user.
- Multiple devices: Automatically choose the devices with the same biggest Max compute units.
| Device selection | Parameter |
|------------------|----------------------------------------|
| Single device | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default) |
Examples:
- Use device 0:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\main.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
Otherwise, run the following wrapper script:
```
.\examples\sycl\win-run-llama2.bat
```
Note:
- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:
```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```
## Environment Variable
#### Build
| Name | Value | Function |
|--------------------|-----------------------------------|---------------------------------------------|
| LLAMA_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| LLAMA_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
| LLAMA_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | icx | Set *icx* compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | icpx *(Linux)*, icx *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
#### Runtime
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues
- `Split-mode:[row]` is not supported.
## Q&A
- Error: `error while loading shared libraries: libsycl.so.7: cannot open shared object file: No such file or directory`.
- Potential cause: Unavailable oneAPI installation or not set ENV variables.
- Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.
- General compiler error:
- Remove **build** folder or try a clean-build.
- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.
Please double-check with `sudo sycl-ls`.
If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:
```
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```
Otherwise, please double-check the GPU driver installation steps.
### **GitHub contribution**:
Please add the **[SYCL]** prefix/tag in issues/PRs titles to help the SYCL-team check/address them without delay.
## TODO
- Support row layer split for multiple card runs.

678
README.md

File diff suppressed because it is too large Load Diff

View File

@@ -1,67 +0,0 @@
# Security Policy
- [**Using llama.cpp securely**](#using-llamacpp-securely)
- [Untrusted models](#untrusted-models)
- [Untrusted inputs](#untrusted-inputs)
- [Data privacy](#data-privacy)
- [Untrusted environments or networks](#untrusted-environments-or-networks)
- [Multi-Tenant environments](#multi-tenant-environments)
- [**Reporting a vulnerability**](#reporting-a-vulnerability)
## Using llama.cpp securely
### Untrusted models
Be careful when running untrusted models. This classification includes models created by unknown developers or utilizing data obtained from unknown sources.
*Always execute untrusted models within a secure, isolated environment such as a sandbox* (e.g., containers, virtual machines). This helps protect your system from potentially malicious code.
> [!NOTE]
> The trustworthiness of a model is not binary. You must always determine the proper level of caution depending on the specific model and how it matches your use case and risk tolerance.
### Untrusted inputs
Some models accept various input formats (text, images, audio, etc.). The libraries converting these inputs have varying security levels, so it's crucial to isolate the model and carefully pre-process inputs to mitigate script injection risks.
For maximum security when handling untrusted inputs, you may need to employ the following:
* Sandboxing: Isolate the environment where the inference happens.
* Pre-analysis: Check how the model performs by default when exposed to prompt injection (e.g. using [fuzzing for prompt injection](https://github.com/FonduAI/awesome-prompt-injection?tab=readme-ov-file#tools)). This will give you leads on how hard you will have to work on the next topics.
* Updates: Keep both LLaMA C++ and your libraries updated with the latest security patches.
* Input Sanitation: Before feeding data to the model, sanitize inputs rigorously. This involves techniques such as:
* Validation: Enforce strict rules on allowed characters and data types.
* Filtering: Remove potentially malicious scripts or code fragments.
* Encoding: Convert special characters into safe representations.
* Verification: Run tooling that identifies potential script injections (e.g. [models that detect prompt injection attempts](https://python.langchain.com/docs/guides/safety/hugging_face_prompt_injection)).
### Data privacy
To protect sensitive data from potential leaks or unauthorized access, it is crucial to sandbox the model execution. This means running the model in a secure, isolated environment, which helps mitigate many attack vectors.
### Untrusted environments or networks
If you can't run your models in a secure and isolated environment or if it must be exposed to an untrusted network, make sure to take the following security precautions:
* Confirm the hash of any downloaded artifact (e.g. pre-trained model weights) matches a known-good value
* Encrypt your data if sending it over the network.
### Multi-Tenant environments
If you intend to run multiple models in parallel with shared memory, it is your responsibility to ensure the models do not interact or access each other's data. The primary areas of concern are tenant isolation, resource allocation, model sharing and hardware attacks.
1. Tenant Isolation: Models should run separately with strong isolation methods to prevent unwanted data access. Separating networks is crucial for isolation, as it prevents unauthorized access to data or models and malicious users from sending graphs to execute under another tenant's identity.
2. Resource Allocation: A denial of service caused by one model can impact the overall system health. Implement safeguards like rate limits, access controls, and health monitoring.
3. Model Sharing: In a multitenant model sharing design, tenants and users must understand the security risks of running code provided by others. Since there are no reliable methods to detect malicious models, sandboxing the model execution is the recommended approach to mitigate the risk.
4. Hardware Attacks: GPUs or TPUs can also be attacked. [Researches](https://scholar.google.com/scholar?q=gpu+side+channel) has shown that side channel attacks on GPUs are possible, which can make data leak from other models or processes running on the same system at the same time.
## Reporting a vulnerability
Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-securely) are considered vulnerabilities of LLaMA C++.
<!-- normal version -->
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

40
SHA256SUMS Normal file
View File

@@ -0,0 +1,40 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
7e89e242ddc0dd6f060b43ca219ce8b3e8f08959a72cb3c0855df8bb04d46265 models/7B/params.json
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
4ab77bec4d4405ccb66a97b282574c89a94417e3c32e5f68f37e2876fc21322f models/13B/params.json
e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/consolidated.00.pth
4e077b7136c7ae2302e954860cf64930458d3076fcde9443f4d0e939e95903ff models/30B/consolidated.01.pth
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
2c07118ea98d69dbe7810d88520e30288fa994751b337f8fca02b171955f44cb models/30B/params.json
135c563f6b3938114458183afb01adc9a63bef3d8ff7cccc3977e5d3664ecafe models/65B/consolidated.00.pth
9a600b37b19d38c7e43809485f70d17d1dc12206c07efa83bc72bb498a568bde models/65B/consolidated.01.pth
e7babf7c5606f165a3756f527cb0fedc4f83e67ef1290391e52fb1cce5f26770 models/65B/consolidated.02.pth
73176ffb426b40482f2aa67ae1217ef79fbbd1fff5482bae5060cdc5a24ab70e models/65B/consolidated.03.pth
882e6431d0b08a8bc66261a0d3607da21cbaeafa96a24e7e59777632dbdac225 models/65B/consolidated.04.pth
a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/consolidated.05.pth
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
999ed1659b469ccc2a941714c0a9656fa571d17c9f7c8c7589817ca90edef51b models/65B/params.json
9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 models/tokenizer.model

116
awq-py/README.md Normal file
View File

@@ -0,0 +1,116 @@
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
**Supported models:**
- [X] LLaMA
- [x] LLaMA 2
- [X] MPT
- [X] Mistral AI v0.1
- [ ] Bloom
- [ ] Mixtral MoE
**TODO:**
- [x] Update version work with both MPT and MPT-AWQ model
- [ ] Add OPT model
- [ ] Add Bloom model
- [ ] Add Mixtral MoE
- [ ] Support w3, w2
## Contents
- [Install](##Install)
- [Convert](##Convert)
- [Quantize](##Quantize)
- [Test](##Test)
- [Benchmark](##Benchmark)
- [Results](##Results)
## Install
Install requirements
```bash
pip install -r requirements.txt
```
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
```bash
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
```
## Convert
Example for llama model
```bash
# For llama7b and llama2 models
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
# For mistral and mpt models
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
```
## Quantize
```bash
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
```
## Test
```bash
# For all models.
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
```
## Benchmark
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
```bash
# For llama and llama2, and mistral models.
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
```
## Results
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
### Llama 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-----------:|--------------|-------:|-------:|-------:|-------:|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Llama2 7B (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|------------:|--------------|-------:|-------:|-------:|-------:|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Mistral 7B v0.1 (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-------------:|--------------|-------:|-------:|-------:|-------:|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### MPT 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|---------:|--------------|-------:|-------:|-------:|--------:|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |

254
awq-py/awq/apply_awq.py Normal file
View File

@@ -0,0 +1,254 @@
"""
Implements the AWQ for llama.cpp use cases.
Original paper: https://arxiv.org/abs/2306.00978
This code is based on versions of the AWQ implementation found in the following repositories:
* https://github.com/mit-han-lab/llm-awq
* https://github.com/casper-hansen/AutoAWQ
"""
import os
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoConfig
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.activations import GELUActivation
class ScaledActivation(nn.Module):
"""
ScaledActivation module wraps an existing activation function and applies a
scale factor to its output.
Args:
module (nn.Module): The activation function to be scaled.
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
scale factors for each feature.
Returns:
torch.Tensor: The scaled output of the activation function.
"""
def __init__(self, module, scales):
super().__init__()
self.act = module
self.scales = nn.Parameter(scales.data)
def forward(self, x):
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
def set_op_by_name(layer, name, new_module):
"""
Set the new module for given module's name.
Args:
layer (nn.Module): The layer in which to replace the submodule.
name (str): The path to the submodule to be replaced, using dot notation
to access nested modules.
new_module (nn.Module): The new module to replace the existing one.
"""
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)
def get_op_by_name(module, op_name):
"""
Retrieves a submodule within a given layer based on its name.
Args:
module (nn.Module): The layer containing the submodule to find.
op_name (str): The name of the submodule.
Returns:
nn.Module: The requested submodule found within the given layer.
Raises:
ValueError: If the specified submodule cannot be found within the layer.
"""
for name, m in module.named_modules():
if name == op_name:
return m
raise ValueError(f"Cannot find op {op_name} in module {module}")
@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
"""
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
Args:
ln (nn.LayerNorm): The LayerNorm module to be scaled.
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
if not isinstance(fcs, list):
fcs = [fcs]
scales = scales.to(ln.weight.device)
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)
for fc in fcs:
fc.weight.mul_(scales.view(1, -1))
for p in ln.parameters():
assert torch.isnan(p).sum() == 0
for fc in fcs:
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
"""
Scales the weights of two fully-connected layers in a specific pattern.
Args:
fc1 (nn.Linear): The first fully-connected layer to be scaled.
fc2 (nn.Linear): The second fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
assert isinstance(fc1, nn.Linear)
assert isinstance(fc2, nn.Linear)
scales = scales.to(fc1.weight.device)
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
if fc1.bias is not None:
fc1.bias.div_(scales.view(-1))
fc2.weight.mul_(scales.view(1, -1))
for p in fc1.parameters():
assert torch.isnan(p).sum() == 0
for p in fc2.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_gelu_fc(gelu, fc, scales):
"""
Scales the weight of a GELU activation and a fully-connected layer proportionally.
Args:
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
fc (nn.Linear): The fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
Raises:
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
TypeError: If the `fc` module is not of type `nn.Linear`.
"""
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
assert isinstance(fc, nn.Linear)
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
def apply_scale(module, scales_list, input_feat_dict=None):
"""
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
Args:
module (nn.Module): The module containing the layers to be scaled.
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
* prev_op_name (str): The name of the preceding operation or module,
relative to which the layers to be scaled are located.
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
input features (optional).
"""
for prev_op_name, layer_names, scales in scales_list:
prev_op = get_op_by_name(module, prev_op_name)
layers = [get_op_by_name(module, name) for name in layer_names]
prev_op.cuda()
for layer in layers:
layer.cuda()
scales.cuda()
if isinstance(prev_op, nn.Linear):
assert len(layers) == 1
scale_fc_fc(prev_op, layers[0], scales)
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
scale_ln_fcs(prev_op, layers, scales)
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
new_module = ScaledActivation(prev_op, scales)
set_op_by_name(module, prev_op_name, new_module)
scale_gelu_fc(prev_op, layers[0], scales)
else:
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
# apply the scaling to input feat if given; prepare it for clipping
if input_feat_dict is not None:
for layer_name in layer_names:
inp = input_feat_dict[layer_name]
inp.div_(scales.view(1, -1).to(inp.device))
prev_op.cpu()
for layer in layers:
layer.cpu()
scales.cpu()
@torch.no_grad()
def apply_clip(module, clip_list):
"""
Applies element-wise clipping to the weight of a specific layer within a given module.
Args:
module (nn.Module): The module containing the layer to be clipped.
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
* name (str): The name of the layer to be clipped, relative to the root of the module.
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
"""
for name, max_val in clip_list:
layer = get_op_by_name(module, name)
layer.cuda()
max_val = max_val.to(layer.weight.device)
org_shape = layer.weight.shape
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
layer.weight.data = layer.weight.data.reshape(org_shape)
layer.cpu()
def add_scale_weights(model_path, scale_path, tmp_path):
"""
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
including scaling factors and clipping bounds.
Args:
model_path (str): Path to the pre-trained model to be equipped with AWQ.
scale_path (str): Path to the AWQ scale factors (.pt file).
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
"""
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, trust_remote_code=True
)
model.eval()
awq_results = torch.load(str(scale_path), map_location="cpu")
apply_scale(model, awq_results["scale"])
apply_clip(model, awq_results["clip"])
model.save_pretrained(str(tmp_path))
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")

2
awq-py/requirements.txt Normal file
View File

@@ -0,0 +1,2 @@
torch>=2.1.1
transformers>=4.32.0

138
build.zig Normal file
View File

@@ -0,0 +1,138 @@
// Compatible with Zig Version 0.11.0
const std = @import("std");
const ArrayList = std.ArrayList;
const Compile = std.Build.Step.Compile;
const ConfigHeader = std.Build.Step.ConfigHeader;
const Mode = std.builtin.Mode;
const CrossTarget = std.zig.CrossTarget;
const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
enable_lto: bool,
include_dirs: ArrayList([]const u8),
cflags: ArrayList([]const u8),
cxxflags: ArrayList([]const u8),
objs: ArrayList(*Compile),
fn addInclude(m: *Maker, dir: []const u8) !void {
try m.include_dirs.append(dir);
}
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
}
fn addCFlag(m: *Maker, flag: []const u8) !void {
try m.cflags.append(flag);
}
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
try m.cxxflags.append(flag);
}
fn addFlag(m: *Maker, flag: []const u8) !void {
try m.addCFlag(flag);
try m.addCxxFlag(flag);
}
fn init(builder: *std.build.Builder) !Maker {
const target = builder.standardTargetOptions(.{});
const zig_version = @import("builtin").zig_version_string;
const commit_hash = try std.ChildProcess.exec(
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
);
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
\\int LLAMA_BUILD_NUMBER = {};
\\char const *LLAMA_COMMIT = "{s}";
\\char const *LLAMA_COMPILER = "Zig {s}";
\\char const *LLAMA_BUILD_TARGET = "{s}";
\\
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
var m = Maker{
.builder = builder,
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
try m.addProjectInclude(&.{"common"});
return m;
}
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (o.target.getAbi() != .msvc)
o.defineCMacro("_GNU_SOURCE", null);
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
} else {
o.addCSourceFiles(&.{src}, m.cxxflags.items);
if (o.target.getAbi() == .msvc) {
o.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
o.linkLibCpp();
}
}
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
}
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
e.addCSourceFiles(&.{src}, m.cxxflags.items);
for (deps) |d| e.addObject(d);
for (m.objs.items) |o| e.addObject(o);
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
// https://github.com/ziglang/zig/issues/15448
if (e.target.getAbi() == .msvc) {
e.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
e.linkLibCpp();
}
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
}
};
pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
const ggml = make.obj("ggml", "ggml.c");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, ggml_quants, llama, common, buildinfo, sampling, grammar_parser, clip });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}
}

View File

@@ -22,8 +22,4 @@ bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with CUDA support
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```

541
ci/run.sh
View File

@@ -10,9 +10,6 @@
# # with CUDA support
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -25,33 +22,20 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -v $OUT/*.log
rm -v $OUT/*.exit
rm -v $OUT/*.md
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
CMAKE_EXTRA=""
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_METAL_SHADER_DEBUG=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_CUDA=1"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DLLAMA_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -106,7 +90,7 @@ function gg_run_ctest_debug {
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
@@ -135,9 +119,9 @@ function gg_run_ctest_release {
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
else
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
fi
set +e
@@ -153,275 +137,33 @@ function gg_sum_ctest_release {
gg_printf '```\n'
}
# test_scripts_debug
# open_llama_3b_v2
function gg_run_test_scripts_debug {
function gg_run_open_llama_3b_v2 {
cd ${SRC}
set -e
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
cd ${SRC}
set -e
(cd ./examples/gguf-split && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./examples/quantize && time bash tests.sh "$SRC/build-ci-release/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
function gg_get_model {
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
fi
}
function gg_run_ctest_with_model_debug {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_run_ctest_with_model_release {
cd ${SRC}
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
function gg_sum_ctest_with_model_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
function gg_sum_ctest_with_model_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs ctest with model files in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
gg_printf '```\n'
}
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
function gg_run_open_llama_7b_v2 {
cd ${SRC}
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/open-llama/7B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_models="../models-mnt/open-llama/3B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -460,22 +202,19 @@ function gg_run_pythia_1_4b {
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -496,24 +235,64 @@ function gg_run_pythia_1_4b {
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
# lora
function compare_ppl {
qnt="$1"
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
path_lora="../models-mnt/open-llama/3B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e
}
function gg_sum_pythia_1_4b {
function gg_sum_open_llama_3b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 1.4B:\n'
gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@@ -526,34 +305,42 @@ function gg_sum_pythia_1_4b {
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
# pythia_2_8b
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
function gg_run_open_llama_7b_v2 {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_models="../models-mnt/open-llama/7B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -604,12 +391,7 @@ function gg_run_pythia_2_8b {
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -630,24 +412,64 @@ function gg_run_pythia_2_8b {
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
# lora
function compare_ppl {
qnt="$1"
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
return 20
fi
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
return 0
}
path_lora="../models-mnt/open-llama/7B-v2/lora"
path_shakespeare="../models-mnt/shakespeare"
shakespeare="${path_shakespeare}/shakespeare.txt"
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
python3 ../convert-lora-to-ggml.py ${path_lora}
# f16
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# currently not supported by the CUDA backend
# q8_0
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
#compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
# q8_0 + f16 lora-base
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
#compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
set +e
}
function gg_sum_pythia_2_8b {
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
@@ -660,71 +482,24 @@ function gg_sum_pythia_2_8b {
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# bge-small
function gg_run_embd_bge_small {
cd ${SRC}
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/tokenizer_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/special_tokens_map.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/resolve/main/pytorch_model.bin
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/sentence_bert_config.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/vocab.txt
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/modules.json
gg_wget models-mnt/bge-small/ https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/config.json
gg_wget models-mnt/bge-small/1_Pooling https://huggingface.co/BAAI/bge-small-en-v1.5/raw/main/1_Pooling/config.json
path_models="../models-mnt/bge-small"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/embedding --model ${model_f16} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/embedding --model ${model_q8_0} -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
#gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
}
## main
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
ln -sfn ${mnt_models} ${SRC}/models-mnt
# Create a fresh python3 venv and enter it
python3 -m venv "$MNT/venv"
source "$MNT/venv/bin/activate"
pip install -r ${SRC}/requirements.txt --disable-pip-version-check
pip install --editable gguf-py --disable-pip-version-check
python3 -m pip install -r ${SRC}/requirements.txt
python3 -m pip install --editable gguf-py
fi
ret=0
@@ -733,22 +508,12 @@ test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
test $ret -eq 0 && gg_run open_llama_3b_v2
else
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -1,16 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER clang )
set( CMAKE_CXX_COMPILER clang++ )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast" )
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )

View File

@@ -1,6 +0,0 @@
set( CMAKE_SYSTEM_NAME Windows )
set( CMAKE_SYSTEM_PROCESSOR arm64 )
set( target arm64-pc-windows-msvc )
set( CMAKE_C_COMPILER_TARGET ${target} )
set( CMAKE_CXX_COMPILER_TARGET ${target} )

View File

@@ -19,12 +19,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
@@ -47,6 +42,7 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(TARGET common)
add_library(${TARGET} STATIC
@@ -59,29 +55,14 @@ add_library(${TARGET} STATIC
console.cpp
grammar-parser.h
grammar-parser.cpp
json.hpp
json-schema-to-grammar.cpp
train.h
train.cpp
ngram-cache.h
ngram-cache.cpp
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features(${TARGET} PUBLIC cxx_std_11)
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama)
target_link_libraries(${TARGET} PRIVATE build_info PUBLIC llama)

File diff suppressed because it is too large Load Diff

View File

@@ -27,94 +27,64 @@
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info;
//
// CPU utils
//
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
//
// CLI argument parsing
//
int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
uint32_t seed = -1; // RNG seed
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
int32_t grp_attn_n = 1; // group-attention factor
int32_t grp_attn_w = 512; // group-attention width
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
std::string rpc_servers = ""; // comma separated list of RPC servers
ggml_backend_sched_eval_callback cb_eval = nullptr;
void * cb_eval_user_data = nullptr;
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
int32_t n_threads = get_num_physical_cores();
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
int32_t n_parallel = 1; // number of parallel sequences to decode
int32_t n_sequences = 1; // number of sequences to decode
float p_accept = 0.5f; // speculative decoding accept probability
float p_split = 0.1f; // speculative decoding split probability
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
int32_t n_beams = 0; // if non-zero then use beam search of given width.
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
// pinging @cebtenzzre
// // sampling parameters
struct llama_sampling_params sparams;
std::string model = ""; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string model_url = ""; // model url to download
std::string hf_repo = ""; // HF repo
std::string hf_file = ""; // HF file
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
std::string model_draft = ""; // draft model for speculative decoding
std::string model_alias = "unknown"; // model alias
std::string prompt = "";
std::string prompt_file = ""; // store the external prompt file name
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
std::string input_prefix = ""; // string to prefix user inputs with
std::string input_suffix = ""; // string to suffix user inputs with
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
std::string logdir = ""; // directory in which to save YAML log files
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
std::string logits_file = ""; // file for saving *all* logits
std::string logdir = ""; // directory in which to save YAML log files
std::vector<llama_model_kv_override> kv_overrides;
@@ -122,11 +92,6 @@ struct gpt_params {
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
std::string lora_base = ""; // base model path for the lora adapter
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
// (which is more convenient to use for plotting)
@@ -134,20 +99,10 @@ struct gpt_params {
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
bool kl_divergence = false; // compute KL divergence
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
bool random_prompt = false; // do not randomize prompt if none provided
bool use_color = false; // use color to distinguish generations and inputs
bool interactive = false; // interactive mode
bool interactive_specials = false; // whether to allow special tokens from user, during interactive mode
bool special = false; // enable special token output
bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
bool prompt_cache_all = false; // save user input and generations to prompt cache
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
@@ -157,8 +112,7 @@ struct gpt_params {
bool interactive_first = false; // wait for user input immediately
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool cont_batching = false; // insert new sequences for decoding on-the-fly
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool ignore_eos = false; // ignore generated EOS tokens
@@ -166,52 +120,37 @@ struct gpt_params {
bool logits_all = false; // return logits for all tokens in the batch
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool numa = false; // attempt optimizations that help on some NUMA systems
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool infill = false; // use infill mode
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
std::string mmproj = ""; // path to multimodal projector
std::string image = ""; // path to an image file
};
void gpt_params_handle_model_default(gpt_params & params);
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
std::string gpt_params_get_system_info(const gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string get_system_info(const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input);
//
// String utils
// String parsing
//
std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_random_prompt(std::mt19937 & rng);
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
//
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string parse_samplers_input(std::string input);
//
// Model utils
@@ -223,9 +162,6 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
// Batch utils
void llama_batch_clear(struct llama_batch & batch);
@@ -246,21 +182,20 @@ void llama_batch_add(
std::vector<llama_token> llama_tokenize(
const struct llama_context * ctx,
const std::string & text,
bool add_special,
bool parse_special = false);
bool add_bos,
bool special = false);
std::vector<llama_token> llama_tokenize(
const struct llama_model * model,
const std::string & text,
bool add_special,
bool parse_special = false);
bool add_bos,
bool special = false);
// tokenizes a token into a piece, optionally renders special/control tokens
// tokenizes a token into a piece
// should work similar to Python's `tokenizer.id_to_piece`
std::string llama_token_to_piece(
const struct llama_context * ctx,
llama_token token,
bool special = true);
llama_token token);
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
// that takes into account the tokenizer type and decides how to handle the leading space
@@ -282,62 +217,27 @@ std::string llama_detokenize_bpe(
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// YAML utils
//
bool create_directory_with_parents(const std::string & path);
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
std::string get_sortable_timestamp();
void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
void llama_embd_normalize(const float * inp, float * out, int n);
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
//
// Control vector utils
//
struct llama_control_vector_data {
int n_embd;
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
std::vector<float> data;
};
struct llama_control_vector_load_info {
float strength;
std::string fname;
};
// Load control vectors, scale each by strength, and add them together.
// On error, returns {-1, empty}
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
// YAML utils
//
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);

View File

@@ -26,7 +26,7 @@ namespace grammar_parser {
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
return result.first->second;
}
@@ -142,9 +142,6 @@ namespace grammar_parser {
pos++;
last_sym_start = out_elements.size();
while (*pos != '"') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
@@ -159,9 +156,6 @@ namespace grammar_parser {
}
last_sym_start = out_elements.size();
while (*pos != ']') {
if (!*pos) {
throw std::runtime_error("unexpected end of input");
}
auto char_pair = parse_char(pos);
pos = char_pair.second;
enum llama_gretype type = last_sym_start < out_elements.size()
@@ -170,9 +164,6 @@ namespace grammar_parser {
out_elements.push_back({type, char_pair.first});
if (pos[0] == '-' && pos[1] != ']') {
if (!pos[1]) {
throw std::runtime_error("unexpected end of input");
}
auto endchar_pair = parse_char(pos + 1);
pos = endchar_pair.second;
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
@@ -287,22 +278,6 @@ namespace grammar_parser {
while (*pos) {
pos = parse_rule(state, pos);
}
// Validate the state to ensure that all rules are defined
for (const auto & rule : state.rules) {
for (const auto & elem : rule) {
if (elem.type == LLAMA_GRETYPE_RULE_REF) {
// Ensure that the rule at that location exists
if (elem.value >= state.rules.size() || state.rules[elem.value].empty()) {
// Get the name of the rule that is missing
for (const auto & kv : state.symbol_ids) {
if (kv.second == elem.value) {
throw std::runtime_error("Undefined rule identifier '" + kv.first + "'");
}
}
}
}
}
}
return state;
} catch (const std::exception & err) {
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());

View File

@@ -1,764 +0,0 @@
#include "json-schema-to-grammar.h"
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "", bool item_rule_is_literal = false) {
if (separator_rule.empty()) {
if (min_items == 0 && max_items == 1) {
return item_rule + "?";
} else if (min_items == 1 && max_items == std::numeric_limits<int>::max()) {
return item_rule + "+";
}
}
std::string result;
if (min_items > 0) {
if (item_rule_is_literal && separator_rule.empty()) {
result = "\"" + repeat(std::string(item_rule.begin() + 1, item_rule.end() - 1), min_items) + "\"";
} else {
std::vector<std::string> items(min_items, item_rule);
result = join(items.begin(), items.end(), separator_rule.empty() ? " " : " " + separator_rule + " ");
}
}
std::function<std::string(int, bool)> opt_repetitions = [&](int up_to_n, bool prefix_with_sep) -> std::string {
auto content = prefix_with_sep && !separator_rule.empty() ? separator_rule + " " + item_rule : item_rule;
if (up_to_n == 0) {
return "";
} else if (up_to_n == 1) {
return "(" + content + ")?";
} else if (!separator_rule.empty() && !prefix_with_sep) {
return "(" + content + " " + opt_repetitions(up_to_n - 1, true) + ")?";
} else {
std::string res = repeat("(" + content + " ", up_to_n);
// strip trailing space
res = res.substr(0, res.length() - 1);
res += repeat(")?", up_to_n);
return res;
}
};
if (min_items > 0 && max_items != min_items) {
result += " ";
}
if (max_items != std::numeric_limits<int>::max()) {
result += opt_repetitions(max_items - min_items, min_items > 0);
} else {
std::string item_operator = "(" + (separator_rule.empty() ? "" : separator_rule + " ") + item_rule + ")";
if (min_items == 0 && !separator_rule.empty()) {
result = "(" + item_rule + " " + item_operator + "*)?";
} else {
result += item_operator + "*";
}
}
return result;
}
const std::string SPACE_RULE = "\" \"?";
struct BuiltinRule {
std::string content;
std::vector<std::string> deps;
};
const std::string _up_to_15_digits = build_repetition("[0-9]", 0, 15);
std::unordered_map<std::string, BuiltinRule> PRIMITIVE_RULES = {
{"boolean", {"(\"true\" | \"false\") space", {}}},
{"decimal-part", {"[0-9] " + _up_to_15_digits, {}}},
{"integral-part", {"[0-9] | [1-9] " + _up_to_15_digits, {}}},
{"number", {"(\"-\"? integral-part) (\".\" decimal-part)? ([eE] [-+]? integral-part)? space", {"integral-part", "decimal-part"}}},
{"integer", {"(\"-\"? integral-part) space", {"integral-part"}}},
{"value", {"object | array | string | number | boolean | null", {"object", "array", "string", "number", "boolean", "null"}}},
{"object", {"\"{\" space ( string \":\" space value (\",\" space string \":\" space value)* )? \"}\" space", {"string", "value"}}},
{"array", {"\"[\" space ( value (\",\" space value)* )? \"]\" space", {"value"}}},
{"uuid", {"\"\\\"\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] "
"\"-\" [0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F] \"\\\"\" space", {}}},
{"char", {"[^\"\\\\] | \"\\\\\" ([\"\\\\/bfnrt] | \"u\" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])", {}}},
{"string", {"\"\\\"\" char* \"\\\"\" space", {"char"}}},
{"null", {"\"null\" space", {}}},
};
std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
{"date", {"[0-9] [0-9] [0-9] [0-9] \"-\" ( \"0\" [1-9] | \"1\" [0-2] ) \"-\" ( \"0\" [1-9] | [1-2] [0-9] | \"3\" [0-1] )", {}}},
{"time", {"([01] [0-9] | \"2\" [0-3]) \":\" [0-5] [0-9] \":\" [0-5] [0-9] ( \".\" [0-9] [0-9] [0-9] )? ( \"Z\" | ( \"+\" | \"-\" ) ( [01] [0-9] | \"2\" [0-3] ) \":\" [0-5] [0-9] )", {}}},
{"date-time", {"date \"T\" time", {"date", "time"}}},
{"date-string", {"\"\\\"\" date \"\\\"\" space", {"date"}}},
{"time-string", {"\"\\\"\" time \"\\\"\" space", {"time"}}},
{"date-time-string", {"\"\\\"\" date-time \"\\\"\" space", {"date-time"}}}
};
static bool is_reserved_name(const std::string & name) {
static std::unordered_set<std::string> RESERVED_NAMES;
if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : STRING_FORMAT_RULES) RESERVED_NAMES.insert(p.first);
}
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
std::string::const_iterator searchStart(input.cbegin());
std::string::const_iterator searchEnd(input.cend());
while (std::regex_search(searchStart, searchEnd, match, regex)) {
result.append(searchStart, searchStart + match.position());
result.append(replacement(match));
searchStart = match.suffix().first;
}
result.append(searchStart, searchEnd);
return result;
}
static std::string format_literal(const std::string & literal) {
std::string escaped = replacePattern(literal, GRAMMAR_LITERAL_ESCAPE_RE, [&](const std::smatch & match) {
char c = match.str()[0];
return GRAMMAR_LITERAL_ESCAPES.at(c);
});
return "\"" + escaped + "\"";
}
class SchemaConverter {
private:
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
std::unordered_map<std::string, json> _refs;
std::unordered_set<std::string> _refs_being_resolved;
std::vector<std::string> _errors;
std::vector<std::string> _warnings;
std::string _add_rule(const std::string & name, const std::string & rule) {
std::string esc_name = regex_replace(name, INVALID_RULE_CHARS_RE, "-");
if (_rules.find(esc_name) == _rules.end() || _rules[esc_name] == rule) {
_rules[esc_name] = rule;
return esc_name;
} else {
int i = 0;
while (_rules.find(esc_name + std::to_string(i)) != _rules.end() && _rules[esc_name + std::to_string(i)] != rule) {
i++;
}
std::string key = esc_name + std::to_string(i);
_rules[key] = rule;
return key;
}
}
std::string _generate_union_rule(const std::string & name, const std::vector<json> & alt_schemas) {
std::vector<std::string> rules;
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
if (!(pattern.front() == '^' && pattern.back() == '$')) {
_errors.push_back("Pattern must start with '^' and end with '$'");
return "";
}
std::string sub_pattern = pattern.substr(1, pattern.length() - 2);
std::unordered_map<std::string, std::string> sub_rule_ids;
size_t i = 0;
size_t length = sub_pattern.length();
using literal_or_rule = std::pair<std::string, bool>;
auto to_rule = [&](const literal_or_rule & ls) {
auto is_literal = ls.second;
auto s = ls.first;
return is_literal ? "\"" + s + "\"" : s;
};
std::function<literal_or_rule()> transform = [&]() -> literal_or_rule {
size_t start = i;
std::vector<literal_or_rule> seq;
auto get_dot = [&]() {
std::string rule;
if (_dotall) {
rule = "[\\U00000000-\\U0010FFFF]";
} else {
rule = "[^\\x0A\\x0D]";
}
return _add_rule("dot", rule);
};
// Joins the sequence, merging consecutive literals together.
auto join_seq = [&]() {
std::vector<literal_or_rule> ret;
std::string literal;
auto flush_literal = [&]() {
if (literal.empty()) {
return false;
}
ret.emplace_back(literal, true);
literal.clear();
return true;
};
for (const auto & item : seq) {
auto is_literal = item.second;
if (is_literal) {
literal += item.first;
} else {
flush_literal();
ret.push_back(item);
}
}
flush_literal();
std::vector<std::string> results;
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
};
while (i < length) {
char c = sub_pattern[i];
if (c == '.') {
seq.emplace_back(get_dot(), false);
i++;
} else if (c == '(') {
i++;
if (i < length) {
if (sub_pattern[i] == '?') {
_warnings.push_back("Unsupported pattern syntax");
}
}
seq.emplace_back("(" + to_rule(transform()) + ")", false);
} else if (c == ')') {
i++;
if (start > 0 && sub_pattern[start - 1] != '(') {
_errors.push_back("Unbalanced parentheses");
}
return join_seq();
} else if (c == '[') {
std::string square_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != ']') {
if (sub_pattern[i] == '\\') {
square_brackets += sub_pattern.substr(i, 2);
i += 2;
} else {
square_brackets += sub_pattern[i];
i++;
}
}
if (i >= length) {
_errors.push_back("Unbalanced square brackets");
}
square_brackets += ']';
i++;
seq.emplace_back(square_brackets, false);
} else if (c == '|') {
seq.emplace_back("|", false);
i++;
} else if (c == '*' || c == '+' || c == '?') {
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
i++;
} else if (c == '{') {
std::string curly_brackets = std::string(1, c);
i++;
while (i < length && sub_pattern[i] != '}') {
curly_brackets += sub_pattern[i];
i++;
}
if (i >= length) {
_errors.push_back("Unbalanced curly brackets");
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
if (nums.size() == 1) {
min_times = max_times = std::stoi(nums[0]);
} else if (nums.size() != 2) {
_errors.push_back("Wrong number of values in curly brackets");
} else {
if (!nums[0].empty()) {
min_times = std::stoi(nums[0]);
}
if (!nums[1].empty()) {
max_times = std::stoi(nums[1]);
}
}
} catch (const std::invalid_argument & e) {
_errors.push_back("Invalid number in curly brackets");
return std::make_pair("", false);
}
auto &last = seq.back();
auto &sub = last.first;
auto sub_is_literal = last.second;
if (!sub_is_literal) {
std::string & sub_id = sub_rule_ids[sub];
if (sub_id.empty()) {
sub_id = _add_rule(name + "-" + std::to_string(sub_rule_ids.size()), sub);
}
sub = sub_id;
}
seq.back().first = build_repetition(
sub_is_literal ? "\"" + sub + "\"" : sub,
min_times,
max_times,
"",
sub_is_literal
);
seq.back().second = false;
} else {
std::string literal;
auto is_non_literal = [&](char c) {
return NON_LITERAL_SET.find(c) != NON_LITERAL_SET.end();
};
while (i < length) {
if (sub_pattern[i] == '\\' && i < length - 1) {
char next = sub_pattern[i + 1];
if (ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.find(next) != ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS.end()) {
i++;
literal += sub_pattern[i];
i++;
} else {
literal += sub_pattern.substr(i, 2);
i += 2;
}
} else if (sub_pattern[i] == '"') {
literal += "\\\"";
i++;
} else if (!is_non_literal(sub_pattern[i]) &&
(i == length - 1 || literal.empty() || sub_pattern[i + 1] == '.' || !is_non_literal(sub_pattern[i + 1]))) {
literal += sub_pattern[i];
i++;
} else {
break;
}
}
if (!literal.empty()) {
seq.emplace_back(literal, true);
}
}
}
return join_seq();
};
return _add_rule(name, "\"\\\"\" " + to_rule(transform()) + " \"\\\"\" space");
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
ref_name = visit(resolved, ref_name);
_refs_being_resolved.erase(ref);
}
return ref_name;
}
std::string _build_object_rule(
const std::vector<std::pair<std::string, json>> & properties,
const std::unordered_set<std::string> & required,
const std::string & name,
const json & additional_properties)
{
std::vector<std::string> required_props;
std::vector<std::string> optional_props;
std::unordered_map<std::string, std::string> prop_kv_rule_names;
for (const auto & kv : properties) {
const auto &prop_name = kv.first;
const auto &prop_schema = kv.second;
std::string prop_rule_name = visit(prop_schema, name + (name.empty() ? "" : "-") + prop_name);
prop_kv_rule_names[prop_name] = _add_rule(
name + (name.empty() ? "" : "-") + prop_name + "-kv",
format_literal(json(prop_name).dump()) + " space \":\" space " + prop_rule_name
);
if (required.find(prop_name) != required.end()) {
required_props.push_back(prop_name);
} else {
optional_props.push_back(prop_name);
}
}
if (additional_properties.is_object() || (additional_properties.is_boolean() && additional_properties.get<bool>())) {
std::string sub_name = name + (name.empty() ? "" : "-") + "additional";
std::string value_rule = visit(additional_properties.is_object() ? additional_properties : json::object(), sub_name + "-value");
std::string kv_rule = _add_rule(sub_name + "-kv", _add_primitive("string", PRIMITIVE_RULES.at("string")) + " \":\" space " + value_rule);
prop_kv_rule_names["*"] = kv_rule;
optional_props.push_back("*");
}
std::string rule = "\"{\" space ";
for (size_t i = 0; i < required_props.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += prop_kv_rule_names[required_props[i]];
}
if (!optional_props.empty()) {
rule += " (";
if (!required_props.empty()) {
rule += " \",\" space ( ";
}
std::function<std::string(const std::vector<std::string> &, bool)> get_recursive_refs = [&](const std::vector<std::string> & ks, bool first_is_optional) {
std::string res;
if (ks.empty()) {
return res;
}
std::string k = ks[0];
std::string kv_rule_name = prop_kv_rule_names[k];
if (k == "*") {
res = _add_rule(
name + (name.empty() ? "" : "-") + "additional-kvs",
kv_rule_name + " ( \",\" space " + kv_rule_name + " )*"
);
} else if (first_is_optional) {
res = "( \",\" space " + kv_rule_name + " )?";
} else {
res = kv_rule_name;
}
if (ks.size() > 1) {
res += " " + _add_rule(
name + (name.empty() ? "" : "-") + k + "-rest",
get_recursive_refs(std::vector<std::string>(ks.begin() + 1, ks.end()), true)
);
}
return res;
};
for (size_t i = 0; i < optional_props.size(); i++) {
if (i > 0) {
rule += " | ";
}
rule += get_recursive_refs(std::vector<std::string>(optional_props.begin() + i, optional_props.end()), false);
}
if (!required_props.empty()) {
rule += " )";
}
rule += " )?";
}
rule += " \"}\" space";
return rule;
}
std::string _add_primitive(const std::string & name, const BuiltinRule & rule) {
auto n = _add_rule(name, rule.content);
for (const auto & dep : rule.deps) {
BuiltinRule dep_rule;
auto it = PRIMITIVE_RULES.find(dep);
if (it == PRIMITIVE_RULES.end()) {
it = STRING_FORMAT_RULES.find(dep);
if (it == STRING_FORMAT_RULES.end()) {
_errors.push_back("Rule " + dep + " not known");
continue;
}
}
if (_rules.find(dep) == _rules.end()) {
_add_primitive(dep, it->second);
}
}
return n;
}
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
/*
* Resolves all $ref fields in the given schema, fetching any remote schemas,
* replacing each $ref with absolute reference URL and populates _refs with the
* respective referenced (sub)schema dictionaries.
*/
std::function<void(json &)> visit_refs = [&](json & n) {
if (n.is_array()) {
for (auto & x : n) {
visit_refs(x);
}
} else if (n.is_object()) {
if (n.contains("$ref")) {
std::string ref = n["$ref"];
if (_refs.find(ref) == _refs.end()) {
json target;
if (ref.find("https://") == 0) {
std::string base_url = ref.substr(0, ref.find('#'));
auto it = _refs.find(base_url);
if (it != _refs.end()) {
target = it->second;
} else {
// Fetch the referenced schema and resolve its refs
auto referenced = _fetch_json(ref);
resolve_refs(referenced, base_url);
_refs[base_url] = referenced;
}
if (ref.find('#') == std::string::npos || ref.substr(ref.find('#') + 1).empty()) {
return;
}
} else if (ref.find("#/") == 0) {
target = schema;
n["$ref"] = url + ref;
ref = url + ref;
} else {
_errors.push_back("Unsupported ref: " + ref);
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
} else {
for (auto & kv : n.items()) {
visit_refs(kv.value());
}
}
}
};
visit_refs(schema);
}
std::string _generate_constant_rule(const json & value) {
return format_literal(value.dump());
}
std::string visit(const json & schema, const std::string & name) {
json schema_type = schema.contains("type") ? schema["type"] : json();
std::string schema_format = schema.contains("format") ? schema["format"].get<std::string>() : "";
std::string rule_name = is_reserved_name(name) ? name + "-" : name.empty() ? "root" : name;
if (schema.contains("$ref")) {
return _add_rule(rule_name, _resolve_ref(schema["$ref"]));
} else if (schema.contains("oneOf") || schema.contains("anyOf")) {
std::vector<json> alt_schemas = schema.contains("oneOf") ? schema["oneOf"].get<std::vector<json>>() : schema["anyOf"].get<std::vector<json>>();
return _add_rule(rule_name, _generate_union_rule(name, alt_schemas));
} else if (schema_type.is_array()) {
std::vector<json> schema_types;
for (const auto & t : schema_type) {
schema_types.push_back({{"type", t}});
}
return _add_rule(rule_name, _generate_union_rule(name, schema_types));
} else if (schema.contains("const")) {
return _add_rule(rule_name, _generate_constant_rule(schema["const"]));
} else if (schema.contains("enum")) {
std::vector<std::string> enum_values;
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, join(enum_values.begin(), enum_values.end(), " | "));
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
std::unordered_set<std::string> required;
if (schema.contains("required") && schema["required"].is_array()) {
for (const auto & item : schema["required"]) {
if (item.is_string()) {
required.insert(item.get<std::string>());
}
}
}
std::vector<std::pair<std::string, json>> properties;
if (schema.contains("properties")) {
for (const auto & prop : schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
}
}
return _add_rule(rule_name,
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
add_component(_refs[comp_schema["$ref"]], is_required);
} else if (comp_schema.contains("properties")) {
for (const auto & prop : comp_schema["properties"].items()) {
properties.emplace_back(prop.key(), prop.value());
if (is_required) {
required.insert(prop.key());
}
}
} else {
// todo warning
}
};
for (auto & t : schema["allOf"]) {
if (t.contains("anyOf")) {
for (auto & tt : t["anyOf"]) {
add_component(tt, false);
}
} else {
add_component(t, true);
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
if (items.is_array()) {
std::string rule = "\"[\" space ";
for (size_t i = 0; i < items.size(); i++) {
if (i > 0) {
rule += " \",\" space ";
}
rule += visit(items[i], name + (name.empty() ? "" : "-") + "tuple-" + std::to_string(i));
}
rule += " \"]\" space";
return _add_rule(rule_name, rule);
} else {
std::string item_rule_name = visit(items, name + (name.empty() ? "" : "-") + "item");
int min_items = schema.contains("minItems") ? schema["minItems"].get<int>() : 0;
json max_items_json = schema.contains("maxItems") ? schema["maxItems"] : json();
int max_items = max_items_json.is_number_integer() ? max_items_json.get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"[\" space " + build_repetition(item_rule_name, min_items, max_items, "\",\" space") + " \"]\" space");
}
} else if ((schema_type.is_null() || schema_type == "string") && schema.contains("pattern")) {
return _visit_pattern(schema["pattern"], rule_name);
} else if ((schema_type.is_null() || schema_type == "string") && std::regex_match(schema_format, std::regex("^uuid[1-5]?$"))) {
return _add_primitive(rule_name == "root" ? "root" : schema_format, PRIMITIVE_RULES.at("uuid"));
} else if ((schema_type.is_null() || schema_type == "string") && STRING_FORMAT_RULES.find(schema_format + "-string") != STRING_FORMAT_RULES.end()) {
auto prim_name = schema_format + "-string";
return _add_rule(rule_name, _add_primitive(prim_name, STRING_FORMAT_RULES.at(prim_name)));
} else if (schema_type == "string" && (schema.contains("minLength") || schema.contains("maxLength"))) {
std::string char_rule = _add_primitive("char", PRIMITIVE_RULES.at("char"));
int min_len = schema.contains("minLength") ? schema["minLength"].get<int>() : 0;
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema.empty() || schema_type == "object") {
return _add_rule(rule_name, _add_primitive("object", PRIMITIVE_RULES.at("object")));
} else {
if (!schema_type.is_string() || PRIMITIVE_RULES.find(schema_type.get<std::string>()) == PRIMITIVE_RULES.end()) {
_errors.push_back("Unrecognized schema: " + schema.dump());
return "";
}
// TODO: support minimum, maximum, exclusiveMinimum, exclusiveMaximum at least for zero
return _add_primitive(rule_name == "root" ? "root" : schema_type.get<std::string>(), PRIMITIVE_RULES.at(schema_type.get<std::string>()));
}
}
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
}
}
std::string format_grammar() {
std::stringstream ss;
for (const auto & kv : _rules) {
ss << kv.first << " ::= " << kv.second << std::endl;
}
return ss.str();
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
converter.check_errors();
return converter.format_grammar();
}

View File

@@ -1,8 +0,0 @@
#pragma once
#include "ggml.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);

View File

@@ -211,7 +211,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#else
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
#define LOG_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#endif
#else
#define LOG_FLF_FMT "%s"
@@ -224,7 +224,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#else
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
#define LOG_TEE_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
#endif
#else
#define LOG_TEE_FLF_FMT "%s"
@@ -234,7 +234,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE
// USE LOG() INSTEAD
//
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
#ifndef _MSC_VER
#define LOG_IMPL(str, ...) \
do { \
if (LOG_TARGET != nullptr) \
@@ -257,7 +257,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// INTERNAL, DO NOT USE
// USE LOG_TEE() INSTEAD
//
#if !defined(_MSC_VER) || defined(__INTEL_LLVM_COMPILER) || defined(__clang__)
#ifndef _MSC_VER
#define LOG_TEE_IMPL(str, ...) \
do { \
if (LOG_TARGET != nullptr) \
@@ -294,10 +294,10 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// Main LOG macro.
// behaves like printf, and supports arguments the exact same way.
//
#if !defined(_MSC_VER) || defined(__clang__)
#ifndef _MSC_VER
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
#else
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
#endif
// Main TEE macro.
@@ -308,19 +308,19 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
// Secondary target can be changed just like LOG_TARGET
// by defining LOG_TEE_TARGET
//
#if !defined(_MSC_VER) || defined(__clang__)
#ifndef _MSC_VER
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
#else
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
#endif
// LOG macro variants with auto endline.
#if !defined(_MSC_VER) || defined(__clang__)
#ifndef _MSC_VER
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
#else
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "\n")
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n")
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n")
#endif
// INTERNAL, DO NOT USE
@@ -566,7 +566,6 @@ inline void log_print_usage()
printf(" --log-new Create a separate new log file on start. "
"Each log file will have unique name: \"<name>.<ID>.log\"\n");
printf(" --log-append Don't truncate the old log file.\n");
printf("\n");
}
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)

View File

@@ -1,282 +0,0 @@
#include "ngram-cache.h"
#include "common.h"
#include "log.h"
#include <cstdint>
#include <fstream>
void llama_ngram_cache_update(llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {
const int64_t t_start_ms = ggml_time_ms();
const int64_t inp_size = inp.size();
const int64_t n_todo = inp_size * (ngram_max - ngram_min + 1);
int64_t n_done = 0;
for (int64_t ngram_size = ngram_min; ngram_size <= ngram_max; ++ngram_size) {
const int64_t i_start = std::max(inp_size - nnew, ngram_size);
for (int64_t i = i_start; i < inp_size; ++i) {
const int64_t ngram_start = i - ngram_size;
llama_ngram ngram(&inp[ngram_start], ngram_size);
const llama_token token = inp[i];
llama_ngram_cache::iterator part_it = ngram_cache.find(ngram);
if (part_it == ngram_cache.end()) {
llama_ngram_cache_part part;
part.emplace(token, 1);
ngram_cache.emplace(ngram, part);
} else {
llama_ngram_cache_part::iterator token_count_it = part_it->second.find(token);
if (token_count_it == part_it->second.end()) {
part_it->second.emplace(token, 1);
} else {
token_count_it->second++;
}
}
++n_done;
if (print_progress && n_done % 10000000 == 0) {
const int64_t t_now_ms = ggml_time_ms();
const int64_t eta_ms = (inp_size*(ngram_max-ngram_min+1) - n_done) * (t_now_ms - t_start_ms) / n_done;
const int64_t eta_min = eta_ms / (60*1000);
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
fprintf(stderr, "%s: %" PRId64 "/%" PRId64 " done, ETA: %02" PRId64 ":%02" PRId64 "\n", __func__, n_done, n_todo, eta_min, eta_s);
}
}
}
}
// Helper function to get a token from the combined, speculative sequence of inp and draft.
static llama_token get_token(const std::vector<llama_token> & inp, const std::vector<llama_token> & draft, const size_t i) {
return i < inp.size() ? inp[i] : draft[1 + i - inp.size()];
}
// If sample size or percentage are below these thresholds the draft is aborted early:
constexpr int draft_min_sample_size_lax[LLAMA_NGRAM_MAX] = { 2, 2, 1, 1};
constexpr int draft_min_percent_lax[LLAMA_NGRAM_MAX] = {66, 50, 50, 50};
constexpr int draft_min_sample_size_strict[LLAMA_NGRAM_MAX] = { 4, 3, 2, 2};
constexpr int draft_min_percent_strict[LLAMA_NGRAM_MAX] = {75, 66, 66, 66};
// Helper function that tries to draft a token from only the static ngram cache:
static llama_token try_draft(llama_ngram_cache & nc_static, const llama_ngram ngram_static) {
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
if (part_static_it == nc_static.end()) {
return -1;
}
const llama_ngram_cache_part part_static = part_static_it->second;
int max_count_static = 0;
int sum_count_static = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_static : part_static) {
const llama_token token = token_count_static.first;
const int32_t count_static = token_count_static.second;
if (count_static > max_count_static) {
max_token = token;
max_count_static = count_static;
}
sum_count_static += count_static;
}
if (sum_count_static < draft_min_sample_size_lax[LLAMA_NGRAM_STATIC-1]) {
return -1;
}
if (100*max_count_static < draft_min_percent_lax[LLAMA_NGRAM_STATIC-1]*sum_count_static) {
return -1;
}
return max_token;
}
// Try to draft a token from primary cache (context/dynamic), validate with static cache:
static llama_token try_draft(
llama_ngram_cache & nc_primary, const std::vector<llama_ngram> & ngrams_primary, llama_ngram_cache_part & part_static,
const int * min_sample_size, const int * min_percent) {
llama_token drafted_token = -1;
for (int i = ngrams_primary.size()-1; i >= 0 && drafted_token == -1; --i) {
const llama_ngram ngram_primary = ngrams_primary[i];
llama_ngram_cache::iterator part_primary_it = nc_primary.find(ngram_primary);
if (part_primary_it == nc_primary.end()) {
continue;
}
const llama_ngram_cache_part part_primary = part_primary_it->second;
int max_count_primary = 0;
int max_count_static = 0;
int sum_count_primary = 0;
llama_token max_token = -1;
for (std::pair<llama_token, int> token_count_primary : part_primary) {
const llama_token token = token_count_primary.first;
llama_ngram_cache_part::iterator token_count_static_it = part_static.find(token);
const int32_t count_primary = token_count_primary.second;
const int32_t count_static = token_count_static_it != part_static.end() ? 100*token_count_static_it->second : 1;
if (count_primary*count_static > max_count_primary*max_count_static) {
max_token = token;
max_count_primary = count_primary;
max_count_static = count_static;
}
sum_count_primary += count_primary;
}
if (sum_count_primary < min_sample_size[i]) {
continue;
}
if (100*max_count_primary < min_percent[i]*sum_count_primary) {
continue;;
}
drafted_token = max_token;
}
return drafted_token;
}
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static
) {
GGML_ASSERT(draft.size() == 1);
const int inp_size = inp.size();
if (inp_size < LLAMA_NGRAM_STATIC) {
return;
}
while ((int) draft.size()-1 < n_draft) {
llama_token drafted_token = -1;
const int ngram_start_static = inp_size-LLAMA_NGRAM_STATIC + draft.size()-1;
llama_ngram ngram_static;
for (int j = ngram_start_static; j < ngram_start_static + LLAMA_NGRAM_STATIC; ++j) {
ngram_static.tokens[j-ngram_start_static] = get_token(inp, draft, j);
}
llama_ngram_cache::iterator part_static_it = nc_static.find(ngram_static);
llama_ngram_cache_part part_static;
if (part_static_it != nc_static.end()) {
part_static = part_static_it->second;
}
// cd = context + dynamic
std::vector<llama_ngram> ngrams_cd;
for (int ngram_size_cd = ngram_min; ngram_size_cd <= ngram_max; ++ngram_size_cd) {
const int ngram_start_cd = inp_size-ngram_size_cd + draft.size()-1;
llama_ngram ngram_cd;
for (int j = ngram_start_cd; j < ngram_start_cd + ngram_size_cd; ++j) {
ngram_cd.tokens[j-ngram_start_cd] = get_token(inp, draft, j);
}
ngrams_cd.push_back(ngram_cd);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_context, ngrams_cd, part_static, draft_min_sample_size_lax, draft_min_percent_lax);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_dynamic, ngrams_cd, part_static, draft_min_sample_size_strict, draft_min_percent_strict);
}
if (drafted_token == -1) {
drafted_token = try_draft(nc_static, ngram_static);
}
if (drafted_token == -1) {
break;
}
LOG(" - draft candidate: token=%d\n", drafted_token);
draft.push_back(drafted_token);
}
}
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename) {
std::ofstream file_out(filename, std::ios::binary);
for (std::pair<llama_ngram, llama_ngram_cache_part> item : ngram_cache) {
const llama_ngram ngram = item.first;
llama_ngram_cache_part token_counts = item.second;
GGML_ASSERT(!token_counts.empty());
const int32_t ntokens = token_counts.size();
GGML_ASSERT(ntokens > 0);
file_out.write(reinterpret_cast<const char *>(&ngram), sizeof(llama_ngram));
file_out.write(reinterpret_cast<const char *>(&ntokens), sizeof(int32_t));
for (std::pair<llama_token, int32_t> item2 : token_counts) {
const llama_token token = item2.first;
const int32_t count = item2.second;
GGML_ASSERT(count > 0);
file_out.write(reinterpret_cast<const char *>(&token), sizeof(llama_token));
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
}
}
}
llama_ngram_cache llama_ngram_cache_load(std::string & filename) {
std::ifstream hashmap_file(filename, std::ios::binary);
if (!hashmap_file) {
throw std::ifstream::failure("Unable to open file " + filename);
}
llama_ngram_cache ngram_cache;
llama_ngram ngram;
int32_t ntokens;
llama_token token;
int32_t count;
char * ngramc = reinterpret_cast<char*>(&ngram);
char * ntokensc = reinterpret_cast<char*>(&ntokens);
char * tokenc = reinterpret_cast<char*>(&token);
char * countc = reinterpret_cast<char*>(&count);
while(hashmap_file.read(ngramc, sizeof(llama_ngram))) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(ntokensc, sizeof(int32_t)));
GGML_ASSERT(ntokens > 0);
llama_ngram_cache_part token_counts;
for (int i = 0; i < ntokens; ++i) {
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(tokenc, sizeof(llama_token)));
GGML_ASSERT(!hashmap_file.eof());
GGML_ASSERT(hashmap_file.read(countc, sizeof(int32_t)));
GGML_ASSERT(count > 0);
token_counts.emplace(token, count);
}
ngram_cache.emplace(ngram, token_counts);
}
GGML_ASSERT(hashmap_file.eof());
return ngram_cache;
}
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add) {
for (std::pair<llama_ngram, llama_ngram_cache_part> ngram_part : ngram_cache_add) {
const llama_ngram ngram = ngram_part.first;
llama_ngram_cache_part part = ngram_part.second;
llama_ngram_cache::iterator part_merged_it = ngram_cache_target.find(ngram);
if (part_merged_it == ngram_cache_target.end()) {
ngram_cache_target.emplace(ngram, part);
continue;
}
for (std::pair<llama_token, int32_t> token_count : part) {
const llama_token token = token_count.first;
const int32_t count = token_count.second;
GGML_ASSERT(count > 0);
llama_ngram_cache_part::iterator token_count_merged_it = part_merged_it->second.find(token);
if (token_count_merged_it == part_merged_it->second.end()) {
part_merged_it->second.emplace(token, count);
continue;
}
token_count_merged_it->second += count;
}
}
}

View File

@@ -1,94 +0,0 @@
#pragma once
#include "llama.h"
#include <unordered_map>
#include <string>
#include <vector>
#define LLAMA_NGRAM_MIN 1
#define LLAMA_NGRAM_MAX 4
#define LLAMA_NGRAM_STATIC 2
// Data structures to map n-grams to empirical token probabilities:
struct llama_ngram {
llama_token tokens[LLAMA_NGRAM_MAX];
llama_ngram() {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = -1;
}
}
llama_ngram(const llama_token * input, const int ngram_size) {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
tokens[i] = i < ngram_size ? input[i] : -1;
}
}
bool operator==(const llama_ngram & other) const {
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
if (tokens[i] != other.tokens[i]) {
return false;
}
}
return true;
}
};
struct llama_ngram_hash_function {
size_t operator()(const llama_ngram & ngram) const {
size_t hash = 0;
for (int i = 0; i < LLAMA_NGRAM_MAX; ++i) {
hash ^= std::hash<llama_token>{}(ngram.tokens[i]);
}
return hash;
}
};
// token -> number of times token has been seen
typedef std::unordered_map<llama_token, int32_t> llama_ngram_cache_part;
// n-gram -> empirical distribution of following tokens
typedef std::unordered_map<llama_ngram, llama_ngram_cache_part, llama_ngram_hash_function> llama_ngram_cache;
// Update an ngram cache with tokens.
// ngram_cache: the cache to modify.
// ngram_min/ngram_max: the min/max size of the ngrams to extract from inp_data.
// inp_data: the token sequence with which to update ngram_cache.
// nnew: how many new tokens have been appended to inp_data since the last call to this function.
// print_progress: whether to print progress to stderr.
//
// In order to get correct results inp_data can ONLY BE APPENDED TO.
// Changes in the middle need a complete rebuild.
void llama_ngram_cache_update(
llama_ngram_cache & ngram_cache, int ngram_min, int ngram_max, std::vector<llama_token> & inp_data, int nnew, bool print_progress);
// Try to draft tokens from ngram caches.
// inp: the tokens generated so far.
// draft: the token sequence to draft. Expected to initially contain the previously sampled token.
// n_draft: maximum number of tokens to add to draft.
// ngram_min/gram_max: the min/max size of the ngrams in nc_context and nc_dynamic.
// nc_context: ngram cache based on current context.
// nc_dynamic: ngram cache based on previous user generations.
// nc_static: ngram cache generated from a large text corpus, used for validation.
void llama_ngram_cache_draft(
std::vector<llama_token> & inp, std::vector<llama_token> & draft, int n_draft, int ngram_min, int ngram_max,
llama_ngram_cache & nc_context, llama_ngram_cache & nc_dynamic, llama_ngram_cache & nc_static);
// Save an ngram cache to a file.
// ngram_cache: the ngram cache to save.
// filename: the path under which to save the ngram cache.
void llama_ngram_cache_save(llama_ngram_cache & ngram_cache, std::string & filename);
// Load an ngram cache saved with llama_ngram_cache_save.
// filename: the path from which to load the ngram cache.
// returns: an ngram cache containing the information saved to filename.
llama_ngram_cache llama_ngram_cache_load(std::string & filename);
// Merge two ngram caches.
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
// ngram_cache_add: the ngram cache to add to ngram_cache_target.
void llama_ngram_cache_merge(llama_ngram_cache & ngram_cache_target, llama_ngram_cache & ngram_cache_add);

View File

@@ -1,6 +1,4 @@
#define LLAMA_API_INTERNAL
#include "sampling.h"
#include <random>
struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
struct llama_sampling_context * result = new llama_sampling_context();
@@ -15,14 +13,6 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
// will be empty (default) if there are parse errors
if (result->parsed_grammar.rules.empty()) {
fprintf(stderr, "%s: failed to parse grammar\n", __func__);
delete result;
return nullptr;
}
// Ensure that there is a "root" node.
if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
delete result;
return nullptr;
}
@@ -35,10 +25,6 @@ struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_
result->prev.resize(params.n_prev);
result->n_valid = 0;
llama_sampling_set_rng_seed(result, params.seed);
return result;
}
@@ -66,14 +52,6 @@ void llama_sampling_reset(llama_sampling_context * ctx) {
std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
ctx->cur.clear();
ctx->n_valid = 0;
}
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = std::random_device{}();
}
ctx->rng.seed(seed);
}
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
@@ -124,10 +102,15 @@ std::string llama_sampling_print(const llama_sampling_params & params) {
std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
for (auto s : params.samplers_sequence) {
switch (s) {
case 'k': result += "-> top_k "; break;
case 'f': result += "-> tfs_z "; break;
case 'y': result += "-> typical_p "; break;
case 'p': result += "-> top_p "; break;
case 'm': result += "-> min_p "; break;
case 't': result += "-> temp "; break;
default : break;
}
}
} else {
@@ -137,119 +120,30 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
return result;
}
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,
const llama_sampling_params & params,
llama_token_data_array & cur_p,
size_t min_keep) {
size_t & min_keep) {
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
const std::string & samplers_sequence = params.samplers_sequence;
for (auto sampler_type : samplers_sequence) {
switch (sampler_type) {
case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case llama_sampler_type::TEMPERATURE:
if (dynatemp_range > 0) {
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
} else {
llama_sample_temp(ctx_main, &cur_p, temp);
}
break;
for (auto s : samplers_sequence) {
switch (s){
case 'k': llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
case 'f': llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
default : break;
}
}
@@ -260,116 +154,35 @@ static llama_token llama_sampling_sample_impl(
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool is_resampling) {
const llama_sampling_params & params = ctx_sampling->params;
const float temp = params.temp;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
std::vector<float> original_logits;
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
if (ctx_sampling->grammar != NULL && !is_resampling) {
GGML_ASSERT(!original_logits.empty());
}
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.min_keep);
sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
//LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
}
}
ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
return id;
}
static llama_token_data_array llama_sampling_prepare_impl(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
bool is_resampling) { // Add a parameter to indicate if we are resampling
const llama_sampling_params & params = ctx_sampling->params;
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
const float temp = params.temp;
const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
const float penalty_repeat = params.penalty_repeat;
const float penalty_freq = params.penalty_freq;
const float penalty_present = params.penalty_present;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
auto & prev = ctx_sampling->prev;
auto & cur = ctx_sampling->cur;
llama_token id = 0;
// Get a pointer to the logits
float * logits = llama_get_logits_ith(ctx_main, idx);
if (ctx_sampling->grammar != NULL && !apply_grammar) {
GGML_ASSERT(original_logits != NULL);
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
// Declare original_logits at the beginning of the function scope
std::vector<float> original_logits;
if (!is_resampling) {
// Only make a copy of the original logits if we are not in the resampling phase, not sure if I actually have to do this.
original_logits = std::vector<float>(logits, logits + llama_n_vocab(llama_get_model(ctx_main)));
}
// apply params.logit_bias map
@@ -377,11 +190,6 @@ static llama_token_data_array llama_sampling_prepare_impl(
logits[it->first] += it->second;
}
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
@@ -390,6 +198,10 @@ static llama_token_data_array llama_sampling_prepare_impl(
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
if (ctx_cfg) {
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
}
// apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
@@ -410,12 +222,72 @@ static llama_token_data_array llama_sampling_prepare_impl(
}
}
// apply grammar checks before sampling logic
if (apply_grammar && ctx_sampling->grammar != NULL) {
// If we are in the resampling phase, apply grammar checks before sampling logic
if (is_resampling && ctx_sampling->grammar != NULL) {
llama_sample_grammar(ctx_main, &cur_p, ctx_sampling->grammar);
}
return cur_p;
if (temp < 0.0) {
// greedy sampling, with probs
llama_sample_softmax(ctx_main, &cur_p);
id = cur_p.data[0].id;
} else if (temp == 0.0) {
// greedy sampling, no probs
id = llama_sample_token_greedy(ctx_main, &cur_p);
} else {
if (mirostat == 1) {
const int mirostat_m = 100;
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
} else if (mirostat == 2) {
llama_sample_temp(ctx_main, &cur_p, temp);
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
} else {
// temperature sampling
size_t min_keep = std::max(1, params.n_probs);
sampler_queue(ctx_main, params, cur_p, min_keep);
id = llama_sample_token(ctx_main, &cur_p);
//{
// const int n_top = 10;
// LOG("top %d candidates:\n", n_top);
// for (int i = 0; i < n_top; i++) {
// const llama_token id = cur_p.data[i].id;
// (void)id; // To avoid a warning that id is unused when logging is disabled.
// LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
// }
//}
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
}
}
if (ctx_sampling->grammar != NULL && !is_resampling) {
// Create an array with a single token data element for the sampled id
llama_token_data single_token_data = {id, logits[id], 0.0f};
llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
// Apply grammar constraints to the single token
llama_sample_grammar(ctx_main, &single_token_data_array, ctx_sampling->grammar);
// Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
// If the token is not valid according to the grammar, perform resampling
if (!is_valid) {
LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
// Restore logits from the copy
std::copy(original_logits.begin(), original_logits.end(), logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
}
}
return id;
}
llama_token llama_sampling_sample(
@@ -424,17 +296,7 @@ llama_token llama_sampling_sample(
struct llama_context * ctx_cfg,
const int idx) {
// Call the implementation function with is_resampling set to false by default
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
}
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
const int idx,
bool apply_grammar,
std::vector<float> * original_logits) {
return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
}
void llama_sampling_accept(

View File

@@ -4,52 +4,29 @@
#include "grammar-parser.h"
#include <random>
#include <string>
#include <unordered_map>
#include <vector>
// sampler types
enum class llama_sampler_type : char {
TOP_K = 'k',
TOP_P = 'p',
MIN_P = 'm',
TFS_Z = 'f',
TYPICAL_P = 'y',
TEMPERATURE = 't'
};
#include <unordered_map>
// sampling parameters
typedef struct llama_sampling_params {
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
float dynatemp_range = 0.00f; // 0.0 = disabled
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.00f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = false; // consider newlines as a repeatable token
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampling_context
std::vector<llama_sampler_type> samplers_sequence = {
llama_sampler_type::TOP_K,
llama_sampler_type::TFS_Z,
llama_sampler_type::TYPICAL_P,
llama_sampler_type::TOP_P,
llama_sampler_type::MIN_P,
llama_sampler_type::TEMPERATURE
};
int32_t n_prev = 64; // number of previous tokens to remember
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
int32_t top_k = 40; // <= 0 to use vocab size
float top_p = 0.95f; // 1.0 = disabled
float min_p = 0.05f; // 0.0 = disabled
float tfs_z = 1.00f; // 1.0 = disabled
float typical_p = 1.00f; // 1.0 = disabled
float temp = 0.80f; // 1.0 = disabled
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
float penalty_repeat = 1.10f; // 1.0 = disabled
float penalty_freq = 0.00f; // 0.0 = disabled
float penalty_present = 0.00f; // 0.0 = disabled
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool penalize_nl = true; // consider newlines as a repeatable token
std::string samplers_sequence = "kfypmt"; // top_k, tail_free, typical_p, top_p, min_p, temp
std::string grammar; // optional BNF-like grammar to constrain sampling
@@ -81,9 +58,6 @@ struct llama_sampling_context {
// TODO: replace with ring-buffer
std::vector<llama_token> prev;
std::vector<llama_token_data> cur;
size_t n_valid; // Number of correct top tokens with correct probabilities.
std::mt19937 rng;
};
#include "common.h"
@@ -98,9 +72,6 @@ void llama_sampling_free(struct llama_sampling_context * ctx);
// - reset grammar
void llama_sampling_reset(llama_sampling_context * ctx);
// Set the sampler seed
void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed);
// Copy the sampler context
void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst);
@@ -116,11 +87,6 @@ std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call
@@ -142,16 +108,7 @@ llama_token llama_sampling_sample(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = -1);
// Prepares and adjusts the set of token candidates for sampling based on penalties, biases, and sampling parameters.
llama_token_data_array llama_sampling_prepare(
struct llama_sampling_context * ctx_sampling,
struct llama_context * ctx_main,
struct llama_context * ctx_cfg,
int idx = 0,
bool apply_grammar = true,
std::vector<float> * original_logits = nullptr);
int idx = 0);
void llama_sampling_accept(
struct llama_sampling_context * ctx_sampling,

View File

@@ -31,7 +31,7 @@ struct train_state * init_train_state() {
state->opt = new struct ggml_opt_context;
state->opt->ctx = NULL;
state->opt->params = ggml_opt_default_params(GGML_OPT_TYPE_ADAM);
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
state->opt->loss_after = 0.0f;
@@ -556,7 +556,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
std::string opt_type;
GGUF_GET_KEY(fctx, opt_type, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_OPTIMIZER_TYPE);
if (opt_type == LLM_KV_OPTIMIZER_TYPE_ADAM) {
opt->params.type = GGML_OPT_TYPE_ADAM;
opt->params.type = GGML_OPT_ADAM;
GGUF_GET_KEY(fctx, opt->adam.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS);
GGUF_GET_KEY(fctx, opt->adam.fx_prev, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS);
@@ -568,7 +568,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
copy_tensor_by_name(opt->adam.v, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS);
copy_tensor_by_name(opt->adam.pf, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES);
} else if (opt_type == LLM_KV_OPTIMIZER_TYPE_LBFGS) {
opt->params.type = GGML_OPT_TYPE_LBFGS;
opt->params.type = GGML_OPT_LBFGS;
GGUF_GET_KEY(fctx, opt->params.lbfgs.m, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT);
GGUF_GET_KEY(fctx, opt->lbfgs.fx_best, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS);
@@ -603,7 +603,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_set_val_bool(fctx, LLM_KV_OPTIMIZER_JUST_INITIALIZED, opt->just_initialized);
switch (opt->params.type) {
case GGML_OPT_TYPE_ADAM:
case GGML_OPT_ADAM:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM);
gguf_set_val_f32(fctx, LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, opt->adam.fx_best);
@@ -622,7 +622,7 @@ void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context *
gguf_add_tensor(fctx, opt->adam.pf);
}
} break;
case GGML_OPT_TYPE_LBFGS:
case GGML_OPT_LBFGS:
{
gguf_set_val_str(fctx, LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS);
gguf_set_val_u32(fctx, LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, opt->params.lbfgs.m);
@@ -1052,7 +1052,7 @@ struct train_params_common get_default_train_params_common() {
params.custom_n_ctx = false;
params.use_flash = false;
params.use_flash = true;
params.use_checkpointing = true;
params.sample_start = "";
@@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
*invalid_param = true;
return true;
}
if (llama_supports_gpu_offload()) {
params->n_gpu_layers = std::stoi(argv[i]);
} else {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params->n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
} else if (arg == "-h" || arg == "--help") {
params->print_usage = true;
return true;
@@ -1380,7 +1380,7 @@ bool consume_common_train_arg(
void finish_processing_train_args(struct train_params_common * params) {
if (params->escape) {
string_process_escapes(params->sample_start);
process_escapes(params->sample_start);
}
}

View File

@@ -1,327 +0,0 @@
#!/usr/bin/env python3
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert-hf-to-gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert-hf-to-gguf-update.py <huggingface_token>
#
# - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
#
import logging
import os
import pathlib
import re
import requests
import sys
import json
from hashlib import sha256
from enum import IntEnum, auto
from transformers import AutoTokenizer
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert-hf-to-gguf-update")
sess = requests.Session()
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
BPE = auto()
WPM = auto()
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
if not token.startswith("hf_"):
logger.info("Huggingface token seems invalid")
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
else:
logger.info("Usage: python convert-hf-to-gguf-update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
]
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"}
response = sess.get(url, headers=headers)
response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'wb') as f:
f.write(response.content)
logger.info(f"File {save_path} downloaded successfully")
def download_model(model):
name = model["name"]
repo = model["repo"]
tokt = model["tokt"]
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")
for file in files:
save_path = f"models/tokenizers/{name}/{file}"
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in models:
name = model["name"]
tokt = model["tokt"]
if tokt == TOKENIZER_TYPE.SPM:
continue
# Skip if the tokenizer folder does not exist or there are other download issues previously
if not os.path.exists(f"models/tokenizers/{name}"):
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
continue
# create the tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
src_ifs += f" res = \"{name}\"\n"
src_func = f"""
def get_vocab_base_pre(self, tokenizer) -> str:
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
# is specific for the BPE pre-tokenizer used by the model
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
# use in llama.cpp to implement the same pre-tokenizer
chktxt = {repr(chktxt)}
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
logger.debug(f"chktok: {{chktok}}")
logger.debug(f"chkhsh: {{chkhsh}}")
res = None
# NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
# or pull the latest version of the model from Huggingface
# don't edit the hashes manually!
{src_ifs}
if res is None:
logger.warning("\\n")
logger.warning("**************************************************************************************")
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
logger.warning("** There are 2 possible reasons for this:")
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
logger.warning("** - the pre-tokenization config has changed upstream")
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
logger.warning("**")
logger.warning(f"** chkhsh: {{chkhsh}}")
logger.warning("**************************************************************************************")
logger.warning("\\n")
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
logger.debug(f"tokenizer.ggml.pre: {{repr(res)}}")
logger.debug(f"chkhsh: {{chkhsh}}")
return res
"""
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
convert_py = convert_py_pth.read_text()
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
convert_py,
flags=re.DOTALL | re.MULTILINE,
)
convert_py_pth.write_text(convert_py)
logger.info("+++ convert-hf-to-gguf.py was updated")
# generate tests for each tokenizer model
tests = [
"ied 4 ½ months",
"Führer",
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
# "Cửa Việt", # llama-bpe fails on this
chktxt,
]
# write the tests to ./models/ggml-vocab-{name}.gguf.inp
# the format is:
#
# test0
# __ggml_vocab_test__
# test1
# __ggml_vocab_test__
# ...
#
# with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out
# for each test, write the resulting tokens on a separate line
for model in models:
name = model["name"]
tokt = model["tokt"]
# Skip if the tokenizer folder does not exist or there are other download issues previously
if not os.path.exists(f"models/tokenizers/{name}"):
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
continue
# create the tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
for text in tests:
f.write(f"{text}")
f.write("\n__ggml_vocab_test__\n")
with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f:
for text in tests:
res = tokenizer.encode(text, add_special_tokens=False)
for r in res:
f.write(f" {r}")
f.write("\n")
logger.info(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*")
# generate commands for creating vocab files
logger.info("\nRun the following commands to generate the vocab files for testing:\n")
for model in models:
name = model["name"]
print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") # noqa: NP100
logger.info("\n")

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,7 @@
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import struct
import sys
from enum import IntEnum
@@ -11,12 +9,11 @@ from pathlib import Path
import numpy as np
import os
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
logger = logging.getLogger("ggml-to-gguf")
class GGMLFormat(IntEnum):
GGML = 0
@@ -128,6 +125,7 @@ class Tensor:
self.start_offset = offset
self.len_bytes = n_bytes
offset += n_bytes
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
return offset - orig_offset
@@ -177,7 +175,7 @@ class GGMLModel:
offset += self.validate_header(data, offset)
hp = Hyperparameters()
offset += hp.load(data, offset)
logger.info(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
self.validate_conversion(hp.ftype)
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
offset += vocab.load(data, offset, hp.n_vocab)
@@ -217,12 +215,12 @@ class GGMLToGGUF:
if float(hp.n_head) / float(x) == gqa:
n_kv_head = x
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
logger.info(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
self.n_kv_head = n_kv_head
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
def save(self):
logger.info('* Preparing to save GGUF file')
print('* Preparing to save GGUF file')
gguf_writer = gguf.GGUFWriter(
self.cfg.output,
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
@@ -232,11 +230,11 @@ class GGMLToGGUF:
if self.special_vocab is not None:
self.special_vocab.add_to_gguf(gguf_writer)
self.add_tensors(gguf_writer)
logger.info(" gguf: write header")
print(" gguf: write header")
gguf_writer.write_header_to_file()
logger.info(" gguf: write metadata")
print(" gguf: write metadata")
gguf_writer.write_kv_data_to_file()
logger.info(" gguf: write tensors")
print(" gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
@@ -252,7 +250,7 @@ class GGMLToGGUF:
name = cfg.name if cfg.name is not None else cfg.input.name
except UnicodeDecodeError:
name = None
logger.info('* Adding model parameters and KV items')
print('* Adding model parameters and KV items')
if name is not None:
gguf_writer.add_name(name)
gguf_writer.add_description(desc)
@@ -283,13 +281,12 @@ class GGMLToGGUF:
def add_vocab(self, gguf_writer):
hp = self.model.hyperparameters
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_tokenizer_pre('default')
tokens = []
scores = []
toktypes = []
if self.vocab_override is not None:
vo = self.vocab_override
logger.info('* Adding vocab item(s)')
print('* Adding vocab item(s)')
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
tokens.append(vbytes)
scores.append(score)
@@ -301,7 +298,7 @@ class GGMLToGGUF:
if len(toktypes) > 0:
gguf_writer.add_token_types(toktypes)
return
logger.info(f'* Adding {hp.n_vocab} vocab item(s)')
print(f'* Adding {hp.n_vocab} vocab item(s)')
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
tt = 1 # Normal
@@ -336,7 +333,7 @@ class GGMLToGGUF:
def add_tensors(self, gguf_writer):
tensor_map = self.name_map
data = self.data
logger.info(f'* Adding {len(self.model.tensors)} tensor(s)')
print(f'* Adding {len(self.model.tensors)} tensor(s)')
for tensor in self.model.tensors:
name = str(tensor.name, 'UTF-8')
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
@@ -346,6 +343,7 @@ class GGMLToGGUF:
temp = tempdims[1]
tempdims[1] = tempdims[0]
tempdims[0] = temp
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
gguf_writer.add_tensor(
mapped_name,
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
@@ -373,11 +371,15 @@ def handle_metadata(cfg, hp):
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
else:
raise ValueError('Unable to load metadata')
vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir)
vocab_factory = convert.VocabFactory(vocab_path)
vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype.split(","), cfg.model_metadata_dir)
vocab = convert.load_vocab(
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
cfg.vocabtype)
# FIXME: Respect cfg.vocab_dir?
svocab = gguf.SpecialVocab(cfg.model_metadata_dir,
load_merges = cfg.vocabtype == 'bpe',
n_vocab = vocab.vocab_size)
convert.check_vocab_size(params, vocab)
return params, vocab, special_vocab
return (params, vocab, svocab)
def handle_args():
@@ -400,37 +402,35 @@ def handle_args():
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
parser.add_argument("--vocab-dir", type=Path,
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
parser.add_argument("--vocabtype", default="spm,hfft",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm,hfft)")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
return parser.parse_args()
def main():
cfg = handle_args()
logging.basicConfig(level=logging.DEBUG if cfg.verbose else logging.INFO)
logger.info(f'* Using config: {cfg}')
logger.warning('=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===')
print(f'* Using config: {cfg}')
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
logger.info('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
data = np.memmap(cfg.input, mode = 'r')
model = GGMLModel()
logger.info('* Scanning GGML input file')
print('* Scanning GGML input file')
offset = model.load(data, 0) # noqa
logger.info(f'* GGML model hyperparameters: {model.hyperparameters}')
print(f'* GGML model hyperparameters: {model.hyperparameters}')
vocab_override = None
params_override = None
special_vocab = None
if cfg.model_metadata_dir is not None:
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
logger.info('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
logger.info(f'* Overriding params: {params_override}')
logger.info(f'* Overriding vocab: {vocab_override}')
logger.info(f'* Special vocab: {special_vocab}')
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
print(f'* Overriding params: {params_override}')
print(f'* Overriding vocab: {vocab_override}')
print(f'* Special vocab: {special_vocab}')
else:
logger.warning('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
if model.file_format == GGMLFormat.GGML:
logger.info('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
converter = GGMLToGGUF(
model, data, cfg,
params_override = params_override,
@@ -438,7 +438,7 @@ def main():
special_vocab = special_vocab
)
converter.save()
logger.info(f'* Successful completion. Output saved to: {cfg.output}')
print(f'* Successful completion. Output saved to: {cfg.output}')
if __name__ == '__main__':

142
convert-lora-to-ggml.py Executable file
View File

@@ -0,0 +1,142 @@
#!/usr/bin/env python3
from __future__ import annotations
import json
import os
import struct
import sys
from typing import Any, BinaryIO, Sequence
import numpy as np
import torch
from pathlib import Path
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("i", params["r"]))
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
# but some models ship a float value instead
# let's convert to int, but fail if lossless conversion is not possible
assert (
int(params["lora_alpha"]) == params["lora_alpha"]
), "cannot convert float to int losslessly"
fout.write(struct.pack("i", int(params["lora_alpha"])))
def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None:
sname = name.encode("utf-8")
fout.write(
struct.pack(
"iii",
len(shape),
len(sname),
NUMPY_TYPE_TO_FTYPE[data_type.name],
)
)
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
fout.seek((fout.tell() + 31) & -32)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} <path> [arch]")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)")
sys.exit(1)
input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")
model = torch.load(input_model, map_location="cpu")
arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama"
if arch_name not in gguf.MODEL_ARCH_NAMES.values():
print(f"Error: unsupported architecture {arch_name}")
sys.exit(1)
arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)]
name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone
with open(input_json, "r") as f:
params = json.load(f)
if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA")
sys.exit(1)
if params["fan_in_fan_out"] is True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)
if params["bias"] is not None and params["bias"] != "none":
print("Error: param bias is not supported")
sys.exit(1)
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)
with open(output_path, "wb") as fout:
fout.truncate()
write_file_header(fout, params)
for k, v in model.items():
orig_k = k
if k.endswith(".default.weight"):
k = k.replace(".default.weight", ".weight")
if k in ["llama_proj.weight", "llama_proj.bias"]:
continue
if k.endswith("lora_A.weight"):
if v.dtype != torch.float16 and v.dtype != torch.float32:
v = v.float()
v = v.T
else:
v = v.float()
t = v.detach().numpy()
prefix = "base_model.model."
if k.startswith(prefix):
k = k[len(prefix) :]
lora_suffixes = (".lora_A.weight", ".lora_B.weight")
if k.endswith(lora_suffixes):
suffix = k[-len(lora_suffixes[0]):]
k = k[: -len(lora_suffixes[0])]
else:
print(f"Error: unrecognized tensor name {orig_k}")
sys.exit(1)
tname = name_map.get_name(k)
if tname is None:
print(f"Error: could not map tensor name {orig_k}")
print(" Note: the arch parameter must be specified if the model is not llama")
sys.exit(1)
if suffix == ".lora_A.weight":
tname += ".weight.loraA"
elif suffix == ".lora_B.weight":
tname += ".weight.loraB"
else:
assert False
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
write_tensor_header(fout, tname, t.shape, t.dtype)
t.tofile(fout)
print(f"Converted {input_json} and {input_model} to {output_path}")

133
convert-persimmon-to-gguf.py Executable file
View File

@@ -0,0 +1,133 @@
#!/usr/bin/env python3
import torch
import os
from pprint import pprint
import sys
import argparse
from pathlib import Path
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
def _flatten_dict(dct, tensors, prefix=None):
assert isinstance(dct, dict)
for key in dct.keys():
new_prefix = prefix + '.' + key if prefix is not None else key
if isinstance(dct[key], torch.Tensor):
tensors[new_prefix] = dct[key]
elif isinstance(dct[key], dict):
_flatten_dict(dct[key], tensors, new_prefix)
else:
raise ValueError(type(dct[key]))
return None
def _get_sentencepiece_tokenizer_info(dir_model: Path):
tokenizer_path = dir_model / 'adept_vocab.model'
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
tokenizer = SentencePieceProcessor(str(tokenizer_path))
print('gguf: adding tokens')
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
for i in range(tokenizer.vocab_size()):
text: bytes
score: float
piece = tokenizer.id_to_piece(i)
text = piece.encode("utf-8")
score = tokenizer.get_score(i)
toktype = 1
if tokenizer.is_unknown(i):
toktype = 2
if tokenizer.is_control(i):
toktype = 3
if tokenizer.is_unused(i):
toktype = 5
if tokenizer.is_byte(i):
toktype = 6
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
pass
return tokens, scores, toktypes
def main():
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
args = parser.parse_args()
sys.path.append(str(args.adept_inference_dir))
persimmon_model = torch.load(args.ckpt_path)
hparams = persimmon_model['args']
pprint(hparams)
tensors = {}
_flatten_dict(persimmon_model['model'], tensors, None)
arch = gguf.MODEL_ARCH.PERSIMMON
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
block_count = hparams.num_layers
head_count = hparams.num_attention_heads
head_count_kv = head_count
ctx_length = hparams.seq_length
hidden_size = hparams.hidden_size
gguf_writer.add_name('persimmon-8b-chat')
gguf_writer.add_context_length(ctx_length)
gguf_writer.add_embedding_length(hidden_size)
gguf_writer.add_block_count(block_count)
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
gguf_writer.add_head_count(head_count)
gguf_writer.add_head_count_kv(head_count_kv)
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
gguf_writer.add_tokenizer_model('llama')
gguf_writer.add_token_list(tokens)
gguf_writer.add_token_scores(scores)
gguf_writer.add_token_types(toktypes)
gguf_writer.add_bos_token_id(71013)
gguf_writer.add_eos_token_id(71013)
tensor_map = gguf.get_tensor_name_map(arch, block_count)
print(tensor_map)
for name in tensors.keys():
data = tensors[name]
if name.endswith(".self_attention.rotary_emb.inv_freq"):
continue
old_dtype = data.dtype
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
data = data.to(torch.float32).squeeze().numpy()
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
if new_name is None:
print("Can not map tensor '" + name + "'")
sys.exit()
n_dims = len(data.shape)
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
gguf_writer.add_tensor(new_name, data)
print("gguf: write header")
gguf_writer.write_header_to_file()
print("gguf: write metadata")
gguf_writer.write_kv_data_to_file()
print("gguf: write tensors")
gguf_writer.write_tensors_to_file()
gguf_writer.close()
print(f"gguf: model successfully exported to '{args.outfile}'")
print("")
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

View File

@@ -23,7 +23,7 @@ Install BLIS:
sudo make install
```
We recommend using openmp since it's easier to modify the cores being used.
We recommend using openmp since it's easier to modify the cores been used.
### llama.cpp compilation

View File

@@ -1,119 +0,0 @@
## Add a new model architecture to `llama.cpp`
Adding a model requires few steps:
1. Convert the model to GGUF
2. Define the model architecture in `llama.cpp`
3. Build the GGML graph implementation
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](../examples/main)
- [imatrix](../examples/imatrix)
- [quantize](../examples/quantize)
- [server](../examples/server)
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
The required steps to implement for an HF model are:
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
```python
@Model.register("MyModelForCausalLM")
class MyModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
```
2. Define the layout of the GGUF tensors in [constants.py](../gguf-py/gguf/constants.py)
Add an enum entry in `MODEL_ARCH`, the model human friendly name in `MODEL_ARCH_NAMES` and the GGUF tensor names in `MODEL_TENSORS`.
Example for `falcon` model:
```python
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
]
```
3. Map the original tensor names to the standardize equivalent in GGUF
As a general rule, before adding a new tensor name to GGUF, be sure the equivalent naming does not already exist.
Once you have found the GGUF tensor name equivalent, add it to the [tensor_mapping.py](../gguf-py/gguf/tensor_mapping.py) file.
If the tensor name is part of a repetitive layer/block, the key word `bid` substitutes it.
Example for the normalization tensor in attention layers:
```python
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
# Attention norm
MODEL_TENSOR.ATTN_NORM: (
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
"transformer.blocks.{bid}.norm_1", # mpt
...
)
}
```
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
- `Model#set_gguf_parameters`
- `Model#set_vocab`
- `Model#write_tensors`
NOTE: Tensor names must end with `.weight` suffix, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementation like `build_llama`, `build_dbrx` or `build_bert`.
When implementing a new graph, please note that the underlying `ggml` backends might not support them all, support for missing backend operations can be added in another PR.
Note: to debug the inference graph: you can use [eval-callback](../examples/eval-callback).
## GGUF specification
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
## Resources
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948

View File

@@ -1,104 +0,0 @@
# Debugging Tests Tips
## How to run & execute or debug a specific test without anything else to keep the feedback loop short?
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
For example, running the following command will output an interactive list from which you can select a test. It takes this form:
`debug-test.sh [OPTION]... <test_regex> <test_number>`
It will then build & run in the debugger for you.
To just execute a test and get back a PASS or FAIL message run:
```bash
./scripts/debug-test.sh test-tokenizer
```
To test in GDB use the `-g` flag to enable gdb test mode.
```bash
./scripts/debug-test.sh -g test-tokenizer
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
>>> b main
```
To speed up the testing loop, if you know your test number you can just run it similar to below:
```bash
./scripts/debug-test.sh test 23
```
For further reference use `debug-test.sh -h` to print help.
&nbsp;
### How does the script work?
If you want to be able to use the concepts contained in the script separately, the important ones are briefly outlined below.
#### Step 1: Reset and Setup folder context
From base of this repository, let's create `build-ci-debug` as our build context.
```bash
rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
```
#### Step 2: Setup Build Environment and Compile Test Binaries
Setup and trigger a build under debug mode. You may adapt the arguments as needed, but in this case these are sane defaults.
```bash
cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON ..
make -j
```
#### Step 3: Find all tests available that matches REGEX
The output of this command will give you the command & arguments needed to run GDB.
* `-R test-tokenizer` : looks for all the test files named `test-tokenizer*` (R=Regex)
* `-N` : "show-only" disables test execution & shows test commands that you can feed to GDB.
* `-V` : Verbose Mode
```bash
ctest -R "test-tokenizer" -V -N
```
This may return output similar to below (focusing on key lines to pay attention to):
```bash
...
1: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
1: Working Directory: .
Labels: main
Test #1: test-tokenizer-0-llama-spm
...
4: Test command: ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-falcon.gguf"
4: Working Directory: .
Labels: main
Test #4: test-tokenizer-0-falcon
...
```
#### Step 4: Identify Test Command for Debugging
So for test #1 above we can tell these two pieces of relevant information:
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
#### Step 5: Run GDB on test command
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
```bash
gdb --args ${Test Binary} ${Test GGUF Model}
```
Example:
```bash
gdb --args ~/llama.cpp/build-ci-debug/bin/test-tokenizer-0 "~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf"
```

View File

@@ -1,7 +1,7 @@
# Token generation performance troubleshooting
## Verifying that the model is running on the GPU with CUDA
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#CUDA), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
## Verifying that the model is running on the GPU with cuBLAS
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
```shell
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
```

View File

@@ -19,37 +19,28 @@ else()
add_subdirectory(benchmark)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(finetune)
add_subdirectory(gritlm)
add_subdirectory(gguf-split)
add_subdirectory(infill)
add_subdirectory(llama-bench)
add_subdirectory(llava)
if (LLAMA_SYCL)
add_subdirectory(sycl)
endif()
add_subdirectory(main)
add_subdirectory(tokenize)
add_subdirectory(parallel)
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(retrieval)
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(passkey)
add_subdirectory(speculative)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(gguf)
add_subdirectory(train-text-from-scratch)
add_subdirectory(imatrix)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
add_subdirectory(export-lora)
if (LLAMA_RPC)
add_subdirectory(rpc)
endif()
endif()

View File

@@ -1533,28 +1533,27 @@ int main(int argc, char ** argv) {
int n_past = 0;
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
ggml_cgraph gf = {};
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, gf, tokens_input, n_tokens, n_past, n_batch);
struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch);
// struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits);
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
ggml_build_forward_expand(&gf, e);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
float error_before_opt = ggml_get_f32_1d(e, 0);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_TYPE_LBFGS);
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
opt_params_lbfgs.print_forward_graph = false;
opt_params_lbfgs.print_backward_graph = false;
opt_params_lbfgs.lbfgs.n_iter = 16;
ggml_opt(ctx0, opt_params_lbfgs, e);
//
ggml_build_forward_expand(gf, e);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
ggml_build_forward_expand(&gf, e);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
float error_after_opt = ggml_get_f32_1d(e, 0);
@@ -1601,14 +1600,13 @@ int main(int argc, char ** argv) {
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = NULL;
gf = ggml_new_graph_custom(ctx0, LLAMA_TRAIN_MAX_NODES, true);
ggml_cgraph gf = {};
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, gf, tokens_input, sample_ctx, n_past);
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(gf, logits);
ggml_graph_compute_helper(work_buffer, gf, /*n_threads*/ 1);
ggml_build_forward_expand(&gf, logits);
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);

View File

@@ -10,16 +10,16 @@ There are 2 modes of operation:
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
```bash
./batched-bench MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 2048 512 0 99
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 2048 512 1 99
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99
# custom set of batches
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 512 512 0 999 0 128,256,512 128,256 1,2,4,8,16,32
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32
```
## Sample results

View File

@@ -32,18 +32,16 @@ int main(int argc, char ** argv) {
gpt_params params;
if (argc == 1 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH [N_KV_MAX] [N_BATCH] [N_UBATCH] [FATTN] [IS_PP_SHARED] [NGL] <PP> <TG> <PL>\n" , argv[0]);
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
printf(" example: %s ggml-model-f16.gguf 2048 2048 512 0 999 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
return 1 ;
}
int n_kv_max = 2048;
int n_batch = 2048;
int n_ubatch = 512;
bool flash_attn = false;
int is_pp_shared = 0;
int n_gpu_layers = 0;
int mmq = 0;
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
std::vector<int> n_tg = { 128, 256, };
@@ -59,50 +57,38 @@ int main(int argc, char ** argv) {
}
if (argc >= 4) {
n_batch = std::atoi(argv[3]);
is_pp_shared = std::atoi(argv[3]);
}
if (argc >= 5) {
n_ubatch = std::atoi(argv[4]);
n_gpu_layers = std::atoi(argv[4]);
}
if (argc >= 6) {
flash_attn = std::atoi(argv[5]);
mmq = std::atoi(argv[5]);
}
if (argc >= 7) {
is_pp_shared = std::atoi(argv[6]);
n_pp = parse_list(argv[6]);
}
if (argc >= 8) {
n_gpu_layers = std::atoi(argv[7]);
n_tg = parse_list(argv[7]);
}
if (argc >= 9) {
n_pp = parse_list(argv[8]);
}
if (argc >= 10) {
n_tg = parse_list(argv[9]);
}
if (argc >= 11) {
n_pl = parse_list(argv[10]);
n_pl = parse_list(argv[8]);
}
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
llama_backend_init(params.numa);
// initialize the model
llama_model_params model_params = llama_model_default_params();
const std::vector<float> t_split(llama_max_devices(), 0.0f);
model_params.n_gpu_layers = n_gpu_layers;
model_params.tensor_split = t_split.data();
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
@@ -113,18 +99,14 @@ int main(int argc, char ** argv) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = n_batch;
ctx_params.n_ubatch = n_ubatch;
ctx_params.flash_attn = flash_attn;
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_max;
ctx_params.n_batch = 512;
ctx_params.mul_mat_q = mmq;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
// ensure enough sequences are available
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (ctx == NULL) {
@@ -155,8 +137,6 @@ int main(int argc, char ** argv) {
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
return false;
}
llama_synchronize(ctx);
}
return true;
@@ -175,7 +155,7 @@ int main(int argc, char ** argv) {
}
LOG_TEE("\n");
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, n_batch, n_ubatch, flash_attn, is_pp_shared, n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
LOG_TEE("\n");
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
@@ -196,10 +176,10 @@ int main(int argc, char ** argv) {
llama_batch_clear(batch);
for (int i = 0; i < pp; ++i) {
for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) {
llama_batch_add(batch, 0, i, { j }, false);
}
const int n_tokens = is_pp_shared ? pp : pl*pp;
for (int i = 0; i < n_tokens; ++i) {
llama_batch_add(batch, 0, i, { 0 }, false);
}
batch.logits[batch.n_tokens - 1] = true;
@@ -214,7 +194,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
}
}

View File

@@ -17,7 +17,7 @@ let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(argu
let n_len: Int = 32
// init LLM
llama_backend_init()
llama_backend_init(false)
defer {
llama_backend_free()
}
@@ -153,7 +153,7 @@ while n_cur <= n_len {
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of stream? -> mark the stream as finished
if llama_token_is_eog(model, new_token_id) || n_cur == n_len {
if new_token_id == llama_token_eos(model) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {
@@ -229,7 +229,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), false)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
if nTokens < 0 {
let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount)
@@ -237,8 +237,7 @@ private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String
model,
token,
&result,
Int32(result.count),
false
Int32(result.count)
)
assert(check == actualTokensCount)
} else {

View File

@@ -48,12 +48,9 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is";
}
string_process_escapes(params.prompt);
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
llama_backend_init(params.numa);
// initialize the model
@@ -80,9 +77,8 @@ int main(int argc, char ** argv) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.seed = 1234;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_len, n_parallel);
ctx_params.n_seq_max = n_parallel;
ctx_params.n_threads = params.n_threads;
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
@@ -95,7 +91,7 @@ int main(int argc, char ** argv) {
const int n_ctx = llama_n_ctx(ctx);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
// make sure the KV cache is big enough to hold all the prompt and generated tokens
if (n_kv_req > n_ctx) {
@@ -135,7 +131,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
for (int32_t i = 1; i < n_parallel; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
}
if (n_parallel > 1) {
@@ -191,8 +187,8 @@ int main(int argc, char ** argv) {
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
// is it an end of generation? -> mark the stream as finished
if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
// is it an end of stream? -> mark the stream as finished
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
i_batch[i] = -1;
LOG_TEE("\n");
if (n_parallel > 1) {

View File

@@ -47,7 +47,7 @@ struct beam_search_callback_data {
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
// For example, eob can be flagged due to maximum token length, stop words, etc.
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
return n_tokens && llama_token_is_eog(llama_get_model(callback_data.ctx), tokens[n_tokens-1]);
return n_tokens && tokens[n_tokens-1] == llama_token_eos(llama_get_model(callback_data.ctx));
}
// Function matching type llama_beam_search_callback_fn_t.
@@ -119,8 +119,7 @@ int main(int argc, char ** argv)
// Init LLM :
//---------------------------------
llama_backend_init();
llama_numa_init(params.numa);
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;

View File

@@ -189,10 +189,12 @@ int main(int argc, char ** argv) {
int32_t nelements = sizex*sizey;
std::vector<int64_t> hist_cur(1 << 4, 0);
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data());
// Set up a the compute graph
// printf("Creating new tensor q31\n");
@@ -205,7 +207,7 @@ int main(int argc, char ** argv) {
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data());
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);

View File

@@ -2,7 +2,7 @@
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
To convert the model first download the models from the [llama2.c](https://github.com/karpathy/llama2.c) repository:
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
`$ make -j`
@@ -21,8 +21,6 @@ An example command using a model from [karpathy/tinyllamas](https://huggingface.
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
Note: The vocabulary for `stories260K.bin` should be its own tokenizer `tok512.bin` found in [karpathy/tinyllamas/stories260K](https://huggingface.co/karpathy/tinyllamas/tree/main/stories260K).
Now you can use the model with a command like:
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`

View File

@@ -1,7 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include "log.h"
#include <unordered_map>
#include <vector>
@@ -79,101 +78,111 @@ typedef struct {
struct TransformerWeights {
// token embedding table
std::vector<float> token_embedding_table; // (vocab_size, dim)
float* token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
std::vector<float> rms_att_weight; // (layer, dim) rmsnorm weights
std::vector<float> rms_ffn_weight; // (layer, dim)
float* rms_att_weight; // (layer, dim) rmsnorm weights
float* rms_ffn_weight; // (layer, dim)
// weights for matmuls
std::vector<float> wq; // (layer, dim, dim)
std::vector<float> wk; // (layer, dim, dim)
std::vector<float> wv; // (layer, dim, dim)
std::vector<float> wo; // (layer, dim, dim)
float* wq; // (layer, dim, dim)
float* wk; // (layer, dim, dim)
float* wv; // (layer, dim, dim)
float* wo; // (layer, dim, dim)
// weights for ffn
std::vector<float> w1; // (layer, hidden_dim, dim)
std::vector<float> w2; // (layer, dim, hidden_dim)
std::vector<float> w3; // (layer, hidden_dim, dim)
float* w1; // (layer, hidden_dim, dim)
float* w2; // (layer, dim, hidden_dim)
float* w3; // (layer, hidden_dim, dim)
// final rmsnorm
std::vector<float> rms_final_weight; // (dim,)
float* rms_final_weight; // (dim,)
// freq_cis for RoPE relatively positional embeddings
// std::vector<float> freq_cis_real; // (seq_len, dim/2)
// std::vector<float> freq_cis_imag; // (seq_len, dim/2)
// float* freq_cis_real; // (seq_len, dim/2)
// float* freq_cis_imag; // (seq_len, dim/2)
// (optional) classifier weights for the logits, on the last layer
std::vector<float> wcls;
float* wcls;
~TransformerWeights() {
delete[] token_embedding_table;
delete[] rms_att_weight;
delete[] rms_ffn_weight;
delete[] wq;
delete[] wk;
delete[] wv;
delete[] wo;
delete[] w1;
delete[] w2;
delete[] w3;
delete[] rms_final_weight;
delete[] wcls;
}
};
static void alloc_weights(TransformerWeights * w, const Config * p, bool shared_weights) {
const int n_multiqueries = p->n_kv_heads <= 0 || p->n_kv_heads >= p->n_heads ? 1 : p->n_heads / p->n_kv_heads;
try {
w->token_embedding_table.resize(p->vocab_size * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
// we calloc instead of malloc to keep valgrind happy
w->token_embedding_table = new float[p->vocab_size * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
w->rms_att_weight.resize(p->n_layers * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
w->rms_att_weight = new float[p->n_layers * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
w->rms_ffn_weight.resize(p->n_layers * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
w->wq.resize(p->n_layers * p->dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wq = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wk.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wk = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wv.resize(p->n_layers * p->dim * p->dim / n_multiqueries);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim / n_multiqueries, p->n_layers * p->dim * p->dim / n_multiqueries);
w->wv = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wo.resize(p->n_layers * p->dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->wo = new float[p->n_layers * p->dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
w->w1.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w2.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
w->w3.resize(p->n_layers * p->hidden_dim * p->dim);
LOG("%s: Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
w->rms_final_weight.resize(p->dim);
LOG("%s: Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
w->rms_final_weight = new float[p->dim]();
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
if (shared_weights) {
w->wcls = {};
} else {
w->wcls.resize(p->vocab_size * p->dim);
LOG("%s: Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
}
}
catch (std::length_error &) {
die("Invalid configuration. Failed to allocate memory for weights");
if (shared_weights) {
w->wcls = NULL;
} else {
w->wcls = new float[p->vocab_size * p->dim]();
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
}
}
static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FILE * f, bool shared_weights) {
if (fread(w->token_embedding_table.data(), sizeof(float), w->token_embedding_table.size(), f) != w->token_embedding_table.size()) return 1;
if (fread(w->rms_att_weight.data(), sizeof(float), w->rms_att_weight.size(), f) != w->rms_att_weight.size()) return 1;
if (fread(w->wq.data(), sizeof(float), w->wq.size(), f) != w->wq.size()) return 1;
if (fread(w->wk.data(), sizeof(float), w->wk.size(), f) != w->wk.size()) return 1;
if (fread(w->wv.data(), sizeof(float), w->wv.size(), f) != w->wv.size()) return 1;
if (fread(w->wo.data(), sizeof(float), w->wo.size(), f) != w->wo.size()) return 1;
if (fread(w->rms_ffn_weight.data(), sizeof(float), w->rms_ffn_weight.size(), f) != w->rms_ffn_weight.size()) return 1;
if (fread(w->w1.data(), sizeof(float), w->w1.size(), f) != w->w1.size()) return 1;
if (fread(w->w2.data(), sizeof(float), w->w2.size(), f) != w->w2.size()) return 1;
if (fread(w->w3.data(), sizeof(float), w->w3.size(), f) != w->w3.size()) return 1;
if (fread(w->rms_final_weight.data(), sizeof(float), w->rms_final_weight.size(), f) != w->rms_final_weight.size()) return 1;
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
// Skip freq_cis_real & freq_cis_imag
int head_size = p->dim / p->n_heads;
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
if (!shared_weights && fread(w->wcls.data(), sizeof(float), w->wcls.size(), f) != w->wcls.size()) return 1;
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
// Check we didn't forget to read anything
auto curr = ftell(f);
fseek(f, 0, SEEK_END);
auto end = ftell(f);
if (curr != end) {
LOG("%s: Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", __func__, curr, end);
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
return 1;
}
@@ -181,20 +190,20 @@ static int checkpoint_init_weights(TransformerWeights * w, const Config * p, FIL
}
static void print_sample_weights(TransformerWeights *w){
LOG("----- Quick print of first of the weight vales of all the variables\n");
LOG("%f\n", w->token_embedding_table[0]);
LOG("%f\n", w->rms_att_weight[0]);
LOG("%f\n", w->rms_ffn_weight[0]);
printf("----- Quick print of first of the weight vales of all the variables\n");
printf("%f\n", w->token_embedding_table[0]);
printf("%f\n", w->rms_att_weight[0]);
printf("%f\n", w->rms_ffn_weight[0]);
LOG("%f\n", w->wq[0]);
LOG("%f\n", w->wk[0]);
LOG("%f\n", w->wv[0]);
LOG("%f\n", w->wo[0]);
LOG("%f\n", w->w1[0]);
LOG("%f\n", w->w2[0]);
LOG("%f\n", w->w3[0]);
LOG("%f\n", w->rms_att_weight[0]);
if (!w->wcls.empty()) LOG("%f\n", w->wcls[0]);
printf("%f\n", w->wq[0]);
printf("%f\n", w->wk[0]);
printf("%f\n", w->wv[0]);
printf("%f\n", w->wo[0]);
printf("%f\n", w->w1[0]);
printf("%f\n", w->w2[0]);
printf("%f\n", w->w3[0]);
printf("%f\n", w->rms_att_weight[0]);
if (w->wcls) printf("%f\n", w->wcls[0]);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -216,16 +225,14 @@ struct llama_vocab {
};
struct my_llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_ff = 11008;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_head_kv = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_ff = 11008;
uint32_t n_mult = 4;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams));
}
@@ -318,30 +325,14 @@ struct train_params {
};
static void print_params(struct my_llama_hparams * params) {
LOG("%s: n_vocab: %u\n", __func__, params->n_vocab);
LOG("%s: n_ctx: %u\n", __func__, params->n_ctx);
LOG("%s: n_embd: %u\n", __func__, params->n_embd);
LOG("%s: n_mult: %u\n", __func__, params->n_mult);
LOG("%s: n_head: %u\n", __func__, params->n_head);
LOG("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
LOG("%s: n_ff: %u\n", __func__, params->n_ff);
LOG("%s: n_layer: %u\n", __func__, params->n_layer);
LOG("%s: n_rot: %u\n", __func__, params->n_rot);
}
static void print_tensor_info(const struct ggml_context * ctx) {
for (auto t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
LOG("%s: Allocating ", __func__);
int64_t total = 1;
int i = 0;
for (; i < ggml_n_dims(t); ++i) {
if (i > 0) LOG("x ");
LOG("[%" PRId64 "] ", t->ne[i]);
total *= t->ne[i];
}
if (i > 1) LOG("= [%" PRId64 "] ", total);
LOG("float space for %s\n", ggml_get_name(t));
}
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
printf("%s: n_embd: %d\n", __func__, params->n_embd);
printf("%s: n_mult: %d\n", __func__, params->n_mult);
printf("%s: n_head: %d\n", __func__, params->n_head);
printf("%s: n_ff: %d\n", __func__, params->n_ff);
printf("%s: n_layer: %d\n", __func__, params->n_layer);
printf("%s: n_rot: %d\n", __func__, params->n_rot);
}
static void init_model(struct my_llama_model * model) {
@@ -351,8 +342,6 @@ static void init_model(struct my_llama_model * model) {
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
const uint32_t n_multiqueries = hparams.n_head_kv <= 0 || hparams.n_head_kv >= hparams.n_head ? 1 : hparams.n_head / hparams.n_head_kv;
const uint32_t n_ff = hparams.n_ff;
struct ggml_context * ctx = model->ctx;
@@ -361,8 +350,25 @@ static void init_model(struct my_llama_model * model) {
model->train_tokens = 0;
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
// printing the per-layer allocations here so we dont print in the for loop.
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
ggml_set_name(model->norm, "norm.weight");
@@ -377,8 +383,8 @@ static void init_model(struct my_llama_model * model) {
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd / n_multiqueries);
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
@@ -400,8 +406,6 @@ static void init_model(struct my_llama_model * model) {
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
}
print_tensor_info(ctx);
}
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
@@ -417,9 +421,9 @@ static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
static void print_row(struct ggml_tensor * probs, int i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
LOG(" %f", p);
printf(" %f", p);
}
LOG("\n");
printf("\n");
}
static void print_matrix(struct ggml_tensor * probs) {
@@ -427,12 +431,33 @@ static void print_matrix(struct ggml_tensor * probs) {
for (int i = 0; i < probs->ne[1]; ++i) {
for (int k = 0; k < probs->ne[0]; ++k) {
float p = get_f32_2d(probs, k, i);
LOG(" %.2f", p);
printf(" %.2f", p);
}
LOG("\n");
printf("\n");
}
}
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
@@ -524,9 +549,8 @@ static std::string llama_escape_whitespaces(const std::string & text) {
return out.str();
}
static void load_vocab(const char * filename, const Config * config, struct llama_vocab * vocab) {
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
if (is_ggml_file(filename)) {
LOG("%s: Loading vocabulary from gguf file %s\n", __func__, filename);
struct ggml_context * ctx_data = NULL;
struct gguf_init_params params = {
@@ -554,9 +578,6 @@ static void load_vocab(const char * filename, const Config * config, struct llam
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
if (n_vocab != static_cast<uint32_t>(config->vocab_size)) {
die_fmt("vocab size mismatch: (gguf) %u != (llama2c) %d", n_vocab, config->vocab_size);
}
vocab->id_to_token.resize(n_vocab);
@@ -574,7 +595,7 @@ static void load_vocab(const char * filename, const Config * config, struct llam
gguf_free(ctx);
} else {
// assume llama2.c vocabulary
LOG("%s: Assuming llama2.c vocabulary since %s is not a gguf file\n", __func__, filename);
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
llama_file file(filename, "rb");
if (!file.fp) {
die_fmt("%s: %s", strerror(errno), filename);
@@ -617,15 +638,38 @@ static void load_vocab(const char * filename, const Config * config, struct llam
}
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
int size = 1;
for (int dim = 0; dim < ggml_n_dims(gg_weights); ++dim) {
size *= gg_weights->ne[dim];
}
for (int ct = 0; ct < size; ++ct) {
int64_t i0 = 0; int64_t i1 = 0;
int64_t i2 = 0; int64_t i3 = 0;
ggml_unravel_index(gg_weights, ct, &i0, &i1, &i2, &i3);
ggml_set_f32_nd(gg_weights, i0, i1, i2, i3, karpathy_weights[ct]);
int ct;
switch (ggml_n_dims(gg_weights)) {
case 1:
ct = 0;
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
*ptr = karpathy_weights[ct];
ct++;
}
break;
case 2:
ct = 0;
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
*ptr = karpathy_weights[ct];
ct++;
}
}
break;
case 3:
ct = 0;
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
*ptr = karpathy_weights[ct];
ct++;
}
}
}
break;
}
}
@@ -635,18 +679,16 @@ static void save_as_llama_model(
// convert AK weights into GG weights one by one.
// w->token_embedding_table -> model->tok_embeddings
// float* -> struct ggml_tensor
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table.data());
convert_weights_ak_to_gg(model->output, !w->wcls.empty() ? w->wcls.data() : w->token_embedding_table.data());
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
convert_weights_ak_to_gg(model->norm, w->rms_final_weight.data());
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
//print_row(model->norm, 0);
// for rms-att-weight
int row_length = model->hparams.n_embd;
int n_ff = model->hparams.n_ff;
const uint32_t n_multiqueries = model->hparams.n_head_kv <= 0 || model->hparams.n_head_kv >= model->hparams.n_head ? 1 : model->hparams.n_head / model->hparams.n_head_kv;
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
auto & layer = model->layers[i];
// 1d
@@ -655,10 +697,9 @@ static void save_as_llama_model(
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
// from 3d matrix layer x dim x dim to 2d matrix dim x dim / n_multiqueries
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length/n_multiqueries]);
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
@@ -695,8 +736,8 @@ static void save_as_llama_model(
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, model->hparams.n_head_kv);
// n_head_kv is optional, default to n_head
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
@@ -748,12 +789,12 @@ static void save_as_llama_model(
static struct train_params get_default_train_params() {
struct train_params params;
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
params.fn_llama2c_output_model = "ak_llama_model.bin";
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.fn_train_data = "shakespeare.txt";
params.fn_checkpoint_in = "checkpoint.bin";
params.fn_checkpoint_out = "checkpoint.bin";
params.fn_model_out = "ggml-checkpoint-f32.bin";
params.seed = -1;
@@ -774,7 +815,7 @@ static struct train_params get_default_train_params() {
params.samples_start_after_nl = false;
params.use_adam = true;
params.use_flash = false;
params.use_flash = true;
params.use_scratch = true;
// only adam
@@ -788,8 +829,8 @@ static struct train_params get_default_train_params() {
params.adam_alpha = 1e-3f;
params.adam_decay = 1e-3f;
params.mem_model_gb = 2;
params.mem_compute_gb = 24;
params.mem_model_gb = 2;
params.mem_compute_gb = 24;
params.mem_compute0_gb = 8;
params.mem_compute1_gb = 2;
@@ -875,30 +916,19 @@ int main(int argc, char ** argv) {
if (!params_parse(argc, argv, &params)) {
return 1;
}
log_set_target(stdout);
Config config;
TransformerWeights weights = {};
{
LOG("%s: Loading llama2c model from %s\n", __func__, params.fn_llama2c_model);
FILE * file = fopen(params.fn_llama2c_model, "rb");
if (!file) {
LOG("%s: Unable to open the checkpoint file %s!\n", __func__, params.fn_llama2c_model);
return 1;
}
FILE *file = fopen(params.fn_llama2c_model, "rb");
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
// read in the config header
if (fread(&config, sizeof(Config), 1, file) != 1) {
LOG("%s: Unable to read llama2c config from %s!\n",__func__,params.fn_llama2c_model);
return 1;
}
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
auto shared_weights = config.vocab_size > 0;
config.vocab_size = abs(config.vocab_size);
// read in the Transformer weights
alloc_weights(&weights, &config, shared_weights);
if (checkpoint_init_weights(&weights, &config, file, shared_weights)) {
LOG("%s: Unable to initialize transformer weights from %s!",__func__,params.fn_llama2c_model);
return 1;
}
malloc_weights(&weights, &config, shared_weights);
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
fclose(file);
}
@@ -906,18 +936,15 @@ int main(int argc, char ** argv) {
load_vocab(params.fn_vocab_model, &config, &vocab);
struct my_llama_model model;
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim;
model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_head_kv = config.n_kv_heads;
model.hparams.n_layer = config.n_layers; //params.n_layer;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
model.hparams.n_ctx = params.n_ctx;
model.hparams.n_embd = config.dim; //params.n_embd;
model.hparams.n_ff = config.hidden_dim;
model.hparams.n_mult = 32;//params.n_mult;
model.hparams.n_head = config.n_heads; //params.n_head;
model.hparams.n_layer = config.n_layers; //params.n_layer;
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
print_params(&model.hparams);
struct ggml_init_params lcparams;
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
lcparams.mem_buffer = NULL;
@@ -929,7 +956,7 @@ int main(int argc, char ** argv) {
model.name = basename(params.fn_llama2c_model);
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
LOG("%s: Saving llama.c model file %s in ggml format at %s\n", __func__, params.fn_llama2c_model, params.fn_llama2c_output_model);
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
ggml_free(model.ctx);
return 0;

View File

@@ -7,58 +7,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static std::vector<std::string> split_lines(const std::string & s) {
std::string line;
std::vector<std::string> lines;
std::stringstream ss(s);
while (std::getline(ss, line)) {
lines.push_back(line);
}
return lines;
}
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
}
}
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
fprintf(stderr, "%s : failed to decode\n", __func__);
}
for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}
// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}
float * out = output + batch.seq_id[i][0] * n_embd;
//TODO: I would also add a parameter here to enable normalization or not.
/*fprintf(stdout, "unnormalized_embedding:");
for (int hh = 0; hh < n_embd; hh++) {
fprintf(stdout, "%9.6f ", embd[hh]);
}
fprintf(stdout, "\n");*/
llama_embd_normalize(embd, out, n_embd);
}
}
int main(int argc, char ** argv) {
gpt_params params;
@@ -67,8 +15,6 @@ int main(int argc, char ** argv) {
}
params.embedding = true;
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
print_build_info();
@@ -80,11 +26,10 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
params.prompt = gpt_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);
llama_backend_init(params.numa);
llama_model * model;
llama_context * ctx;
@@ -107,113 +52,52 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}
// split the prompt into lines
std::vector<std::string> prompts = split_lines(params.prompt);
int n_past = 0;
// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);
// tokenize the prompt
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true, false);
if (inp.size() > n_batch) {
fprintf(stderr, "%s: error: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
if (params.verbose_prompt) {
fprintf(stderr, "\n");
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
}
fprintf(stderr, "\n");
}
if (embd_inp.size() > (size_t)n_ctx) {
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
__func__, embd_inp.size(), n_ctx);
return 1;
}
while (!embd_inp.empty()) {
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
inputs.push_back(inp);
n_past += n_tokens;
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
}
// check if the last token is SEP
// it should be automatically added by the tokenizer when 'tokenizer.ggml.add_eos_token' is set to 'true'
for (auto & inp : inputs) {
if (inp.empty() || inp.back() != llama_token_sep(model)) {
fprintf(stderr, "%s: warning: last token in the prompt is not SEP\n", __func__);
fprintf(stderr, "%s: 'tokenizer.ggml.add_eos_token' should be set to 'true' in the GGUF header\n", __func__);
}
}
// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) inputs.size(); i++) {
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, prompts[i].c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, inputs[i].size());
for (int j = 0; j < (int) inputs[i].size(); j++) {
fprintf(stderr, "%6d -> '%s'\n", inputs[i][j], llama_token_to_piece(ctx, inputs[i][j]).c_str());
}
fprintf(stderr, "\n\n");
}
}
// initialize batch
const int n_prompts = prompts.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
// allocate output
const int n_embd = llama_n_embd(model);
std::vector<float> embeddings(n_prompts * n_embd, 0);
float * emb = embeddings.data();
const auto * embeddings = llama_get_embeddings(ctx);
// break into batches
int p = 0; // number of prompts processed already
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_prompts; k++) {
// clamp to n_batch tokens
auto & inp = inputs[k];
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
llama_batch_clear(batch);
p += s;
s = 0;
}
// add to batch
batch_add_seq(batch, inp, s);
s += 1;
for (int i = 0; i < n_embd; i++) {
printf("%f ", embeddings[i]);
}
printf("\n");
// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
// print the first part of the embeddings or for a single prompt, the full embedding
fprintf(stdout, "\n");
for (int j = 0; j < n_prompts; j++) {
fprintf(stdout, "embedding %d: ", j);
for (int i = 0; i < (n_prompts > 1 ? std::min(16, n_embd) : n_embd); i++) {
fprintf(stdout, "%9.6f ", emb[j * n_embd + i]);
}
fprintf(stdout, "\n");
}
// print cosine similarity matrix
if (n_prompts > 1) {
fprintf(stdout, "\n");
printf("cosine similarity matrix:\n\n");
for (int i = 0; i < n_prompts; i++) {
for (int j = 0; j < n_prompts; j++) {
float sim = llama_embd_similarity_cos(emb + i * n_embd, emb + j * n_embd, n_embd);
fprintf(stdout, "%6.2f ", sim);
}
fprintf(stdout, "\n");
}
}
// clean up
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;

View File

@@ -1,9 +0,0 @@
set(TARGET eval-callback)
add_executable(${TARGET} eval-callback.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET} COMMAND eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)

View File

@@ -1,95 +0,0 @@
# llama.cpp/examples/eval-callback
A simple example which demonstrates how to use callback during the inference.
It simply prints to the console all operations and tensor data.
Usage:
```shell
eval-callback \
--hf-repo ggml-org/models \
--hf-file phi-2/ggml-model-q4_0.gguf \
--model phi-2-q4_0.gguf \
--prompt hello \
--seed 42 \
-ngl 33
```
Will print:
```shell
llm_load_tensors: offloaded 33/33 layers to GPU
...
llama_new_context_with_model: n_ctx = 512
...
llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 2
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.0181, 0.0272, 0.0272, ...],
],
]
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -0.6989, 1.0636, 1.0636, ...],
],
]
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1800, 0.2817, 0.2632, ...],
],
]
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
[
[
[ -0.1863, 0.2970, 0.2604, ...],
],
]
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1238, 1.2876, -1.8086, ...],
],
]
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
],
]
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
[
[
[ -1.1135, 1.4604, -1.9226, ...],
[ -0.3608, 0.5076, -1.8866, ...],
[ 1.7643, 0.0273, -2.1065, ...],
...
],
]
```

View File

@@ -1,195 +0,0 @@
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include <cstdio>
#include <random>
#include <string>
#include <tuple>
#include <vector>
/**
* This the arbitrary data which will be passed to each callback.
* Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
*/
struct callback_data {
std::vector<uint8_t> data;
};
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
float sum = 0;
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
printf(" [\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2*n) {
printf(" ..., \n");
i2 = ne[2] - n;
}
printf(" [\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2*n) {
printf(" ..., \n");
i1 = ne[1] - n;
}
printf(" [");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2*n) {
printf("..., ");
i0 = ne[0] - n;
}
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
} else {
GGML_ASSERT(false);
}
printf("%12.4f", v);
sum += v;
if (i0 < ne[0] - 1) printf(", ");
}
printf("],\n");
}
printf(" ],\n");
}
printf(" ]\n");
printf(" sum = %f\n", sum);
}
}
/**
* GGML operations callback during the graph execution.
*
* @param t current tensor
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
* see ggml_backend_sched_eval_callback
* @param user_data user data to pass at each call back
* @return true to receive data or continue the graph, false otherwise
*/
static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
auto * cb_data = (callback_data *) user_data;
const struct ggml_tensor * src0 = t->src[0];
const struct ggml_tensor * src1 = t->src[1];
if (ask) {
return true; // Always retrieve data
}
char src1_str[128] = {0};
if (src1) {
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
}
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__,
t->name, ggml_type_name(t->type), ggml_op_desc(t),
src0->name, ggml_ne_string(src0).c_str(),
src1 ? src1_str : "",
ggml_ne_string(t).c_str());
// copy the data from the GPU memory if needed
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
if (!is_host) {
auto n_bytes = ggml_nbytes(t);
cb_data->data.resize(n_bytes);
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
}
if (!ggml_is_quantized(t->type)) {
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
ggml_print_tensor(data, t->type, t->ne, t->nb, 3);
}
return true;
}
static bool run(llama_context * ctx, const gpt_params & params) {
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), 0, 0))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
}
return true;
}
int main(int argc, char ** argv) {
callback_data cb_data;
gpt_params params;
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
print_build_info();
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
llama_numa_init(params.numa);
// pass the callback to the backend scheduler
// it will be executed for each node during the graph computation
params.cb_eval = ggml_debug;
params.cb_eval_user_data = &cb_data;
params.warmup = false;
// init
llama_model * model;
llama_context * ctx;
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);
return 1;
}
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
bool OK = run(ctx, params);
if (!OK) {
return 1;
}
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}

View File

@@ -7,6 +7,8 @@
#include <string>
#include <thread>
static const size_t tensor_alignment = 32;
struct lora_info {
std::string filename;
float scale;
@@ -243,8 +245,9 @@ static struct lora_data * load_lora(struct lora_info * info) {
params_ggml.no_alloc = true;
result->ctx = ggml_init(params_ggml);
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
uint32_t magic = file.read_u32();
if (magic != LLAMA_FILE_MAGIC_GGLA) {
if (magic != LLAMA_FILE_MAGIC_LORA) {
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
}
uint32_t version = file.read_u32();
@@ -335,14 +338,24 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
params.mem_buffer = NULL;
params.no_alloc = true;
struct ggml_context * ctx = NULL;
struct ggml_gallocr * alloc = NULL;
struct ggml_cgraph * gf = NULL;
struct ggml_allocr * alloc = NULL;
struct ggml_cgraph * gf = NULL;
ctx = ggml_init(params);
alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
alloc = ggml_allocr_new_measure(tensor_alignment);
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
ggml_allocr_free(alloc);
ggml_free(ctx);
ggml_gallocr_alloc_graph(alloc, gf);
static std::vector<uint8_t> data_compute;
data_compute.resize(alloc_size + tensor_alignment);
ctx = ggml_init(params);
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
ggml_allocr_alloc_graph(alloc, gf);
ggml_allocr_free(alloc);
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
static std::vector<uint8_t> data_work;
@@ -351,7 +364,6 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
ggml_graph_compute(gf, &cplan);
ggml_gallocr_free(alloc);
ggml_free(ctx);
return true;
}

View File

@@ -80,9 +80,9 @@ The LORA rank can be configured for each model tensor type separately with these
--rank-wk N LORA rank for wk tensor (default 4)
--rank-wv N LORA rank for wv tensor (default 4)
--rank-wo N LORA rank for wo tensor (default 4)
--rank-ffn_gate N LORA rank for ffn_gate tensor (default 4)
--rank-ffn_down N LORA rank for ffn_down tensor (default 4)
--rank-ffn_up N LORA rank for ffn_up tensor (default 4)
--rank-w1 N LORA rank for w1 tensor (default 4)
--rank-w2 N LORA rank for w2 tensor (default 4)
--rank-w3 N LORA rank for w3 tensor (default 4)
```
The LORA rank of 'norm' tensors should always be 1.

Some files were not shown because too many files have changed in this diff Show More