Compare commits

...

217 Commits
b4727 ... b4944

Author SHA1 Message Date
Marius Gerdes
77f9c6bbe5 server : Add verbose output to OAI compatible chat endpoint. (#12246)
Add verbose output to server_task_result_cmpl_final::to_json_oaicompat_chat_stream, making it conform with server_task_result_cmpl_final::to_json_oaicompat_chat, as well as the other to_json methods.
2025-03-23 19:30:26 +01:00
Lars Sonchocky-Helldorf
18b663d8e4 install : add macports (#12518)
MacPorts section added
2025-03-23 10:21:48 +02:00
Xuan-Son Nguyen
fbdfefe74e llama : gemma3 : use output tensor if it exists in model weight (#12506)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : gemma3 : use output tensor if it exists in model weight

* also add to the llm_tensor_names
2025-03-22 23:28:19 +01:00
Georgi Gerganov
ba932dfb50 ggml : fix quantized cpy op (#12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-22 16:23:26 +02:00
R0CKSTAR
fac63a3d78 musa: refine compute capability (#12493)
* musa: refine compute capability

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-22 10:11:37 +01:00
Jeff Bolz
eddfb43850 vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00
stduhpf
4375415b4a Vulkan: RTE rounding for cpy to quant (#12480)
* Vulkan: RTE rounding for cpy to quant

Co-Authored-By: Jeff Bolz <jbolz@nvidia.com>

* remove trailing whitespace

* avoid duplicating pipeline_cpy_f32_quant

* fix copypasting issue

* remove duplicated code

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-03-21 20:34:50 +01:00
Eve
30c42ef5cb vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (#12472) 2025-03-21 20:27:47 +01:00
Georgi Gerganov
af04481e6b model : do not repack if a GPU device is present (#12498)
ggml-ci
2025-03-21 16:14:29 +02:00
Sigbjørn Skjæret
960e726077 chore : cleanup llama_model_loader::TENSOR_ usage (#12492) 2025-03-21 10:21:36 +01:00
marcoStocchi
ea1518e839 llama-tts : avoid crashes related to bad model file paths (#12482) 2025-03-21 11:12:45 +02:00
蕭澧邦
1aa87ee53d [SYCL] Fix build on Windows when ccache enabled (#9954) (#9976)
* [SYCL] Fix build on Windows when ccache enabled (#9954)

* take effect only on windows and force it to icl

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-21 14:58:47 +08:00
Svetlozar Georgiev
9ffcc9e374 sycl: cleanup oneDNN related code (#12097) 2025-03-21 10:15:56 +08:00
Woof Dog
e04643063b webui : Prevent rerendering on textarea input (#12299)
* webui: Make textarea uncontrolled to eliminate devastating lag

* Update index.html.gz

* use signal-style implementation

* rm console log

* no duplicated savedInitValue set

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-20 15:57:43 +01:00
Sigbjørn Skjæret
dbb3a4739e llama : make Qwen2MoE QKV bias optional (#12477)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-03-20 12:49:59 +01:00
Srihari-mcw
3d82dbcbce ggml : block interleaving support for Q4_K quantization for x86 AVX2 architecture (#12332)
* Add block interleaving support for Q4_K quantization

* Remove whitespaces and fix CI/CD issues

* Update pointer of bsums from int16_t to const int16_t

* Add vector version of quantize_q8_K_4x8 function

* Update code formatting based on review comments
2025-03-20 13:35:34 +02:00
Bartowski
732b5fbf5e convert : avoid calls to tokenizer.added_tokens_decoder (#12473)
tokenizer.added_tokens_decoder returns a fresh dict every time relatively slowly (~0.04s on average) which results in massive slowdowns when we have a huge number of added tokens
2025-03-20 08:36:37 +02:00
fairydreaming
568013d0cd context : clear sets containing encoder output sequence ids before storing new values (#12470)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-19 21:01:57 +01:00
Gaurav Garg
517b5ddbf0 CUDA: Improve flash decoding kernel GPU occupancy for BS=1 case (#12183)
- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1

Fixes Issue: #12182
---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-19 20:52:06 +01:00
Jeff Bolz
a9b59288e2 vulkan: optimize iq1 coopmat2 dequant functions (#12427) 2025-03-19 19:56:23 +01:00
Guus Waals
0fd8487b14 Fix visionOS build and add CI (#12415)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* ci: add visionOS build workflow

Add a new GitHub Actions workflow for building on visionOS with CMake and Xcode.

* ggml: Define _DARWIN_C_SOURCE for visionOS to fix missing u_xxx typedefs

* ci: remove define hacks for u_xxx system types

---------

Co-authored-by: Giovanni Petrantoni <7008900+sinkingsugar@users.noreply.github.com>
2025-03-19 11:15:23 +01:00
Sigbjørn Skjæret
108e53c2f1 llama : add support for GPT2, Bloom and CodeShell tied word embeddings (#12456)
* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
2025-03-19 09:08:49 +01:00
Sigbjørn Skjæret
a686171ea7 convert : Support chat_template.json (#12460) 2025-03-19 08:58:13 +01:00
Jeff Bolz
c446b2edd2 vulkan: Submit once enough matmul work has been recorded (#12406)
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
2025-03-19 08:26:26 +01:00
lhez
d84635b1b0 opencl: improve profiling (#12442)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* opencl: more profiling timing

* opencl: generate trace for profiling

* opencl: reduce profiling overhead

* Populate profiling timing info at the end rather than after each
  kernel run

* opencl: fix for chrome tracing
2025-03-18 12:54:55 -07:00
Georgi Gerganov
75422e8bc4 graph : normalize Q, K, V shapes + sync cross attention (#12449)
* graph : normalize Q, K, V shapes and add comments

ggml-ci

* context : synchronize before getting cross attention data

* model : fix command-r attention norm check
2025-03-18 21:35:19 +02:00
R0CKSTAR
bb115d2bf7 musa: override warp_size of musa device to 32 (#12445)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-18 19:28:26 +01:00
Xuan-Son Nguyen
29fff308c7 llama : support converting Mistral Small text-only (#12450) 2025-03-18 19:16:19 +01:00
Georgi Gerganov
c6af2161b2 speculative : fix seg fault in certain cases (#12454) 2025-03-18 19:35:11 +02:00
Xuan-Son Nguyen
99aa304fb9 llama : add support for EXAONE tied word embeddings (#12451) 2025-03-18 17:24:33 +01:00
Georgi Gerganov
8551c44d84 context : always use non-causal attention for encoder graphs (#12447)
* context : always use non-causal attention for encoder graphs

ggml-ci

* context : move the change to llama_context::encode()

ggml-ci
2025-03-18 13:05:49 +02:00
Łukasz Ślusarczyk
35cae5ba05 SYCL: using graphs is configurable by environment variable and compile option (#12371)
* alberto changes

* enable sycl graphs by env variable

* fixed compilation warnings in ggml-sycl.cpp

* renamed graph variables

* fix markdown in docs/backend/SYCL.md

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>

* fix markdown in docs/backend/SYCL.md again

* compiling graphs by default, renamed graph_enable to graph_disable

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-18 11:16:31 +01:00
Georgi Gerganov
810e0af3f5 server : fix warmup draft cache type (#12446)
ggml-ci
2025-03-18 12:05:42 +02:00
Prajwal B Mehendarkar
eba92d64c3 cmake : fix PowerPC build (#12241)
Closes #12240
2025-03-18 11:37:33 +02:00
fj-y-saito
d9a14523bb ggml : add SVE support for q6_K_q8_K (#12361) 2025-03-18 10:14:39 +02:00
0cc4m
fd123cfead Vulkan: Default to 1GB allocations instead of 4GB to avoid fragmentation and driver issues (#12434) 2025-03-18 07:21:40 +01:00
Łukasz Ślusarczyk
a53f7f7b88 fixed compilation warnings in ggml-sycl (#12424)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-18 08:51:25 +08:00
Molly Sophia
7dfad387e3 llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Sigbjørn Skjæret
60c902926c docs : bring llama-cli conversation/template docs up-to-date (#12426) 2025-03-17 21:14:32 +01:00
Gaurav Garg
b1b132efcb cuda : enable CUDA Graph on CUDA Toolkit < 12.x (#12394)
* Enable CUDA Graph on CTK < 12.x

`cudaGraphExecUpdate` API was changed on 12.x. For this reason CUDA graph support was disabled on older CUDA toolkit. This change enables CUDA support in CTK version < 12.x by using older API if CTK < 12.x.

* Fix compilation errors with MUSA

* Disable CUDA Graph for MUSA
2025-03-17 20:25:13 +02:00
Guus Waals
01e8f2138b ggml-vulkan: remove unused find_program(glslc) (#12416)
It's already found by FindVulkan.cmake in the parent CMakeLists
2025-03-17 13:35:43 -03:00
Jeff Bolz
484a8ab513 vulkan: Add N/2 and N/4 optimized paths in coopmat2 shader (#12312) 2025-03-17 09:26:18 -05:00
Daniele
cf2270e4d3 vulkan: subgroup size tuning (#12087)
* vulkan: subgroup size test

* Vulkan: Add device architecture enum and logic to recognize AMD generations

* vulkan: use new architecture logic to specify subgroup size

* Initial vulkan subgroup size tuning for RDNA3

* vulkan: commonize RDNA subgroup tuning

* vulkan: override subgroup size if required_subgroup_size = 0

* vulkan: disable warp 32 for RDNA3

* vulkan: fine tuned RDNA1 subgroup sizes

* vulkan: adjusted subgroup size map

* vulkan: fixed RDNA2 subgroup map

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-03-17 12:42:33 +01:00
Jeff Bolz
f07690c930 vulkan: use fp32 in coopmat2 q4_k dequant function (#12309) 2025-03-17 10:43:35 +01:00
Jeff Bolz
891c63956d vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking (#12273)
* vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking
2025-03-17 10:41:59 +01:00
Jeff Bolz
2f21123c1d vulkan: Adjust coopmat2 tile sizes and selection heuristic (#12258) 2025-03-17 10:35:00 +01:00
Christian Kastner
374101fd74 cmake : enable building llama.cpp using system libggml (#12321)
* cmake: Factor out compiler flag function from ggml

llama.cpps's build requires it, too, and we may want to make use of it
without add_subdirectory(ggml).

* cmake: Enable building against system ggml

This facilitates package maintenance for Linux distributions, where the
libggml library most likely will be shipped as an individual package
upon which a llama.cpp package depends.
2025-03-17 11:05:23 +02:00
Akarshan Biswas
b3c9a65673 SYCL: set extras only on GGML_TYPE_Q4_0 (#12366)
* SYCL: set extras only on GGML_TYPE_Q4_0

* release tensor_extras in reset buffer interface
2025-03-17 09:45:12 +08:00
Sigbjørn Skjæret
8ba95dca20 llama : fix OLMo-2-0325-32B-Instruct K-norm size (#12400) 2025-03-16 19:46:36 +02:00
Georgi Gerganov
dc079cfdff context : fix init of n_outputs (#12397)
ggml-ci
2025-03-16 19:29:36 +02:00
Daniel Bevenius
7b61bcc87c ci : add --symlinks to xcframework zip command (#12409)
This commit adds the --symlinks option to the zip command used to create
the xcframework zip file. This is necessary to create symlinks in the
zip file. Without this option,  the Versions symlink is stored as a
regular directory entry in the zip file, rather than as a symlink in the
zip which causes the followig error in xcode:
```console
Couldn't resolve framework symlink for '/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current': readlink(/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current): Invalid argument (22)
```

Refs: https://github.com/ggml-org/llama.cpp/pull/11996#issuecomment-2727026377
2025-03-16 18:22:05 +01:00
marcoStocchi
f4c3dd5daa llama-tts : add '-o' option (#12398)
* added -o option to specify an output file name

* llama-tts returns ENOENT in case of file write error

note : PR #12042 is closed as superseded with this one.
2025-03-15 17:23:11 +01:00
aubreyli
3d35d87b41 SYCL: Delete redundant plus sign and space (#12391) 2025-03-15 15:49:03 +01:00
fairydreaming
b19bd064c0 SYCL : support non-contiguous tensors in binary ops (add, sub, etc) (#12399)
* sycl : support non-contiguous tensors in binary ops

* sycl : silence unused variable warning

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-15 22:19:30 +08:00
Chenguang Li
92a391327e [CANN]MUL_MAT optimization (#12382) 2025-03-15 09:31:08 +08:00
Eric Curtin
9f2250ba72 Add CLI arg to llama-run to adjust the number of threads used (#12370)
We default to 4, sometimes we want to manually adjust this

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-14 16:41:20 +00:00
Sigbjørn Skjæret
774973b8f3 main : add -sysf / --system-prompt-file (#12249) (#12250)
* add system_prompt_file

* add -sysf / --system-prompt-file

* remove system_prompt_file
2025-03-14 16:57:05 +01:00
fairydreaming
8fcb563613 Load all MoE experts during warmup (#11571)
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup

* common : use new API to enable warmup mode during model warmup

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-14 13:47:05 +01:00
Victor
add2a3aa5a server: fix "--grammar-file" parameter (#12285) 2025-03-14 11:21:17 +01:00
Georgi Gerganov
c522ce4143 graph : simplify attn input build for unified KV cache (#12381)
ggml-ci
2025-03-14 10:47:44 +02:00
Georgi Gerganov
081bee8c64 hparams : add SWA rope parameters (#12374)
ggml-ci
2025-03-14 09:03:24 +02:00
Georgi Gerganov
84d5475541 llama : fix Gemma3 SWA KV cache shift (#12373)
* llama : fix Gemma3 SWA KV cache shift

ggml-ci

* hparams : add comment [no ci]
2025-03-13 19:08:07 +02:00
Xuan-Son Nguyen
be7c303410 arg : no n_predict = -2 for examples except for main and infill (#12364) 2025-03-13 12:34:54 +01:00
Georgi Gerganov
e0dbec0bc6 llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Ishaan Gandhi
2048b5913d server : fix crash when using verbose output with input tokens that are not in printable range (#12178) (#12338)
* Fix DOS index bug

* Remove new APIs

* remove extra line

* Remove from API

* Add extra newline

* Update examples/server/server.cpp

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-13 11:10:05 +01:00
Oscar Barenys
f08f4b3187 Update build.yml for Windows Vulkan builder to use Vulkan 1.4.304 SDK for VK_NV_cooperative_matrix2 support (#12301) 2025-03-12 20:06:58 +01:00
Daniel Bevenius
80a02aa858 llama.swiftui : fix xcframework dir in README [no ci] (#12353)
This commit fixes the path to the xcframework in the README file which I
had forgotten to change after renaming the build directory.
2025-03-12 13:45:32 +01:00
Alberto Cabrera Pérez
363f8c5d67 sycl : variable sg_size support for mmvq kernels (#12336)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-03-12 09:57:32 +00:00
uvos
34c961b181 CUDA/HIP: Fix fattn-vec-* when device warp size is not 32 (#12315)
When fattn-wmma was ported over to warp64 various bits that also touch fattn-vec where converted to
selectable warp size, however the fattn-vec kernels dont work with 64 wide warps for now, so we need
to avoid launching them with parameters for warp64
2025-03-12 10:14:11 +01:00
Xuan-Son Nguyen
7841fc723e llama : Add Gemma 3 support (+ experimental vision capability) (#12343)
* llama : Add Gemma 3 text-only support

* fix python coding style

* fix compile on ubuntu

* python: fix style

* fix ubuntu compile

* fix build on ubuntu (again)

* fix ubuntu build, finally

* clip : Experimental support for Gemma 3 vision (#12344)

* clip : Experimental support for Gemma 3 vision

* fix build

* PRId64
2025-03-12 09:30:24 +01:00
Jeff Bolz
bf69cfe62f vulkan: fix bug in coopmat1 mul_mat_id (#12316)
* tests: run mul_mat_id with a larger N

* vulkan: fix bug in coopmat1 mul_mat_id
2025-03-12 06:59:19 +01:00
uvos
10f2e81809 CUDA/HIP: refractor mmqv to unify the calculation of nwarps and rows per block between host and device code. (#12177)
refactor mmqv to unify the calculation of nwarps and rows per block between host and device code.

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-11 20:16:03 +01:00
jklincn
ba7654380a ggml-backend : fix backend search path (#12330)
* Fix backend search path

* replace .native() with '/'

* reverted .native()
2025-03-11 14:25:17 +01:00
BB-fat
6ab2e4765a metal : Cache the Metal library at the device context level (#12265) 2025-03-11 13:45:02 +02:00
Xuan-Son Nguyen
96e1280839 clip : bring back GPU support (#12322)
* clip : bring back GPU support

* use n_gpu_layers param

* fix double free

* ggml_backend_init_by_type

* clean up
2025-03-11 09:20:16 +01:00
Eve
2c9f833d17 mat vec double buffer (#12188) 2025-03-10 19:28:11 +00:00
R0CKSTAR
251364549f musa: support new arch mp_31 and update doc (#12296)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-10 18:18:25 +01:00
Henry Linjamäki
8acdacb3ea opencl: use OpenCL C standard supported by the device (#12221)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This patch nudges the llama.cpp a bit to be supported on PoCL which
doesn't support OpenCL C CL2.0. The issue is solved by querying the
device for the supported OpenCL C versions and using the highest one
available.
2025-03-10 09:57:00 -07:00
John Bean
89b2b56e86 readme: added Sidekick to available UIs (#12311) 2025-03-10 16:13:09 +02:00
Georgi Gerganov
e128a1bf5b tests : fix test-quantize-fns to init the CPU backend (#12306)
ggml-ci
2025-03-10 14:07:15 +02:00
marcoStocchi
6ef79a67ca common : refactor '-o' option (#12278)
As discussed in PR 'llama-tts : add -o option' (#12042):

* common_params : 'out_file' string is the only output file name parameter left in common_params. It's intended to be used in all example programs implementing an '-o' option.

* cvector-generator, export-lora, imatrix : default output filenames moved from 'common_params' to the 'main()' of each example program.
2025-03-10 13:34:13 +02:00
Olivier Chafik
4e39a3c332 server: extract <think> tags from qwq outputs (#12297)
* extract <think> tags from qwq outputs

* const for all static regexes in chat.cpp
2025-03-10 10:59:03 +00:00
Olivier Chafik
be421fc429 tool-call: ensure there's always a non-empty tool call id (#12292) 2025-03-10 09:45:29 +00:00
Olivier Chafik
87c2630546 allow missing content in message if tool_calls provided (#12293) 2025-03-10 09:45:07 +00:00
Olivier Chafik
2b3a25c212 sampler: fixes trigger tokens + lazy grammars (fix typo cast from token to string) (#12291)
* Fix typo in lazy grammar handling (fixes trigger tokens)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-10 09:44:42 +00:00
tc-mb
8352cdc87b llava : fix bug in minicpm-v code (#11513)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* fix bug in minicpm-v code

* update readme of minicpm-v
2025-03-10 10:33:24 +02:00
Georgi Gerganov
1e2f78a004 server : add speculative decoding presets for FIM (#12287) 2025-03-09 19:08:20 +02:00
Georgi Gerganov
0fd7ca7a21 authors : update (#12271) 2025-03-08 18:26:00 +02:00
Jason C.H
6fefc05a7a ggml-backend : make path_str compatible with C++20 (#12269) 2025-03-08 17:02:39 +01:00
Georgi Gerganov
7ab364390f server : infill gen ends on new line (#12254) 2025-03-07 20:54:30 +02:00
Daniel Bevenius
7c7f3b7f43 ggml : skip intermediate .air file when compiling .metallib (#12247)
This commit updates the compilation of default.metallib to skip the
intermediate .air (Apple Intermediate Representation) file.

The motivation for this change is to simplify the custom command a
little and avoid generating and then removing the .air file.
2025-03-07 14:15:27 +01:00
Georgi Gerganov
102ac1891d sync : ggml
ggml-ci
2025-03-07 14:49:44 +02:00
vmobilis
d6ae2fa061 ggml : ggml_compute_forward_concat() for arbitrary tensor type (ggml/1118)
* ggml_compute_forward_concat() for arbitrary tensor type

* Check that tensors' type match

* ggml-cpu.c: check type of source tensors

* ggml-cpu.c: move tensor type check to ggml_compute_forward_concat()

* ggml.c: check concatenated tensor type

* Remove tensor type check from ggml_compute_forward_concat() in ggml-cpu.c

..., as it was moved to ggml.c.
2025-03-07 14:49:44 +02:00
Rémy O
68d0027f3d ggml-cpu: faster AVX2 variant for IQ1_M (#12216) 2025-03-07 13:54:22 +02:00
Georgi Gerganov
ea002810a2 ci : fix save-load test invocations (#12245) 2025-03-07 12:19:31 +02:00
Sigbjørn Skjæret
8fad3c7a7c server : Log original chat template parsing error (#12233) 2025-03-07 11:15:33 +01:00
Olivier Chafik
7cf64f6bee sync: minja - support QwQ-32B (#12235)
8a76f7815e
2025-03-07 09:33:37 +00:00
BB-fat
5e2d57b2b2 metal : simplify kernel arguments using a struct (#3229) (#12194)
* metal : refactor im2col parameters into a struct

* metal: Change im2col offset types from int32_t to uint64_t to support larger memory offsets

* metal : refactor sum_rows parameters into a struct

* metal : refactor soft_max parameters into a struct

* metal : refactor diag_mask_inf parameters into a struct

* metal : refactor ssm_conv parameters into a struct

* metal : refactor ssm_scan parameters into a struct

* metal : refactor get_rows parameters into a struct

* metal : refactor group_norm parameters into a struct

* metal : refactor conv_transpose_1d parameters into a struct

* metal : refactor upscale parameters into a struct

* metal : refactor pad parameters into a struct

* metal : refactor pad_reflect_1d parameters into a struct

* metal : refactor arange parameters into a struct

* metal : refactor timestep_embedding parameters into a struct

* metal : refactor argsort parameters into a struct

* metal : refactor leaky_relu parameters into a struct

* metal : refactor pool_2d parameters into a struct

* metal : fix trailing whitespace

---------

Co-authored-by: alexju <alexju@tencent.com>
2025-03-07 08:35:57 +01:00
David Huang
f1648e91cf HIP: fix rocWMMA build flags under Windows (#12230) 2025-03-07 08:06:08 +01:00
Daniel Bevenius
d6c95b0740 metal : fix default.metallib build (#12224)
This commit updates the custom command to build the default.metallib
file to use the correct path to ../ggml-common.h by using the variable
METALLIB_COMMON.

The motivation for this change is that currently when building and
specifying GGML_METAL_EMBED_LIBRARY=OFF the following error is
generated:
```console
[ 11%] Linking CXX shared library ../../bin/libggml.dylib
[ 11%] Built target ggml
make[2]: *** No rule to make target `ggml/src/ggml-metal/ggml-common.h', needed by `bin/default.metallib'.  Stop.
make[1]: *** [ggml/src/ggml-metal/CMakeFiles/ggml-metal-lib.dir/all] Error 2
```

With the above change the build could progress but there was a follow
on error about not being able to find the ggml-common.h file in
ggml-metal.metal where is was included as a relative path:
```console
[ 11%] Compiling Metal kernels
/Users/danbev/work/llama.cpp/build/bin/ggml-metal.metal:6:10: error: '../ggml-common.h' file not found, did you mean 'ggml-common.h'?
         ^~~~~~~~~~~~~~~~~~
         "ggml-common.h"
1 error generated.
```
Removing the relative path then allowed the build to complete
successfully.
2025-03-07 06:23:16 +01:00
lhez
d76a86d967 opencl: Noncontiguous norm, rms_norm, disable fp16 for some ops (#12217)
* opencl: support noncontiguous `norm`

* opencl: support noncontiguous `rms_norm`

* opencl: disable fp16 for `ADD`, `MUL`, `SCALE`, `RELU`, `GELU`, `SILU`, `CLAMP`
2025-03-07 00:20:35 +00:00
xiaofei
776f9e59cc cmake : fix undefined reference errors for std::filesystem in ggml (#12092) (#12094)
Signed-off-by: Ray Lee <hburaylee@gmail.com>
Co-authored-by: Ray Lee <hburaylee@gmail.com>
2025-03-06 22:58:25 +00:00
Lucas Moura Belo
3d652bfddf readme : update bindings (#12229) 2025-03-06 21:15:13 +02:00
Johannes Gäßler
5220a16d18 CUDA: fix FA logic for PTX 7.0 and CC >= 7.5 (#12222) 2025-03-06 18:45:09 +01:00
David Huang
3ffbbd5ce1 HIP: rocWMMA documentation and enabling in workflow builds (#12179)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Enable rocWMMA for Windows CI build

* Enable for Ubuntu

* GGML_HIP_ROCWMMA_FATTN documentation work
2025-03-06 14:14:11 +01:00
Olivier Chafik
42994048a3 update function-calling.md w/ template override for functionary-small-v3.2 (#12214) 2025-03-06 09:03:31 +00:00
Aaron Teo
e9b2f84f14 llava: add big-endian conversion for image encoder (#12218)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-03-06 09:33:21 +01:00
uvos
e721c05c93 HIP/CUDA: set the paramerter value in maintain_cuda_graph instead of replaceing it. (#12209)
This avoids conflict with internal cuda/hip runtimes memory managment behavior.
2025-03-06 08:20:52 +01:00
Han Yin
57b6abf85a android : fix KV cache log message condition (#12212) 2025-03-06 08:22:49 +02:00
Henry Linjamäki
94bb63e4f0 opencl : fix buffer alignment (#12197)
Fix the following error:

```
ggml-alloc.c:99: not enough space in the buffer
ggml_tallocr_alloc: not enough space in the buffer to allocate blk.17.ffn_down.weight (needed 27525120, available 27521024)
```

which occurs when `ggml_backend_opencl_context::alignment` is larger
than `cl_ptr_base` (hard-coded to `0x1000`).

Also, fix `ggml_backend_opencl_context::alignment` was set to
`CL_DEVICE_MEM_BASE_ADDR_ALIGN` which was treated as bytes but the
value is reported in bits.
2025-03-06 02:33:40 +01:00
Henry Linjamäki
f79243992c opencl : fix ulong kernel args were set from int variables (#12174)
... which left garbage bits in the upper half of the kernel args. This
caused segmentation faults when running PoCL.
2025-03-06 02:31:14 +01:00
simon886212
ed4ce0dda2 opencl : fix profile-related errors (#12095)
Co-authored-by: ubuntu <ubuntu@localhost.localdomain>
2025-03-06 02:30:05 +01:00
Rémy O
07d1572347 ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions (#12154)
* ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions

* cmake: Add GGML_BMI2 build option

* ggml: enable BMI2 on relevant CPU variants

* ggml-cpu: include BMI2 in backend score

* ggml-cpu: register BMI2 in ggml_backend_cpu_get_features

* ggml-cpu: add __BMI2__ define when using MSVC
2025-03-06 02:26:10 +01:00
Akarshan Biswas
5e43f104cc SYCL: Disable f16 Unary OPs as not supported by the kernels (#12201) 2025-03-05 16:58:23 +01:00
Plamen Minev
16e4b22c5e ggml : fix GGMLMetalClass ODR (#12200)
-- it might happen if ggml is loaded from 2 separate libraries since each one of them will expose the class. This is more of a guard since we want to use only Metal as embedded library and don't care about the other case.
2025-03-05 17:16:01 +02:00
Daniel Bevenius
074c4fd39d ci : add fetch-depth to xcframework upload (#12195)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
This commit adds the fetch-depth: 0 option to the checkout action in the
build.yml workflow file (0 meaning that it fetches the complete
history). The default value is 1 when not specified which only fetches
the latest commit.

This is necessary to ensure that `git rev-list --count HEAD` counts the
total number of commits in the history. Currently because the default is
being used the name of the xcframework artifact is always
llama-b1-xcframework.
2025-03-05 14:16:40 +01:00
Olivier Chafik
669912d9a5 tool-call: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
Daniel Bevenius
fa31c438e0 ci : fix xcframework artifact tag (#12191)
The commit add the name parameter to the upload-artifact action to
ensure that the artifact is uploaded with the correct name.

The motivation for this is that currently the uploaded xcframework
is named as llama-b1-xcframework.zip. With this change the name of this
artifact should contain the build number like the other artifacts.
2025-03-05 10:22:29 +01:00
Daniel Bevenius
3ccbfe5a71 ci : remove xframework upload (#12190)
* ci : remove xframework upload

This commit removes the upload of the xframework zip file as an
artifact.

The motivation for this change is that the xframework zip file is
currently being uploaded as part of strategy and will therefore be
attempted to be uploaded multiple times and will fail the build.

The uploading should be moved to somewhere else in the build to avoid
this.

* ci : add xcframework upload to macos-latest job
2025-03-05 08:34:02 +01:00
Clauszy
06a92a193a server : fix cache reuse logic (#12161)
The first kv shift offsets the positions of all tokens after head_c.
When using llama_kv_cache_seq_rm next, using head_c will remove the valid tokens because their positions have already been offset.
2025-03-05 09:25:45 +02:00
Daniel Bevenius
a057897ad4 llama : add xcframework build script (#11996)
* llama : add xcframework build script

This commit adds a script to build an XCFramework for Apple
ios, macos, visionos, and tvos platforms.

The generated XCFramework can then be added to a project and used in
the same way as a regular framework. The llama.swiftui example project
has been updated to use the XCFramework and can be started using the
following command:
```console
$ open examples/llama.swiftui/llama.swiftui.xcodeproj/
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10747

* examples : remove llama.cpp (source dir ref) from project.pbxproj

This commit removes the reference to llama.cpp from the project.pbxproj
file since Package.swift has been removed.

* ci : updated build.yml to use build-xcframework.sh

* ci : add xcframework build to github releases

This commit adds the ability to create a GitHub release with the
xcframework build artifact.

* scripts : add apple app validation scripts

This commit adds scripts that can validate the iOS, macOS, tvOS, and
VisionOS applications. The scripts create a simple test app project,
copy the llama.xcframework to the test project, build and archive the
app, create an IPA from the archive, and validate the IPA using altool.

The motivation for this is to provide some basic validation and
hopefully avoid having to manually validate apps in Xcode.

* llama : remove Package.swift

This commit removes the Package.swift file, as we are now building an
XCFramework for the project.

* llama : remove Sources and spm-headers directories

* llama : use TargetConditionals.h for visionOS/tvOS
2025-03-05 06:30:31 +01:00
mgroeber9110
5bbe6a9fe9 ggml : portability fixes for VS 2017 (#12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-04 18:53:26 +02:00
Georgi Gerganov
20a9b8f5e1 readme : fix roadmap link (#12185) 2025-03-04 18:42:44 +02:00
Sigbjørn Skjæret
56d7a9f812 main: allow preloading conversation with -p and add -st / --single-turn (#12145)
* Add chat template formatting to -no-cnv

* only enable prompt formatting if explicitly enabled

* add -st / --single-turn

* add --single-turn and -p in conversation mode

* fix -sys + -p

* reword warning

* small readability change and fix (long) outdated example usage

* only activate single turn in conversation mode
2025-03-04 12:19:39 -04:00
Olivier Chafik
1a24c4621f server: fix deadly typo in response_format.json_schema.schema handling (#12168)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-04 08:24:07 +02:00
David Huang
becade5de7 HIP: implement FlashAttention via rocWMMA for CDNA and RDNA3+ (#12032)
Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16

---

Signed-off-by: Carl Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Ben Jackson <ben@ben.com>
2025-03-03 22:10:54 +01:00
Georgi Gerganov
dfd6b2c0be sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
b64d7cc272 cuda: unary ops as float + de-duplicate (ggml/1130) 2025-03-03 18:18:11 +02:00
Georgi Gerganov
3d1cf3cf33 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
0cbee131ad cuda/vulkan: specify fp32-only support for some operations in supports_op (ggml/1129)
ggml-ci
2025-03-03 18:18:11 +02:00
Georgi Gerganov
8371d44595 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
87abb7e903 cuda/cpu: Increase support for fp16 unary operations (ggml/1125)
* Support fp16 unary operations in the CUDA backend

* cpu: increase fp16 support for unary operators in the CPU backend

* cuda: increase fp16 support for unary operators in the CUDA backend

* Add test cases for fp16 unary operators

* metal: update supports_op for unary operators that don't support fp16, to prevent test-backend-ops from failing

* metal: fix PR comments for unary op support after fp16 unary tests
2025-03-03 18:18:11 +02:00
Diego Devesa
6d4c23b81b whisper : support GGML_BACKEND_DL (whisper/2843)
* whisper : support GGML_BACKEND_DL

* fix DTW crash

* whisper.objc : fix build - add ggml-cpp.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 18:18:11 +02:00
midnight
6512a90037 cmake : fix compile assumptions for power9/etc (whisper/2777)
* Add small comment re: VSX to readme

Co-authored-by: midnight <midnight@example.com>
2025-03-03 18:18:11 +02:00
petterreinholdtsen
4512055792 Told cmake to install ggml-cpp.h as a public header file. (ggml/1126)
It is used by Whisper talk-llama example.

Co-authored-by: Petter Reinholdtsen <pere@debian.org>
2025-03-03 18:18:11 +02:00
cmdr2
f54a4ba11e Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121)
* Support float16-to-float16 add/sub/mul/div operations in the CUDA backend

* Add fp16 support for add/sub/mul/div on the CPU backend

* Add test cases for fp16 add/sub/mul/div
2025-03-03 18:18:11 +02:00
Georgi Gerganov
aede2074f6 scripts : sync-ggml-am.sh fix 2025-03-03 18:18:11 +02:00
Daniel Bevenius
2679c3b55d ci : set GITHUB_ACTION env var for server tests (#12162)
This commit tries to address/improve an issue with the server tests
which are failing with a timeout. Looking at the logs it seems like
they are timing out after 12 seconds:
```
FAILED unit/test_chat_completion.py::test_completion_with_json_schema[False-json_schema0-6-"42"] - TimeoutError: Server did not start within 12 seconds
```

This is somewhat strange as in utils.py we have the following values:
```python
DEFAULT_HTTP_TIMEOUT = 12

if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
    DEFAULT_HTTP_TIMEOUT = 30

    def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
```
It should be the case that a test running in a github action should have
a timeout of 30 seconds. However, it seems like this is not the case.
Inspecting the logs from the CI job we can see the following environment
variables:
```console
Run cd examples/server/tests
2 cd examples/server/tests
3 ./tests.sh
4 shell: /usr/bin/bash -e {0}
5 env:
6 LLAMA_LOG_COLORS: 1
7 LLAMA_LOG_PREFIX: 1
8 LLAMA_LOG_TIMESTAMPS: 1
9 LLAMA_LOG_VERBOSITY: 10
10 pythonLocation: /opt/hostedtoolcache/Python/3.11.11/x64
```

This probably does not address the underlying issue that the servers
that are providing the models to be downloaded occasionally take a
longer time to response but might improve these situations in some
cases.
2025-03-03 16:17:36 +01:00
dm4
c43af9276b tts: add speaker file support (#12048)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tts: add speaker file support

Signed-off-by: dm4 <sunrisedm4@gmail.com>

* tts: handle outetts-0.3

* tts : add new line in error message

---------

Signed-off-by: dm4 <sunrisedm4@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 15:09:29 +02:00
Diego Devesa
d5c63cd7f9 test-backend-ops : add option -p to filter by op params (#12155) 2025-03-03 14:00:46 +01:00
ag2s20150909
9660ffef58 ggml : fix kleidiai build (#12159)
The libggml API has changed, but this has not been updated.
2025-03-03 13:54:08 +01:00
Eric Curtin
c950a1f692 Adding UTF-8 support to llama.cpp (#12111)
For emojis, non-alpha characters, etc.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-03 12:44:56 +00:00
Xuan-Son Nguyen
7b69003af7 webui : add ?m=... and ?q=... params (#12148)
* webui : add ?m=... and ?q=... params

* also clear prefilledMessage variable

* better approach

* fix comment

* test: bump timeout on GITHUB_ACTION
2025-03-03 11:42:45 +01:00
Akarshan Biswas
ece9745bb8 SYCL: Move CPY kernels to a separate file and add few missing kernels (#12133)
* SYCL: refactor and move cpy kernels to a separate file

* Add few missing cpy kernels

* refactor and add debug logs
2025-03-03 11:07:22 +01:00
Diego Devesa
cc473cac7c ggml-backend : keep paths in native string type when possible (#12144) 2025-03-02 22:11:00 +01:00
Sigbjørn Skjæret
14dec0c2f2 main: use jinja chat template system prompt by default (#12118)
* Use jinja chat template system prompt by default

* faster conditional order

* remove nested ternary

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-02 14:53:48 +01:00
Sigbjørn Skjæret
1782cdfed6 main: update outdated system prompt message (followup to #12131) (#12132)
* Update outdated message

* wording

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 15:22:27 +01:00
Sigbjørn Skjæret
45a8e76745 common : add --system-prompt parameter, replace behavior of -p in conversation mode (#12131)
* Add --system-prompt parameter

* use user defined system prompt

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* add warning

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 13:56:45 +01:00
Erik Scholz
80c41ddd8f CUDA: compress mode option and default to size (#12029)
cuda 12.8 added the option to specify stronger compression for binaries, so we now default to "size".
2025-03-01 12:57:22 +01:00
Vivian
2cc4a5e44a webui : minor typo fixes (#12116)
* fix typos and improve menu text clarity

* rename variable trimedValue to trimmedValue

* add updated index.html.gz

* rebuild

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-01 11:15:09 +01:00
Xuan-Son Nguyen
06c2b1561d convert : fix Norway problem when parsing YAML (#12114)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* convert : fix Norway problem when parsing YAML

* Update gguf-py/gguf/metadata.py

* add newline at correct place
2025-02-28 17:44:46 +01:00
William Tambellini
70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854)
* Upgrade init_tensor API to return a ggml_status

To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.

* misc fixes

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-02-28 14:41:47 +01:00
Xuan-Son Nguyen
c43a3e7996 llama : add Phi-4-mini support (supersede #12099) (#12108)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* Added Phi-4-mini-instruct support

* Update regex per ngxson

* Change the vocab base to Xenova/gpt-4o

* fix conversion update script

* no need to check longrope

* minor style fix

* fix python style

---------

Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
2025-02-28 12:44:11 +01:00
Alex Brooks
84d5f4bc19 Update granite vision docs for 3.2 model (#12105)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-28 11:31:47 +00:00
Rémy O
438a83926a vulkan: add specific MMV kernels for IQ2 and IQ3 quants + optimizations (#11595)
* vulkan: implement specialized MMV kernels for IQ2 quantizations

* vulkan: add MMV kernels for IQ3 quants

* vulkan: Increase MMV batch size and unroll IQ LUT setup

* vulkan: fix init_iq_shmem for WG sizes larger than tables

* vulkan: common batch size for all I-quants
2025-02-28 09:42:52 +01:00
Johannes Gäßler
9c42b1718c CUDA: fix logic for V100 + GGML_CUDA_FORCE_MMQ (#12098) 2025-02-28 09:26:43 +01:00
Prashant Vithule
05e6f5aad0 ggml: aarch64: implement SVE kernels for q2_k_q8_k vector dot (#12064)
* Added SVE Support for Q2_K Quantized Models

* Use 4-space indentation in the switch cases

* removed comments lines

* Remove the loop Retain the curly bracess for better understanding of code

* Remove the comment like added for q3_k_q8_k kernel

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-02-28 09:36:12 +02:00
hipudding
673cfef9aa CANN: Fix build error with GCC 13 (#11990)
Remove unused header file that causes compilation failure on ARM
platform with GCC 13.
2025-02-28 15:23:47 +08:00
Eve
fbeda9002d vulkan: matmul dequantization improvements (#12015)
* faster dequant for old quants

* dont use unpack for iq4_nl

* vec2 unpack for q8
2025-02-28 08:20:08 +01:00
Daniele
581650b7ca vulkan: improve im2col (#11826)
* vulkan: improve im2col performance
2025-02-28 07:52:51 +01:00
Vladimir Vuksanovic
b95c8af37c cmake: Fix ggml backend dependencies and installation (#11818)
* Fix dependencies between ggml and backends

ggml backends link only to ggml-base and ggml links to all backends.

* Fix installation of ggml backends

Set up GNUInstallDirs before setting the installation directory of ggml backends
2025-02-27 09:42:48 +02:00
Ting Lou
a800ae46da llava : add struct for FFI bindgen (#12079)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* add struct for FFI bindgen

* Apply suggestions from code review

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-26 15:26:52 +01:00
Sigbjørn Skjæret
69050a11be Refactor gguf scripts to improve metadata handling (#11909)
* Refactor gguf scripts to improve metadata handling

Added contents method to ReaderField class
Added endianess property to GGUFReader class

* update scripts

* fix import

* remove unused import

* attempt to work around flake and pyright errors

* second attempt

* give up, ignore type

* bump version

* apply newbyteorder fixes
2025-02-26 08:04:48 -05:00
Aleksei Nikiforov
3567ee3a94 gguf-py: enable reading non-native endian files (#12081)
Currently self.byte_order is never used.
Actually use it to byteswap read data to
allow reading big endian files on little endian systems
and vice versa.

Now it's possible to convert little-endian model
into a big-endian model and back
on a little-endian system.
2025-02-26 11:39:27 +00:00
Kante Yin
53e4db1012 readme : update infra list (#9096)
Signed-off-by: kerthcet <kerthcet@gmail.com>
2025-02-26 09:49:36 +02:00
Olivier Chafik
d7cfe1ffe0 docs: add docs/function-calling.md to lighten server/README.md's plight (#12069) 2025-02-25 18:52:56 +00:00
Jeff Bolz
a82c9e7c23 vulkan: fix assertion when qy_needs_dequant (#12068)
Looks like a copy/paste bug from qx_needs_dequant.
2025-02-25 16:30:21 +01:00
rhjdvsgsgks
401af80b54 server: handle echo=false on /v1/completions (#12060) 2025-02-25 12:52:52 +01:00
Judd
c132239bfb add OP sigmoid (#12056)
Co-authored-by: Judd <foldl@boxvest.com>
2025-02-25 12:32:20 +01:00
Molly Sophia
393fca629e ggml-cpu: Fix build with sve (#12059)
* ggml-cpu: Fix build with sve

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml-cpu: Remove unused variable in sve q3_k vec dot

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-02-25 19:28:22 +08:00
Rémy O
61d4f39dfe vulkan: implement more backpropagation operators (#11914)
* vulkan: implement GGML_OP_ROPE_BACK

* vulkan: implement GGML_OP_RMS_NORM_BACK

* vulkan: implement GGML_OP_SILU_BACK

* vulkan: implement GGML_OP_SOFTMAX_BACK
2025-02-25 12:04:45 +01:00
Olivier Chafik
0b52745649 server: support add_generation_prompt query param (#12062) 2025-02-25 10:40:22 +00:00
Alex Brooks
4d1051a40f Add Doc for Converting Granite Vision -> GGUF (#12006)
* Add example docs for granite vision

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-25 10:46:05 +01:00
Vitali Lovich
3e9a2860e9 llama : expose llama_model_n_head_kv in the API (#11997)
It's useful to be able to have this from the library layer as it's a key
parameter of the model (e.g. to figure out how much KV cache memory is
needed).
2025-02-25 11:29:33 +02:00
Gian-Carlo Pascutto
58d07a8043 metal : copy kernels for quant to F32/F16 conversions (#12017)
metal: use dequantize_q templates

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-25 11:27:58 +02:00
lhez
34a846b584 opencl: fix for small models (#11950)
* opencl: fix small shape gemv, remove unused extensions

* opencl: fix `transpose_16`, `dump_tensor`, enforce subgroup size

* opencl: fix for token length < 4

* opencl: use wave size of 64 for all Adreno GPUs

---------

Co-authored-by: Shawn Gu <quic_shawngu@quicinc.com>
Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
2025-02-24 14:47:07 -07:00
Alex Brooks
7a2c913e66 llava : Add Granite Vision Support (#11794)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Add super wip scripts for multimodal granite gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add example for converting mmgranite to gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* remove hardcoded path

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add vision feature layer to gguf params

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clean up llava surgery and remove name substitution hacks

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add transformers llava next tensor name mapping

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Make siglip / openclip mutuall exclusive

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix projector linear substitution

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix linear 2 substitution index

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Increase max flattened gridpoints to 64

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix hardcoded concat for multiple feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Pull vision feature layers out of gguf keys

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* fix num gridpoints and use all layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Avoid dropping last image encoder layer in llava models

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use 10 for max number of patches

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Standardize vision feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Cleanup logs

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update comment for vision feature layer init

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update notes for alternative to legacy llm conversion script

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix notes rendering

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add v prefix to vision feature layer log

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use current defaults for feature layer

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use constant for max gridpoints / feat layers, style fixes

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* clarify non-negative feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Remove CLIP_API from func signature

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* USE MAX_IMAGE_FEATURE_LAYERS const in layer calc

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clarify feature layers are non negative ints and not uint

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix condition for reading feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* pop last llava layer when feature layers are unset

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix unset vision layer 0

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update examples/llava/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Reenable assertion for out of bounds get_rows

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use std vector for gridpoints and feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Caculate max feature layer at load time

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Include base patch for granite vision allocation

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix trailing whitespace

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add max num patches = 10 back for minicpmv

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use unordered set to store feature layers

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use max feature layer for postnorm

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Apply suggestions from code review

---------

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-24 17:09:51 +01:00
Neo Zhang Jianyu
08d5986290 [SYCL] Optimize mul_mat for Q4_0 on Intel GPU (#12035)
* opt performance by reorder for Intel GPU

* detect hw type and save opt feature, and print opt feature

* correct name

* support optimize graph once when compute graph, record the opt status in tensor->extra, make CI passed

* add env variable GGML_SYCL_DISABLE_OPT for debug

* use syclex::architecture replace the custom hw define, update the guide for GGML_SYCL_DISABLE_OPT

* add performance data

* mv getrows functions to separeted files

* fix global variables

---------

Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2025-02-24 22:33:23 +08:00
Aleksei Nikiforov
651adf4b66 gguf_convert_endian.py: implement byteswapping for q4_k and q6_k (#11349) 2025-02-24 11:27:01 +00:00
Akarshan Biswas
8303e8b0fb SYCL: Fix GGML_SYCL_DEBUG macro (#11995) 2025-02-24 10:18:25 +00:00
Florent BENOIT
7ad0779f5d run: allow to customize prompt by env var LLAMA_PROMPT_PREFIX (#12041)
Signed-off-by: Florent Benoit <fbenoit@redhat.com>
2025-02-23 17:15:51 +00:00
Eric Curtin
f777a73e18 Some llama-run cleanups (#11973)
Use consolidated open function call from File class. Change
read_all to to_string(). Remove exclusive locking, the intent for
that lock is to avoid multiple processes writing to the same file,
it's not an issue for readers, although we may want to consider
adding a shared lock. Remove passing nullptr as reference,
references are never supposed to be null. clang-format the code
for consistent styling.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-23 13:14:32 +00:00
Aaron Teo
af7747c95a ggml-cpu: Support s390x SIMD Instruction Set (#12019)
* ggml: add s390x ARCH_FLAGS for compilation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add SIMD for s390x using vector intrinsics

SIMD is activated for:
* ggml_vec_dot_f32
* ggml_vec_dot_f16
* ggml_vec_mad_f32
* ggml_vec_mad_f16
* ggml_vec_mad_f32_unroll
* ggml_vec_scale_f32
* ggml_vec_scale_f16

SIMD is NOT activated for:
* ggml_vec_dot_f16_unroll (pending bugfix)

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing escape character in GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add temporary patch for GGML_F32_ARR and GGML_F16_ARR

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix s390x GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: full SIMD activation for F32,F16 s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add option to disable s390x VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change vecintrin.h include to ggml-cpu-impl

* add __VXE__ and __VXE2__ macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* cmake: add s390x target detection for VX/VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move s390x vector intrinsics to ggml-cpu-impl.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x Q8_0 SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct documentation for Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x reduce code complexity Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x bugfix typo Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activated for Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x inline vec_reve

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add VXE backend feature

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove test.py

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: bugfix iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add float, double, and long vector data type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: clean up iq4_xs SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix improper use of restrict keyword

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update warning message for ggml_vec_tbl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: untested implementation of ggml_vec_dot_iq2_xxs_q8_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update ggml_vec_dot_q4_1_q8_1 to use typedefs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: switch to restrict for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: slight dot product speed improvement for q4_1_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for q6_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add missing `_t` to ggml_int8x16x4_t

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing `_t` for ggml_vec_xl_s8x4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix more missing `_t`

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q8_0

increase of 3.86% for prompt processing and 32.22% for token generation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: patch Q8_0 to use proper vector sizes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: optimise Q8_0 dot prod compute kernel further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor Q6_K variable naming for readability

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q6_K typos

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q5_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix wrong char*x16_t naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: Q5_K y0 wrong signness

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q4_K invalid vector intrinsics

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: simplify ggml_padd_s16 compute kernel

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct ggml-cpu vxe wording

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change ggml_aligned_malloc alignment to 256

256 is the cache line size for s390x platforms

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: resolve pr merge via cherry-pick 225bbbf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml : fix LoongArch compile error with 128-bit SIMD (#11701)

* ggml: resolve pr merge via cherry-pick 4571953

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: cmake remove fork when determining s390x machine type

thank you @ericcurtin

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Jinyang He <hejinyang@loongson.cn>
Co-authored-by: junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
2025-02-22 21:39:24 +00:00
Johannes Gäßler
a28e0d5eb1 CUDA: app option to compile without FlashAttention (#12025) 2025-02-22 20:44:34 +01:00
Ting Lou
36c258ee92 llava: build clip image from pixels (#11999)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llava: export function `clip_build_img_from_pixels` to build image from pixels decoded by other libraries instead of stb_image.h for better performance

* Apply suggestions from code review

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-22 15:28:28 +01:00
Georgi Gerganov
f3e64859ed ci : fix arm upload artifacts (#12024)
* ci : fix arm upload artifacts

* cont : fix archive name to use matrix
2025-02-22 15:03:00 +02:00
Johannes Gäßler
5fa07c2f93 CUDA: optimize FA for GQA + large batches (#12014) 2025-02-22 12:20:17 +01:00
Rohanjames1997
335eb04a91 ci : Build on Github-hosted arm64 runners (#12009) 2025-02-22 11:48:57 +01:00
Georgi Gerganov
cf756d6e0a server : disable Nagle's algorithm (#12020) 2025-02-22 11:46:31 +01:00
Gian-Carlo Pascutto
d70908421f cuda: Add Q5_1, Q5_0, Q4_1 and Q4_0 to F32 conversion support. (#12000) 2025-02-22 09:43:24 +01:00
Daniel Bevenius
de8b5a3624 llama.swiftui : add "Done" dismiss button to help view (#11998)
The commit updates the help view in the llama.swiftui example to use a
NavigationView and a Done button to dismiss the help view.

The motivation for this is that without this change there is now way to
dimiss the help view.
2025-02-22 06:33:29 +01:00
Georgi Gerganov
51f311e057 llama : skip loading unused tensors (#12004)
* llama : assign unknown/unused tensors to host buffer type

ggml-ci

* llama : skip unused tensors

ggml-ci
2025-02-21 18:33:18 +02:00
Johannes Gäßler
586d5fe6eb doc: update contributing guidelines [no ci] (#11969) 2025-02-21 12:51:25 +01:00
PureJourney
ecc8e3aeff CUDA: correct the lowest Maxwell supported by CUDA 12 (#11984)
* CUDA: correct the lowest Maxwell supported by CUDA 12

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-02-21 12:21:05 +01:00
Bodhi
0b3863ff95 MUSA: support ARM64 and enable dp4a .etc (#11843)
* MUSA:  support ARM64 and enable __dp4a .etc

* fix cross entropy loss op for musa

* update

* add cc info log for musa

* add comment for the MUSA .cc calculation block

---------

Co-authored-by: Bodhi Hu <huaishun.hu@mthreads.com>
2025-02-21 09:46:23 +02:00
Alex Brooks
ee02ad02c5 clip : fix visual encoders with no CLS (#11982)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-21 08:11:03 +02:00
momonga
c392e5094d server (webui): Fix Premature Submission During IME Conversion (#11971)
* fix skip ime composing

* fix npm rebuild

* fix warn

---------

Co-authored-by: momonga <115213907+mmnga@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-20 19:43:22 +01:00
Charles Xu
c5d91a7400 ggml-cpu: Add CPU backend support for KleidiAI library (#11390)
* ggml-cpu: Add CPU backend support for KleidiAI library

* Add environmental variable GGML_KLEIDIAI_SME

* Add support for multithread LHS conversion

* Switch kernel selection order to dotprod and i8mm

* updates for review comments

* More updates for review comments

* Reorganize and rename KleidiAI files

* Move ggml-cpu-traits.h to source file

* Update cmake for SME build and add alignment for SME

* Remove append GGML_USE_CPU_KLEIDIAI to the GGML_CDEF_PUBLIC list
2025-02-20 15:06:51 +02:00
Prashant Vithule
4806498bf1 ggml: aarch64: implement SVE kernels for q3_K_q8_K vector dot (#11917)
* Added SVE Implementation for Q3_K Kernel in ggml-cpu-quants.c file

* Improved Formating of code in  ggml-cpu-quants.c file

* style : minor fixes

* style : less whitespaces

* style : ptr spaceing

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-20 12:08:32 +02:00
Michael Engel
0d559580a0 run : add --chat-template-file (#11961)
Relates to: https://github.com/ggml-org/llama.cpp/issues/11178

Added --chat-template-file CLI option to llama-run. If specified, the file
will be read and the content passed for overwriting the chat template of
the model to common_chat_templates_from_model.

Signed-off-by: Michael Engel <mengel@redhat.com>
2025-02-20 10:35:11 +02:00
Johannes Gäßler
d04e7163c8 doc: add links to ggml examples [no ci] (#11958) 2025-02-19 20:45:17 +01:00
Daniel Bevenius
d07c621393 common : add llama.vim preset for Qwen2.5 Coder (#11945)
This commit adds a preset for llama.vim to use the default Qwen 2.5
Coder models.

The motivation for this change is to make it easier to start a server
suitable to be used with the llama.vim plugin. For example, the server
can be started with a command like the following:
```console
$ llama.vim --fim-qwen-1.5b-default
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10932
2025-02-19 12:29:52 +01:00
Georgi Gerganov
abd4d0bc4f speculative : update default params (#11954)
* speculative : update default params

* speculative : do not discard the last drafted token
2025-02-19 13:29:42 +02:00
Daniel Bevenius
9626d9351a llama : fix indentation in llama-grammar [no ci] (#11943)
This commit adjusts the indentation for the functions `parse_sequence`
and `parse_rule` in src/llama-grammar.cpp.

The motivation is consistency and improve readability.
2025-02-19 06:16:23 +01:00
igardev
b58934c183 server : (webui) Enable communication with parent html (if webui is in iframe) (#11940)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Webui: Enable communication with parent html (if webui is in iframe):
- Listens for "setText" command from parent with "text" and "context" fields. "text" is set in inputMsg, "context" is used as hidden context on the following requests to the llama.cpp server
- On pressing na Escape button sends command "escapePressed" to the parent

Example handling from the parent html side:
- Send command "setText" from parent html to webui in iframe:
const iframe = document.getElementById('askAiIframe');
if (iframe) {
	iframe.contentWindow.postMessage({ command: 'setText', text: text, context: context }, '*');
}

- Listen for Escape key from webui on parent html:
// Listen for escape key event in the iframe
window.addEventListener('keydown', (event) => {
	if (event.key === 'Escape') {
		// Process case when Escape is pressed inside webui
	}
});

* Move the extraContext from storage to app.context.

* Fix formatting.

* add Message.extra

* format + build

* MessageExtraContext

* build

* fix display

* rm console.log

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-18 23:01:44 +01:00
Olivier Chafik
63e489c025 tool-call: refactor common chat / tool-call api (+ tests / fixes) (#11900)
* tool-call refactoring: moved common_chat_* to chat.h, common_chat_templates_init return a unique_ptr to opaque type

* addressed clang-tidy lints in [test-]chat.*

* rm minja deps from util & common & move it to common/minja/

* add name & tool_call_id to common_chat_msg

* add common_chat_tool

* added json <-> tools, msgs conversions to chat.h

* fix double bos/eos jinja avoidance hack (was preventing inner bos/eos tokens)

* fix deepseek r1 slow test (no longer <think> opening w/ new template)

* allow empty tools w/ auto + grammar

* fix & test server grammar & json_schema params w/ & w/o --jinja
2025-02-18 18:03:23 +00:00
Xuan-Son Nguyen
63ac128563 server : add TEI API format for /rerank endpoint (#11942)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* server : add TEI API format for /rerank endpoint

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix

* also gitignore examples/server/*.gz.hpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-18 14:21:41 +01:00
MoonRide303
5137da7b8c scripts: corrected encoding when getting chat template (#11866) (#11907)
Signed-off-by: MoonRide303 <moonride303@gmail.com>
2025-02-18 10:30:16 +01:00
xiaobing318
09aaf4f1f5 docs : Fix duplicated file extension in test command (#11935)
This commit fixes an issue in the llama.cpp project where the command for testing the llama-server object contained a duplicated file extension. The original command was:
./tests.sh unit/test_chat_completion.py.py -v -x
It has been corrected to:
./tests.sh unit/test_chat_completion.py -v -x
This change ensures that the test script correctly locates and executes the intended test file, preventing test failures due to an incorrect file name.
2025-02-18 10:12:49 +01:00
Johannes Gäßler
73e2ed3ce3 CUDA: use async data loading for FlashAttention (#11894)
* CUDA: use async data loading for FlashAttention

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-17 14:03:24 +01:00
Eve
f7b1116af1 update release requirements (#11897) 2025-02-17 12:20:23 +01:00
Antoine Viallon
c4d29baf32 server : fix divide-by-zero in metrics reporting (#11915) 2025-02-17 11:25:12 +01:00
Rémy O
2eea03d86a vulkan: implement several ops relevant for ggml_opt (#11769)
* vulkan: support memset_tensor

* vulkan: support GGML_OP_SUM

* vulkan: implement GGML_OP_ARGMAX

* vulkan: implement GGML_OP_SUB

* vulkan: implement GGML_OP_COUNT_EQUAL

* vulkan: implement GGML_OP_OPT_STEP_ADAMW

* vulkan: fix check_results RWKV_WKV6 crash and memory leaks

* vulkan: implement GGML_OP_REPEAT_BACK

* tests: remove invalid test-backend-ops REPEAT_BACK tests

* vulkan: fix COUNT_EQUAL memset using a fillBuffer command
2025-02-17 07:55:57 +01:00
Xuan-Son Nguyen
0f2bbe6564 server : bump httplib to 0.19.0 (#11908) 2025-02-16 17:11:22 +00:00
standby24x7
fe163d5bf3 common : Fix a typo in help (#11899)
This patch fixes a typo in command help.
prefx -> prefix

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2025-02-16 10:51:13 +01:00
Xuan-Son Nguyen
818a340ea8 ci : fix (again) arm64 build fails (#11895)
* docker : attempt fixing arm64 build on ci

* qemu v7.0.0-28
2025-02-16 10:36:39 +01:00
Jeff Bolz
bf42a23d0a vulkan: support multi/vision rope, and noncontiguous rope (#11902) 2025-02-16 08:52:23 +01:00
331 changed files with 42903 additions and 21226 deletions

View File

@@ -173,7 +173,15 @@ jobs:
name: llama-bin-macos-x64.zip
ubuntu-cpu-cmake:
runs-on: ubuntu-22.04
strategy:
matrix:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
runs-on: ${{ matrix.os }}
steps:
- name: Clone
@@ -239,14 +247,14 @@ jobs:
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
name: llama-bin-ubuntu-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -374,6 +382,8 @@ jobs:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
@@ -457,6 +467,7 @@ jobs:
run: |
cmake -B build -S . \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
@@ -466,6 +477,7 @@ jobs:
cmake -B build2 -S . \
-DCMAKE_C_COMPILER=hipcc \
-DCMAKE_CXX_COMPILER=hipcc \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
@@ -664,6 +676,35 @@ jobs:
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-cmake-visionos:
runs-on: macos-latest
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
sysctl -a
cmake -B build -G Xcode \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_DEPLOYMENT_TARGET=1.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
macOS-latest-swift:
runs-on: macos-latest
@@ -700,12 +741,11 @@ jobs:
-DLLAMA_BUILD_SERVER=OFF \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64"
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
sudo cmake --install build --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama-Package -destination "${{ matrix.destination }}"
./build-xcframework.sh
windows-msys2:
runs-on: windows-latest
@@ -763,7 +803,7 @@ jobs:
env:
OPENBLAS_VERSION: 0.3.23
SDE_VERSION: 9.33.0-2024-01-07
VULKAN_VERSION: 1.3.261.1
VULKAN_VERSION: 1.4.304.1
strategy:
matrix:
@@ -1193,6 +1233,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: Install
id: depends
run: |
@@ -1222,8 +1267,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
@@ -1242,6 +1289,11 @@ jobs:
with:
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: hendrikmuhs/ccache-action@v1.2.16
with:
@@ -1271,8 +1323,10 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
@@ -1311,6 +1365,8 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Build
id: cmake_build
@@ -1326,15 +1382,40 @@ jobs:
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0 \
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu) -- CODE_SIGNING_ALLOWED=NO
sudo cmake --install build --config Release
- name: xcodebuild for swift package
id: xcodebuild
run: |
xcodebuild -scheme llama-Package -destination 'generic/platform=iOS'
./build-xcframework.sh
- name: Build Xcode project
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' build
run: xcodebuild -project examples/llama.swiftui/llama.swiftui.xcodeproj -scheme llama.swiftui -sdk iphoneos CODE_SIGNING_REQUIRED=NO CODE_SIGN_IDENTITY= -destination 'generic/platform=iOS' FRAMEWORK_FOLDER_PATH=./build-ios build
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
else
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
fi
- name: Pack artifacts
id: pack_artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
- name: Upload artifacts
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
android-build:
runs-on: ubuntu-latest
@@ -1373,8 +1454,10 @@ jobs:
needs:
- ubuntu-cpu-cmake
- ubuntu-22-cmake-vulkan
- windows-latest-cmake
- windows-2019-cmake-cuda
- windows-latest-cmake-sycl
- windows-latest-cmake-hip-release
- macOS-latest-cmake-arm64
- macOS-latest-cmake-x64

View File

@@ -51,6 +51,8 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -161,6 +161,8 @@ jobs:
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd examples/server/tests
./tests.sh

3
.gitignore vendored
View File

@@ -45,6 +45,8 @@ lcov-report/
tags
.build/
build*
release
debug
!build-info.cmake
!build-info.cpp.in
!build-info.sh
@@ -98,6 +100,7 @@ examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
examples/server/*.gz.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts

61
AUTHORS
View File

@@ -1,4 +1,4 @@
# date: Tue Feb 4 13:04:05 EET 2025
# date: Sat Mar 8 18:23:52 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@@ -8,10 +8,12 @@
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
708-145 <40387547+708-145@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abheek Gulati <abheekg@hotmail.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
@@ -20,6 +22,7 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Adrian Kretz <me@akretz.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
@@ -28,15 +31,18 @@ AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshan@menlo.ai>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Brooks <alex.brooks@ibm.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
@@ -67,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antoine Viallon <antoine@lesviallon.fr>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
@@ -83,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
BB-fat <45072480+BB-fat@users.noreply.github.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
@@ -101,6 +109,7 @@ Bert Wagner <github@bertwagner.com>
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodhi <3882561+BodhiHu@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
@@ -128,6 +137,7 @@ CentricStorm <CentricStorm@users.noreply.github.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Duffy <charles@dyfis.net>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
@@ -139,12 +149,14 @@ Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Fillion <cfillion@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clauszy <zhangyub@uniontech.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
Corentin REGAL <corentin.regal@gmail.com>
@@ -163,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Danny Milosavljevic <dannym@friendly-machines.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
@@ -170,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Huang <1969802+hjc4869@users.noreply.github.com>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
@@ -236,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Florent BENOIT <fbenoit@redhat.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
@@ -254,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gian-Carlo Pascutto <gcp@sjeng.org>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
@@ -267,7 +283,9 @@ Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hale Chan <halechan@qq.com>
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
Han Yin <han.yin@arm.com>
HanishKVC <hanishkvc@gmail.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
@@ -278,6 +296,7 @@ Haus1 <haus.xda@gmail.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Henry Linjamäki <henry.linjamaki@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
HimariO <dsfhe49854@gmail.com>
@@ -307,6 +326,7 @@ Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JC <43374599+MrSMlT@users.noreply.github.com>
JFLFY2255 <JFLFY2255@163.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
@@ -325,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason C.H <ctrysbita@outlook.com>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
@@ -342,6 +363,7 @@ Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jinyang He <hejinyang@loongson.cn>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
@@ -379,6 +401,7 @@ Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Kante Yin <kerthcet@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
@@ -419,6 +442,7 @@ LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
Lucas Moura Belo <lucas.belo@live.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
@@ -463,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
@@ -494,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
@@ -524,6 +550,7 @@ Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Nuno <rare-magma@posteo.eu>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
@@ -533,6 +560,7 @@ PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Patrick Peng <retr0@retr0.blog>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
@@ -549,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
PureJourney <edward.pong@qq.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
@@ -564,14 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Rémy O <remyoudompheng@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Reza Kakhki <rezakakhki.de@gmail.com>
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riccardo Orlando <Riccorl@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard <r-burton@hotmail.co.uk>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@@ -588,6 +620,7 @@ Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Rohanjames1997 <rohan.james4@gmail.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
@@ -610,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SAMI <samuel.koesnadi@stud.uni-due.de>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
@@ -634,6 +668,8 @@ Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
Sheldon Robinson <sheldon.robinson@live.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
@@ -713,18 +749,24 @@ Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vitali Lovich <vlovich+github@gmail.com>
Vivian <vynride@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
Wagner Bruna <wbruna@users.noreply.github.com>
Wang Qin <37098874+wangqin0@users.noreply.github.com>
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Weizhao Ouyang <o451686892@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
@@ -816,6 +858,8 @@ chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cmdr2 <secondary.cmdr2@gmail.com>
cmdr2 <shashank.shekhar.global@gmail.com>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
codezjx <code.zjx@gmail.com>
coezbek <c.oezbek@gmail.com>
@@ -835,6 +879,7 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <dm4@secondstate.io>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
@@ -849,6 +894,7 @@ fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
gn64 <yukikaze.jp@gmail.com>
@@ -873,6 +919,7 @@ hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igardev <49397134+igardev@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
@@ -880,6 +927,7 @@ issixx <46835150+issixx@users.noreply.github.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jason_w <jason.wang@126.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiahao su <damow890@gmail.com>
jiez <373447296@qq.com>
@@ -891,6 +939,7 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jukofyork <69222624+jukofyork@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
@@ -925,6 +974,7 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
magicse <magicse@users.noreply.github.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
@@ -935,6 +985,7 @@ matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
midnight <midnightmagic@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
@@ -958,10 +1009,12 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
peidaqi <peidaqi@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
petterreinholdtsen <pere-github@hungry.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
@@ -983,6 +1036,7 @@ semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
simon886212 <37953122+simon886212@users.noreply.github.com>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
@@ -1000,10 +1054,12 @@ tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
theraininsky <76763719+theraininsky@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
@@ -1014,6 +1070,7 @@ valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vmobilis <75476228+vmobilis@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
@@ -1028,6 +1085,8 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
xiaofei <hbuxiaofei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
ymcki <84055651+ymcki@users.noreply.github.com>

View File

@@ -29,6 +29,8 @@ else()
set(LLAMA_STANDALONE OFF)
endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -145,7 +147,13 @@ endif()
# 3rd-party
#
if (NOT TARGET ggml)
if (LLAMA_USE_SYSTEM_GGML)
message(STATUS "Using system-provided libggml, skipping ggml build")
find_package(ggml REQUIRED)
add_library(ggml ALIAS ggml::ggml)
endif()
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()

View File

@@ -1,10 +1,12 @@
# Pull requests (for contributors)
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
- Test your changes:
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
@@ -37,7 +39,7 @@
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$

View File

@@ -680,6 +680,10 @@ ifdef GGML_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(GGML_CUDA_CCBIN)
endif # GGML_CUDA_CCBIN
ifdef GGML_CUDA_NO_FA
MK_NVCCFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
ifdef GGML_CUDA_FA_ALL_QUANTS
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
@@ -800,6 +804,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_NO_FA
HIPFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
@@ -828,7 +836,7 @@ ifdef GGML_MUSA
else
MUSA_PATH ?= /opt/musa
endif
MUSA_ARCHITECTURES ?= 21;22
MUSA_ARCHITECTURES ?= 21;22;31
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
@@ -847,7 +855,7 @@ ifdef GGML_MUSA
CXX := $(MUSA_PATH)/bin/clang++
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
MUSAFLAGS = -x musa -mtgpu
MUSAFLAGS = -fsigned-char -x musa -mtgpu
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
ifdef GGML_CUDA_FORCE_MMQ
@@ -876,6 +884,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_NO_FA
MUSAFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
ifdef GGML_CUDA_FA_ALL_QUANTS
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
@@ -1364,7 +1376,7 @@ llama-server: \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
common/chat.cpp \
common/chat.hpp \
common/chat.h \
common/chat-template.hpp \
common/json.hpp \
common/minja.hpp \

View File

@@ -1,19 +0,0 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "llama",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "llama", targets: ["llama"]),
],
targets: [
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
)

View File

@@ -5,7 +5,7 @@
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggml-org/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
@@ -25,7 +25,7 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Universal tool call support in `llama-server`: https://github.com/ggml-org/llama.cpp/pull/9639
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
@@ -157,6 +157,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
</details>
@@ -171,6 +172,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
@@ -219,7 +221,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
- [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
</details>
<details>

View File

@@ -1,4 +0,0 @@
#pragma once
#include <llama.h>

View File

@@ -1,5 +0,0 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

519
build-xcframework.sh Executable file
View File

@@ -0,0 +1,519 @@
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
MACOS_MIN_OS_VERSION=13.3
VISIONOS_MIN_OS_VERSION=1.0
TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
LLAMA_BUILD_EXAMPLES=OFF
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_SERVER=OFF
GGML_METAL=ON
GGML_METAL_EMBED_LIBRARY=ON
GGML_BLAS_DEFAULT=ON
GGML_METAL_USE_BF16=ON
GGML_OPENMP=OFF
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
# Common options for all builds
COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
-DGGML_METAL=${GGML_METAL}
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
-DGGML_NATIVE=OFF
-DGGML_OPENMP=${GGML_OPENMP}
)
check_required_tool() {
local tool=$1
local install_message=$2
if ! command -v $tool &> /dev/null; then
echo "Error: $tool is required but not found."
echo "$install_message"
exit 1
fi
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
set -e
## Clean up previous builds
rm -rf build-apple
rm -rf build-ios-sim
rm -rf build-ios-device
rm -rf build-macos
rm -rf build-visionos
rm -rf build-visionos-sim
rm -rf build-tvos-sim
rm -rf build-tvos-device
# Setup the xcframework build directory structure
setup_framework_structure() {
local build_dir=$1
local min_os_version=$2
local platform=$3 # "ios", "macos", "visionos", or "tvos"
local framework_name="llama"
echo "Creating ${platform}-style framework structure for ${build_dir}"
if [[ "$platform" == "macos" ]]; then
# macOS versioned structure uses versioned directories
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
# Create symbolic links
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
else
# iOS/VisionOS/tvOS use a flat structure
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
# Remove any existing structure to ensure clean build
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
fi
# Copy all required headers (common for all platforms)
cp include/llama.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
cp ggml/include/ggml-metal.h ${header_path}
cp ggml/include/ggml-cpu.h ${header_path}
cp ggml/include/ggml-blas.h ${header_path}
cp ggml/include/gguf.h ${header_path}
# Create module map (common for all platforms)
cat > ${module_path}module.modulemap << EOF
framework module llama {
header "llama.h"
header "ggml.h"
header "ggml-alloc.h"
header "ggml-backend.h"
header "ggml-metal.h"
header "ggml-cpu.h"
header "ggml-blas.h"
header "gguf.h"
link "c++"
link framework "Accelerate"
link framework "Metal"
link framework "Foundation"
export *
}
EOF
# Platform-specific settings for Info.plist
local platform_name=""
local sdk_name=""
local supported_platform=""
case "$platform" in
"ios")
platform_name="iphoneos"
sdk_name="iphoneos${min_os_version}"
supported_platform="iPhoneOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>1</integer>
<integer>2</integer>
</array>'
;;
"macos")
platform_name="macosx"
sdk_name="macosx${min_os_version}"
supported_platform="MacOSX"
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
local device_family=""
;;
"visionos")
platform_name="xros"
sdk_name="xros${min_os_version}"
supported_platform="XRPlatform"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=""
;;
"tvos")
platform_name="appletvos"
sdk_name="appletvos${min_os_version}"
supported_platform="AppleTVOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>3</integer>
</array>'
;;
esac
# Create Info.plist
cat > ${plist_path} << EOF
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleExecutable</key>
<string>llama</string>
<key>CFBundleIdentifier</key>
<string>org.ggml.llama</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>llama</string>
<key>CFBundlePackageType</key>
<string>FMWK</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>MinimumOSVersion</key>
<string>${min_os_version}</string>
<key>CFBundleSupportedPlatforms</key>
<array>
<string>${supported_platform}</string>
</array>${device_family}
<key>DTPlatformName</key>
<string>${platform_name}</string>
<key>DTSDKName</key>
<string>${sdk_name}</string>
</dict>
</plist>
EOF
}
# Create dynamic libraries from static libraries.
combine_static_libraries() {
local build_dir="$1"
local release_dir="$2"
local platform="$3" # "ios", "macos", "visionos", or "tvos"
local is_simulator="$4"
local base_dir="$(pwd)"
local framework_name="llama"
# Determine output path based on platform
local output_lib=""
if [[ "$platform" == "macos" ]]; then
# macOS uses versioned structure
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
else
# iOS, visionOS, and tvOS use a directory flat structure
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
fi
local libs=(
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
local archs=""
local min_version_flag=""
local install_name=""
case "$platform" in
"ios")
if [[ "$is_simulator" == "true" ]]; then
sdk="iphonesimulator"
archs="arm64 x86_64"
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
else
sdk="iphoneos"
archs="arm64"
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/llama.framework/Versions/Current/llama"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
sdk="xrsimulator"
archs="arm64 x86_64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
else
sdk="xros"
archs="arm64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
fi
# Use flat structure for visionOS, same as iOS
install_name="@rpath/llama.framework/llama"
;;
"tvos")
if [[ "$is_simulator" == "true" ]]; then
sdk="appletvsimulator"
archs="arm64 x86_64"
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
else
sdk="appletvos"
archs="arm64"
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
esac
# Build architecture flags
local arch_flags=""
for arch in $archs; do
arch_flags+=" -arch $arch"
done
# Create dynamic library
echo "Creating dynamic library for ${platform}."
xcrun -sdk $sdk clang++ -dynamiclib \
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
-framework Foundation -framework Metal -framework Accelerate \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
vtool -set-build-version xros ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
else
echo "Warning: vtool not found. Binary may not pass App Store validation."
fi
fi
echo "Creating properly formatted dSYM..."
# Create a separate directory for dSYMs for all platforms
mkdir -p "${base_dir}/${build_dir}/dSYMs"
# iOS and visionOS style dSYM (flat structure)
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Create a copy of the binary that will be stripped
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
# Strip debug symbols from the copy
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
# Replace the original with the stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
else
# macOS style dSYM
# First strip debug info to a separate file
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Replace original binary with stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
fi
# Remove any automatically generated dSYM files in the framework structure as they will
# otherwise case Invalid Bundle Structure validation errors.
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
rm -rf "${base_dir}/${output_lib}.dSYM"
fi
# Clean up
rm -rf "${temp_dir}"
}
echo "Building for iOS simulator..."
cmake -B build-ios-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DIOS=ON \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphonesimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-sim --config Release -- -quiet
echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-ios-device --config Release -- -quiet
echo "Building for macOS..."
cmake -B build-macos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-macos --config Release -- -quiet
echo "Building for visionOS..."
cmake -B build-visionos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos --config Release -- -quiet
echo "Building for visionOS simulator..."
cmake -B build-visionos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
echo "Building for tvOS simulator..."
cmake -B build-tvos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvsimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
echo "Building for tvOS devices..."
cmake -B build-tvos-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-S .
cmake --build build-tvos-device --config Release -- -quiet
# Setup frameworks and copy binaries and headers
echo "Setting up framework structures..."
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
# Create dynamic libraries from static libraries
echo "Creating dynamic libraries from static libraries..."
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
combine_static_libraries "build-macos" "Release" "macos" "false"
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-ios-device/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-macos/framework/llama.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
-framework $(pwd)/build-visionos/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-device/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
-output $(pwd)/build-apple/llama.xcframework

View File

@@ -352,10 +352,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"

View File

@@ -1,3 +1,5 @@
include("ggml/cmake/common.cmake")
function(llama_add_compile_flags)
if (LLAMA_FATAL_WARNINGS)
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")

View File

@@ -57,8 +57,7 @@ add_library(${TARGET} STATIC
arg.h
base64.hpp
chat.cpp
chat.hpp
chat-template.hpp
chat.h
common.cpp
common.h
console.cpp
@@ -68,7 +67,8 @@ add_library(${TARGET} STATIC
llguidance.cpp
log.cpp
log.h
minja.hpp
minja/chat-template.hpp
minja/minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp

View File

@@ -2,6 +2,7 @@
#include "log.h"
#include "sampling.h"
#include "chat.h"
#include <algorithm>
#include <climits>
@@ -763,7 +764,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_CTX_SIZE"));
add_opt(common_arg(
{"-n", "--predict", "--n-predict"}, "N",
string_format("number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict),
string_format(
ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
: "number of tokens to predict (default: %d, -1 = infinity)",
params.n_predict),
[](common_params & params, int value) {
params.n_predict = value;
}
@@ -812,13 +817,18 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
{"-p", "--prompt"}, "PROMPT",
ex == LLAMA_EXAMPLE_MAIN
? "prompt to start generation with\nif -cnv is set, this will be used as system prompt"
: "prompt to start generation with",
"prompt to start generation with; for system message, use -sys",
[](common_params & params, const std::string & value) {
params.prompt = value;
}
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-sys", "--system-prompt"}, "PROMPT",
"system prompt to use with model (if applicable, depending on chat template)",
[](common_params & params, const std::string & value) {
params.system_prompt = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--no-perf"},
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
@@ -843,6 +853,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-sysf", "--system-prompt-file"}, "FNAME",
"a file containing the system prompt (default: none)",
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.system_prompt));
if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
params.system_prompt.pop_back();
}
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"--in-file"}, "FNAME",
"an input file (repeat to specify multiple files)",
@@ -943,6 +967,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-st", "--single-turn"},
"run conversation for a single turn only, then exit when done\n"
"will not be interactive if first turn is predefined with --prompt\n"
"(default: false)",
[](common_params & params) {
params.single_turn = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-i", "--interactive"},
string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
@@ -1852,18 +1885,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_PASSKEY}));
add_opt(common_arg(
{"-o", "--output", "--output-file"}, "FNAME",
string_format("output file (default: '%s')",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? params.lora_outfile.c_str()
: ex == LLAMA_EXAMPLE_CVECTOR_GENERATOR
? params.cvector_outfile.c_str()
: params.out_file.c_str()),
string_format("output file (default: '%s')", params.out_file.c_str()),
[](common_params & params, const std::string & value) {
params.out_file = value;
params.cvector_outfile = value;
params.lora_outfile = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
add_opt(common_arg(
{"-ofreq", "--output-frequency"}, "N",
string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
@@ -2247,7 +2273,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_LOG_VERBOSITY"));
add_opt(common_arg(
{"--log-prefix"},
"Enable prefx in log messages",
"Enable prefix in log messages",
[](common_params &) {
common_log_set_prefix(common_log_main(), true);
}
@@ -2446,6 +2472,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.vocoder.use_guide_tokens = true;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--tts-speaker-file"}, "FNAME",
"speaker file path for audio generation",
[](common_params & params, const std::string & value) {
params.vocoder.speaker_file = value;
}
).set_examples({LLAMA_EXAMPLE_TTS}));
// model-specific
add_opt(common_arg(
@@ -2501,5 +2534,91 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-1.5b-default"},
string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-3b-default"},
string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-7b-default"},
string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-7b-spec"},
string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--fim-qwen-14b-spec"},
string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
[](common_params & params) {
params.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.n_gpu_layers = 99;
params.port = 8012;
params.n_gpu_layers = 99;
params.flash_attn = true;
params.n_ubatch = 1024;
params.n_batch = 1024;
params.n_ctx = 0;
params.n_cache_reuse = 256;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
return ctx_arg;
}

File diff suppressed because it is too large Load Diff

135
common/chat.h Normal file
View File

@@ -0,0 +1,135 @@
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
#pragma once
#include "common.h"
#include <string>
#include <vector>
struct common_chat_templates;
struct common_chat_tool_call {
std::string name;
std::string arguments;
std::string id;
};
struct common_chat_msg_content_part {
std::string type;
std::string text;
};
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_chat_msg_content_part> content_parts = {};
std::vector<common_chat_tool_call> tool_calls = {};
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
};
struct common_chat_tool {
std::string name;
std::string description;
std::string parameters;
};
enum common_chat_tool_choice {
COMMON_CHAT_TOOL_CHOICE_AUTO,
COMMON_CHAT_TOOL_CHOICE_REQUIRED,
COMMON_CHAT_TOOL_CHOICE_NONE,
};
enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
struct common_chat_templates_inputs {
std::vector<common_chat_msg> messages;
std::string grammar;
std::string json_schema;
bool add_generation_prompt = true;
bool use_jinja = true;
// Parameters below only supported when use_jinja is true
std::vector<common_chat_tool> tools;
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
bool parallel_tool_calls = false;
bool extract_reasoning = true;
};
struct common_chat_params {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
std::string prompt;
std::string grammar;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
void common_chat_templates_free(struct common_chat_templates * tmpls);
struct common_chat_templates_deleter { void operator()(common_chat_templates * tmpls) { common_chat_templates_free(tmpls); } };
typedef std::unique_ptr<struct common_chat_templates, common_chat_templates_deleter> common_chat_templates_ptr;
common_chat_templates_ptr common_chat_templates_init(
const struct llama_model * model,
const std::string & chat_template_override,
const std::string & bos_token_override = "",
const std::string & eos_token_override = "");
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls);
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant = nullptr);
struct common_chat_params common_chat_templates_apply(
const struct common_chat_templates * tmpls,
const struct common_chat_templates_inputs & inputs);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(
const struct common_chat_templates * tmpls,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(
const struct common_chat_templates * tmpls,
bool use_jinja);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
// Parses a JSON array of tools in OpenAI's chat completion tool call API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);

View File

@@ -1,55 +0,0 @@
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
#pragma once
#include "common.h"
#include <json.hpp>
#include <optional>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
struct common_chat_inputs {
json messages;
json tools;
json tool_choice;
json json_schema;
bool parallel_tool_calls;
bool stream;
std::string grammar;
bool add_generation_prompt = true;
bool extract_reasoning = true;
};
enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
struct common_chat_params {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
json prompt;
std::string grammar;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
struct common_chat_params common_chat_params_init(const common_chat_template & tmpl, const struct common_chat_inputs & params);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);

View File

@@ -10,10 +10,7 @@
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "chat.hpp"
#include "chat-template.hpp"
#include <algorithm>
#include <cinttypes>
@@ -485,6 +482,11 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$0");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
@@ -953,8 +955,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -1031,6 +1033,8 @@ struct common_init_result common_init_from_params(common_params & params) {
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
llama_set_warmup(lctx, true);
std::vector<llama_token> tmp;
llama_token bos = llama_vocab_bos(vocab);
llama_token eos = llama_vocab_eos(vocab);
@@ -1058,9 +1062,10 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_cache_clear(lctx);
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
@@ -1768,174 +1773,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
return text;
}
//
// Chat template utils
//
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
if (use_jinja) {
try {
auto chat_template = common_chat_template(tmpl, "<s>", "</s>");
common_chat_inputs inputs;
inputs.messages = json::array({{
{"role", "user"},
{"content", "test"},
}});
common_chat_params_init(chat_template, inputs);
return true;
} catch (const std::exception & e) {
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
return false;
}
}
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & msgs,
bool add_ass,
bool use_jinja) {
if (use_jinja) {
auto messages = json::array();
for (const auto & msg : msgs) {
messages.push_back({{"role", msg.role}, {"content", msg.content}});
}
common_chat_inputs inputs;
inputs.messages = messages;
inputs.add_generation_prompt = add_ass;
return common_chat_params_init(tmpl, inputs).prompt;
}
int alloc_size = 0;
std::vector<llama_chat_message> chat;
for (const auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass,
bool use_jinja) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(tmpl, past_msg, false, use_jinja);
std::vector<common_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
ss << "\n";
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = common_chat_apply_template(tmpl, chat_new, add_ass, use_jinja);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string common_chat_format_example(const common_chat_template & tmpl, bool use_jinja) {
std::vector<common_chat_msg> msgs = {
{"system", "You are a helpful assistant", {}},
{"user", "Hello", {}},
{"assistant", "Hi there", {}},
{"user", "How are you?", {}},
};
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
}
#define CHATML_TEMPLATE_SRC \
"{%- for message in messages -%}\n" \
" {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' -}}\n" \
"{%- endfor -%}\n" \
"{%- if add_generation_prompt -%}\n" \
" {{- '<|im_start|>assistant\n' -}}\n" \
"{%- endif -%}"
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
{
std::string default_template_src;
std::string template_tool_use_src;
bool has_explicit_template = !chat_template_override.empty();
if (chat_template_override.empty()) {
auto str = llama_model_chat_template(model, /* name */ nullptr);
if (str) {
default_template_src = str;
has_explicit_template = true;
}
str = llama_model_chat_template(model, /* name */ "tool_use");
if (str) {
template_tool_use_src = str;
has_explicit_template = true;
}
} else {
default_template_src = chat_template_override;
}
if (default_template_src.empty() || default_template_src == "chatml") {
if (!template_tool_use_src.empty()) {
default_template_src = template_tool_use_src;
} else {
default_template_src = CHATML_TEMPLATE_SRC;
}
}
auto vocab = llama_model_get_vocab(model);
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
if (token == LLAMA_TOKEN_NULL) {
if (default_template_src.find(jinja_variable_name) != std::string::npos
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
LOG_WRN("%s: warning: vocab does not have a %s token, jinja template won't work as intended.\n", __func__, name);
}
return std::string();
} else {
return common_token_to_piece(vocab, token, true);
}
};
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
try {
return {
has_explicit_template,
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
template_tool_use_src.empty()
? nullptr
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos),
};
} catch (const std::exception & e) {
LOG_ERR("%s: failed to parse chat template: %s\n", __func__, e.what());
return {
has_explicit_template,
std::make_unique<minja::chat_template>(CHATML_TEMPLATE_SRC, token_bos, token_eos),
nullptr,
};
}
}
//
// KV cache utils
//
@@ -2196,3 +2033,25 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
template <>
json common_grammar_trigger::to_json() const {
json out {
{"type", (int) type},
{"value", value},
};
if (type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) token;
}
return out;
}
template <>
common_grammar_trigger common_grammar_trigger::from_json(const json & in) {
common_grammar_trigger out;
out.type = (common_grammar_trigger_type) in.at("type").get<int>();
out.value = in.at("value").get<std::string>();
if (out.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out.token = (llama_token) in.at("token").get<int>();
}
return out;
}

View File

@@ -110,9 +110,21 @@ enum common_conversation_mode {
COMMON_CONVERSATION_MODE_AUTO = 2,
};
enum common_grammar_trigger_type {
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
};
struct common_grammar_trigger {
std::string word;
bool at_start;
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
// T can only be nlohmann::ordered_json
template <class T> T to_json() const;
template <class T> static common_grammar_trigger from_json(const T & in);
};
// sampling parameters
@@ -163,8 +175,7 @@ struct common_params_sampling {
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_trigger_words; // optional trigger words to trigger lazy grammar
std::vector<llama_token> grammar_trigger_tokens; // optional trigger tokens to trigger lazy grammar and print trigger special tokens.
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
@@ -178,10 +189,10 @@ struct common_params_speculative {
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
@@ -200,6 +211,8 @@ struct common_params_vocoder {
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string speaker_file = ""; // speaker file path // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
@@ -261,6 +274,7 @@ struct common_params {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
@@ -325,6 +339,8 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool single_turn = false; // single turn chat conversation
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
@@ -391,8 +407,6 @@ struct common_params {
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
@@ -404,16 +418,16 @@ struct common_params {
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
// common params
std::string out_file; // output filename for all example programs
};
// call once at the start of a program if it uses libcommon
@@ -453,6 +467,8 @@ std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
std::string regex_escape(const std::string & s);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
@@ -616,62 +632,6 @@ std::string common_detokenize(
const std::vector<llama_token> & tokens,
bool special = true);
//
// Chat template utils
//
struct common_tool_call {
std::string name;
std::string arguments;
std::string id;
};
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_tool_call> tool_calls;
std::string reasoning_content = "";
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
namespace minja {
class chat_template;
}
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
};
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass,
bool use_jinja);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(
const common_chat_template & tmpl, bool use_jinja);
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
//
// KV cache utils
//

View File

@@ -264,7 +264,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
throw std::runtime_error("At least one of min_value or max_value must be set");
}
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
struct BuiltinRule {
std::string content;
@@ -764,11 +764,10 @@ private:
public:
SchemaConverter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall,
bool compact_spaces)
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
{
_rules["space"] = compact_spaces ? "\" \"?" : SPACE_RULE;
_rules["space"] = SPACE_RULE;
}
void resolve_refs(json & schema, const std::string & url) {
@@ -1007,7 +1006,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall, options.compact_spaces);
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@@ -16,7 +16,6 @@ struct common_grammar_builder {
struct common_grammar_options {
bool dotall = false;
bool compact_spaces = false;
};
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1378,13 +1378,27 @@ struct ArgumentsExpression {
}
};
static std::string strip(const std::string & s) {
auto start = s.find_first_not_of(" \t\n\r");
static std::string strip(const std::string & s, const std::string & chars = "", bool left = true, bool right = true) {
auto charset = chars.empty() ? " \t\n\r" : chars;
auto start = left ? s.find_first_not_of(charset) : 0;
if (start == std::string::npos) return "";
auto end = s.find_last_not_of(" \t\n\r");
auto end = right ? s.find_last_not_of(charset) : s.size() - 1;
return s.substr(start, end - start + 1);
}
static std::vector<std::string> split(const std::string & s, const std::string & sep) {
std::vector<std::string> result;
size_t start = 0;
size_t end = s.find(sep);
while (end != std::string::npos) {
result.push_back(s.substr(start, end - start));
start = end + sep.length();
end = s.find(sep, start);
}
result.push_back(s.substr(start));
return result;
}
static std::string capitalize(const std::string & s) {
if (s.empty()) return s;
auto result = s;
@@ -1467,8 +1481,26 @@ public:
} else if (obj.is_string()) {
auto str = obj.get<std::string>();
if (method->get_name() == "strip") {
vargs.expectArgs("strip method", {0, 0}, {0, 0});
return Value(strip(str));
vargs.expectArgs("strip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars));
} else if (method->get_name() == "lstrip") {
vargs.expectArgs("lstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ true, /* right= */ false));
} else if (method->get_name() == "rstrip") {
vargs.expectArgs("rstrip method", {0, 1}, {0, 0});
auto chars = vargs.args.empty() ? "" : vargs.args[0].get<std::string>();
return Value(strip(str, chars, /* left= */ false, /* right= */ true));
} else if (method->get_name() == "split") {
vargs.expectArgs("split method", {1, 1}, {0, 0});
auto sep = vargs.args[0].get<std::string>();
auto parts = split(str, sep);
Value result = Value::array();
for (const auto& part : parts) {
result.push_back(Value(part));
}
return result;
} else if (method->get_name() == "capitalize") {
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
return Value(capitalize(str));

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <fstream>
#include <thread>
#include <algorithm>
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {

View File

@@ -4,6 +4,7 @@
#include <cmath>
#include <unordered_map>
#include <algorithm>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -159,16 +160,53 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<const char *> trigger_words;
trigger_words.reserve(params.grammar_trigger_words.size());
for (const auto & str : params.grammar_trigger_words) {
trigger_words.push_back(str.word.c_str());
std::vector<std::string> patterns_at_start;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
switch (trigger.type) {
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
{
const auto & word = trigger.value;
patterns_anywhere.push_back(regex_escape(word));
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
{
const auto & pattern = trigger.value;
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
{
const auto token = trigger.token;
trigger_tokens.push_back(token);
break;
}
default:
GGML_ASSERT(false && "unknown trigger type");
}
}
std::vector<std::string> trigger_patterns;
if (!patterns_at_start.empty()) {
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}
std::vector<const char *> trigger_patterns_c;
trigger_patterns_c.reserve(trigger_patterns.size());
for (const auto & regex : trigger_patterns) {
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy(vocab, params.grammar.c_str(), "root",
trigger_words.data(), trigger_words.size(),
params.grammar_trigger_tokens.data(), params.grammar_trigger_tokens.size())
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}

View File

@@ -5,6 +5,7 @@
#include "sampling.h"
#include <cstring>
#include <algorithm>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
@@ -172,7 +173,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
prompt.clear();
} else {
@@ -191,14 +192,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}
@@ -252,11 +253,6 @@ llama_tokens common_speculative_gen_draft(
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_sampler_accept(smpl, id, true);
result.push_back(id);
@@ -265,6 +261,11 @@ llama_tokens common_speculative_gen_draft(
break;
}
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model

View File

@@ -9,7 +9,7 @@ struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
float p_min = 0.9f; // min probability required to accept a token in the draft
float p_min = 0.75f; // min probability required to accept a token in the draft
};
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);

View File

@@ -180,7 +180,8 @@ class Model:
extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
if len(extra) == 0 and len(missing_files) > 0:
raise ValueError(f"Missing or incomplete model files: {missing_files}")
raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
f"Missing tensors: {missing}")
else:
raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
f"Missing tensors: {missing}\n"
@@ -528,6 +529,8 @@ class Model:
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
added_tokens_decoder = tokenizer.added_tokens_decoder
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
@@ -537,13 +540,13 @@ class Model:
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not tokenizer.added_tokens_decoder[i].normalized:
if not added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
if added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
# NOTE: this was added for Gemma.
@@ -699,6 +702,9 @@ class Model:
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
res = "deepseek-r1-qwen"
if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
# ref: https://huggingface.co/Xenova/gpt-4o
res = "gpt-4o"
if res is None:
logger.warning("\n")
@@ -858,6 +864,9 @@ class Model:
for token_id, token_data in added_tokens_decoder.items():
token_id = int(token_id)
token: str = token_data["content"]
if token_id >= vocab_size:
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
if tokens[token_id] != token.encode("utf-8"):
logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
@@ -902,6 +911,40 @@ class Model:
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_rwkv_world(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
@@ -1059,13 +1102,6 @@ class BloomModel(Model):
tensors.append((self.map_tensor_name(name), data_torch))
if name == "word_embeddings.weight":
assert self.tensor_names is not None
# TODO: tie them at runtime, don't duplicate in the model file
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -1707,6 +1743,25 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = Model.load_hparams(kwargs["dir_model"])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("DeciLMForCausalLM")
class DeciModel(Model):
model_arch = gguf.MODEL_ARCH.DECI
@@ -2364,10 +2419,6 @@ class GPT2Model(Model):
tensors.append((new_name, data_torch))
# note: GPT2 output is tied to (same as) wte in original model
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@@ -2512,7 +2563,8 @@ class Phi3MiniModel(Model):
rms_eps = self.find_hparam(["rms_norm_eps"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
rope_dims = int(rot_pct * n_embd) // n_head
self.gguf_writer.add_context_length(max_pos_embds)
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
@@ -2536,7 +2588,8 @@ class Phi3MiniModel(Model):
n_head = self.find_hparam(["num_attention_heads", "n_head"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head
rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
rope_dims = int(rot_pct * n_embd) // n_head
# write rope scaling for long context (128k) model
rope_scaling = self.find_hparam(['rope_scaling'], True)
@@ -2565,7 +2618,7 @@ class Phi3MiniModel(Model):
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
@@ -2695,21 +2748,26 @@ class CodeShellModel(Model):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
_has_tok_embd = False
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
new_name = self.map_tensor_name(name)
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
# assuming token_embd.weight is seen before output.weight
if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
# even though the tensor file(s) does not contain the word embeddings they are still in the weight map
if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
self.tensor_names.remove("transformer.wte.weight")
elif new_name == tok_embd_name:
self._has_tok_embd = True
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
assert self.tensor_names is not None
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
# copy tok_embd.weight to output.weight
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
return [(new_name, data_torch)]
@Model.register("InternLM2ForCausalLM")
@@ -3317,6 +3375,83 @@ class Gemma2Model(Model):
return [(self.map_tensor_name(name), data_torch)]
@Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
class Gemma3Model(Model):
model_arch = gguf.MODEL_ARCH.GEMMA3
has_vision: bool = False
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = Model.load_hparams(kwargs["dir_model"])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
if "vision_config" in hparams:
logger.info("Has vision encoder, but it will be ignored")
self.has_vision = True
def write(self):
super().write()
if self.has_vision:
logger.info("NOTE: this script only convert the language model to GGUF")
logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
def set_vocab(self):
self._set_vocab_sentencepiece()
self.gguf_writer.add_add_space_prefix(False)
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
# some default values are not specified in the hparams
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
# both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
assert hparams.get("attn_logit_softcapping") is None
assert hparams.get("final_logit_softcapping") is None
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
if hparams.get("rope_scaling") is not None:
assert hparams["rope_scaling"]["rope_type"] == "linear"
# important: this rope_scaling is only applied for global layers, and not used by 1B model
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if name.startswith("language_model."):
name = name.replace("language_model.", "")
elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
# ignore vision tensors
return []
# remove OOV (out-of-vocabulary) rows in token_embd
if "embed_tokens.weight" in name:
vocab = self._create_vocab_sentencepiece()
tokens = vocab[0]
data_torch = data_torch[:len(tokens)]
# ref code in Gemma3RMSNorm
# output = output * (1.0 + self.weight.float())
if name.endswith("norm.weight"):
data_torch = data_torch + 1
return [(self.map_tensor_name(name), data_torch)]
@Model.register("Starcoder2ForCausalLM")
class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
@@ -3327,38 +3462,7 @@ class Rwkv6Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV6
def set_vocab(self):
assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
vocab_size = self.hparams.get("vocab_size", 65536)
tokens: list[bytes] = ['<s>'.encode("utf-8")]
toktypes: list[int] = [gguf.TokenType.CONTROL]
with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
parts = line.split(' ')
assert len(parts) >= 3
token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
token = token.encode("utf-8") if isinstance(token, str) else token
assert isinstance(token, bytes)
assert len(token) == token_len
token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
tokens.append(token_text.encode("utf-8"))
toktypes.append(gguf.TokenType.NORMAL)
remainder = vocab_size - len(tokens)
assert remainder >= 0
for i in range(len(tokens), vocab_size):
tokens.append(f"[PAD{i}]".encode("utf-8"))
toktypes.append(gguf.TokenType.UNUSED)
self.gguf_writer.add_tokenizer_model("rwkv")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.chat_template = "rwkv-world"
# hack: Add '\n\n' as the EOT token to make it chat normally
special_vocab._set_special_token("eot", 261)
special_vocab.add_to_gguf(self.gguf_writer)
self._set_vocab_rwkv_world()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
@@ -3480,6 +3584,168 @@ class RWKV6Qwen2Model(Rwkv6Model):
yield (new_name, data)
@Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
class Rwkv7Model(Model):
model_arch = gguf.MODEL_ARCH.RWKV7
def set_vocab(self):
self._set_vocab_rwkv_world()
def calc_lora_rank(self, hidden_size, exponent, multiplier):
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
try:
head_size = self.hparams["head_size"]
layer_norm_eps = self.hparams["layer_norm_epsilon"]
except KeyError:
head_size = self.hparams["head_dim"]
layer_norm_eps = self.hparams["norm_eps"]
hidden_size = self.hparams["hidden_size"]
intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
# ICLR: In-Context-Learning-Rate
try:
lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
except KeyError:
lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
lerp_weights: dict[int, dict[str, Tensor]] = {}
lora_needs_transpose: bool = True
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# unify tensor names here to make life easier
name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
name = name.replace("self_attn", "attention").replace("attn", "attention")
name = name.replace("time_mixer.", "")
# lora layer names in fla-hub's impl
if "_lora.lora" in name:
self.lora_needs_transpose = False
name = name.replace("_lora.lora.0.weight", "1.weight")
name = name.replace("_lora.lora.2.weight", "2.weight")
name = name.replace("_lora.lora.2.bias", "0.weight")
name = name.replace("feed_forward_norm", "ln2")
name = name.replace("g_norm", "ln_x")
if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
# some models have dummy v0/v1/v2 on first layer while others don't
# ignore them all since they are not used
return
wkv_has_gate = self.hparams.get("wkv_has_gate", True)
lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
if bid is not None and "attention.x_" in name:
if "attention.x_x" in name:
# already concatenated
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
data = data_torch.reshape(len(lerp_list), 1, 1, -1)
yield (new_name, data)
else:
try:
self.lerp_weights[bid][name] = data_torch
except KeyError:
self.lerp_weights[bid] = {name: data_torch}
if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
yield (new_name, data)
return
else:
data_torch = data_torch.squeeze()
new_name = self.map_tensor_name(name)
if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
new_name += ".weight"
if self.lora_needs_transpose and any(
new_name.endswith(t) for t in [
"time_mix_w1.weight", "time_mix_w2.weight",
"time_mix_a1.weight", "time_mix_a2.weight",
"time_mix_v1.weight", "time_mix_v2.weight",
"time_mix_g1.weight", "time_mix_g2.weight",
]
):
data_torch = data_torch.transpose(0, 1)
if 'r_k' in new_name:
data_torch = data_torch.flatten()
if bid == 0 and "time_mix_a" in new_name:
# dummy v0/v1/v2 on first layer
# easist way to make llama happy
yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
yield (new_name, data_torch)
@Model.register("RwkvHybridForCausalLM")
class ARwkv7Model(Rwkv7Model):
model_arch = gguf.MODEL_ARCH.ARWKV7
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
hidden_size = self.hparams["hidden_size"]
head_size = self.hparams["head_size"]
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
wkv_has_gate = self.hparams["wkv_has_gate"]
assert self.hparams["wkv_version"] == 7
# ICLR: In-Context-Learning-Rate
lora_rank_decay = 64
lora_rank_iclr = 64
lora_rank_value_residual_mix = 32
lora_rank_gate = 128 if wkv_has_gate else 0
# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_token_shift_count(1)
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)
@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA

View File

@@ -109,6 +109,7 @@ models = [
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
]
@@ -131,6 +132,10 @@ def download_model(model):
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if name == "gpt-4o":
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
files = ["tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")

View File

@@ -42,6 +42,16 @@ The following release is verified with good quality:
## News
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
|-|-|-|-|
|PVC 1550|39|73|+87%|
|Flex 170|39|50|+28%|
|Arc770|42|55|+30%|
|MTL|13|16|+23%|
|ARL-H|14|17|+21%|
- 2024.11
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
@@ -97,8 +107,8 @@ SYCL backend supports Intel GPU Family:
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
@@ -227,6 +237,15 @@ cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENAB
cmake --build buildWithCublas --config Release
```
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
@@ -317,10 +336,10 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# build all binary
cmake --build build --config Release -j -v
@@ -650,8 +669,9 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
@@ -660,8 +680,11 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues
- `Split-mode:[row]` is not supported.

View File

@@ -197,21 +197,53 @@ The following compilation options are also available to tweak performance:
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
This provides GPU acceleration using a Moore Threads GPU. Make sure to have the [MUSA SDK](https://developer.mthreads.com/musa/musa-sdk) installed.
- Using `CMake`:
#### Download directly from Moore Threads
```bash
cmake -B build -DGGML_MUSA=ON
You may find the official downloads here: [Moore Threads developer site](https://developer.mthreads.com/sdk/download/musa).
### Compilation
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
```
#### Override Compute Capability Specifications
By default, all supported compute capabilities are enabled. To customize this behavior, you can specify the `MUSA_ARCHITECTURES` option in the CMake command:
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
#### Compilation options
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
- For static builds, add `-DBUILD_SHARED_LIBS=OFF` and `-DCMAKE_POSITION_INDEPENDENT_CODE=ON`:
```
cmake -B build -DGGML_MUSA=ON \
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
cmake --build build --config Release
```
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
### Runtime MUSA environmental variables
You may set the [musa environmental variables](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) at runtime.
```bash
# Use `MUSA_VISIBLE_DEVICES` to hide the first compute device.
MUSA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
```
### Unified Memory
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
## HIP
This provides GPU acceleration on HIP-supported AMD GPUs.
@@ -227,6 +259,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
Note that if you get the following error:
```
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library

394
docs/function-calling.md Normal file
View File

@@ -0,0 +1,394 @@
# Function Calling
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
- `llama-server` when started w/ `--jinja` flag
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
## Universal support w/ Native & Generic handlers
Function calling is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
- Native tool call formats supported:
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
- Functionary v3.1 / v3.2
- Hermes 2/3, Qwen 2.5
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
- Mistral Nemo
- Firefunction v2
- Command R7B
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
<details>
<summary>Show some common templates and which format handler they use</summary>
| Template | Format |
|----------|--------|
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
| CohereForAI-aya-expanse-8b.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
| HelpingAI-HAI-SER.jinja | Generic |
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
| LatitudeGames-Wayfarer-12B.jinja | Generic |
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
| NexaAIDev-Octopus-v2.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
| OnlyCheeini-greesychat-turbo.jinja | Generic |
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
| Qwen-QVQ-72B-Preview.jinja | Generic |
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
| THUDM-glm-4-9b-chat.jinja | Generic |
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| databricks-dbrx-instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
| dicta-il-dictalm2.0-instruct.jinja | Generic |
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
| google-gemma-2-27b-it.jinja | Generic |
| google-gemma-2-2b-it.jinja | Generic |
| google-gemma-2-2b-jpn-it.jinja | Generic |
| google-gemma-7b-it.jinja | Generic |
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
| jinaai-ReaderLM-v2.jinja | Generic |
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
| microsoft-phi-4.jinja | Generic |
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
| ministral-Ministral-3b-instruct.jinja | Generic |
| mistralai-Codestral-22B-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| mlabonne-AlphaMonarch-7B.jinja | Generic |
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
| netcat420-MFANNv0.20.jinja | Generic |
| netcat420-MFANNv0.24.jinja | Generic |
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
| openchat-openchat-3.5-0106.jinja | Generic |
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
| prithivMLmods-GWQ2b.jinja | Generic |
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
| sthenno-tempesthenno-icy-0130.jinja | Generic |
| sumink-qwft.jinja | Hermes 2 Pro |
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
| thirdeyeai-elevate360m.jinja | Generic |
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
| upstage-solar-pro-preview-instruct.jinja | Generic |
| whyhow-ai-PatientSeek.jinja | Generic |
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
This table can be generated with:
```bash
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
```
</details>
# Usage - need tool-aware Jinja template
First, start a server with any model, but make sure it has a tools-enabled template: you can verify this by inspecting the `chat_template` or `chat_template_tool_use` properties in `http://localhost:8080/props`).
Here are some models known to work (w/ chat template override when needed):
```shell
# Native support:
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
# Native support requires the right template for these GGUFs:
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
# Generic format support
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
```
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
```bash
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
}
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
```
<details>
<summary>Show output</summary>
```json
{
"choices": [
{
"finish_reason": "tool",
"index": 0,
"message": {
"content": null,
"tool_calls": [
{
"name": "python",
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
}
],
"role": "assistant"
}
}
],
"created": 1727287211,
"model": "gpt-3.5-turbo",
"object": "chat.completion",
"usage": {
"completion_tokens": 16,
"prompt_tokens": 44,
"total_tokens": 60
},
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
}
```
</details>

View File

@@ -9,6 +9,13 @@ brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
On Mac and Linux, the Nix package manager can be used via

View File

@@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
@@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
}

View File

@@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {

View File

@@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
@@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "control_vector.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
return 1;
}
@@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
export_gguf(ctx_train.v_final, params.out_file, model_hint);
llama_backend_free();

View File

@@ -4,6 +4,7 @@
#include "llama.h"
#include <ctime>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@@ -37,7 +38,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@@ -413,20 +413,22 @@ static void print_usage(int, char ** argv) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "ggml-lora-merged-f16.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
printf("done, output file is %s\n", params.out_file.c_str());
return 0;
}

View File

@@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
@@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);

View File

@@ -206,9 +206,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
void IMatrixCollector::save_imatrix(int ncall) const {
auto fname = m_params.out_file;
if (fname.empty()) {
fname = "imatrix.dat";
}
if (ncall > 0) {
fname += ".at_";
@@ -498,7 +495,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
@@ -583,6 +580,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "imatrix.dat" ;
params.n_ctx = 512;
params.logits_all = true;
params.escape = false;

View File

@@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;

View File

@@ -195,7 +195,7 @@ class BuiltinRule:
self.deps = deps or []
# Constraining spaces to prevent model "running away".
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
PRIMITIVE_RULES = {
'boolean' : BuiltinRule('("true" | "false") space', []),

View File

@@ -1578,7 +1578,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// cool off before the test
if (params.delay) {
@@ -1618,7 +1618,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
uint64_t t_start = get_time_ns();

View File

@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@@ -361,7 +361,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
const auto tokens_list = common_tokenize(context, text, true, parse_special);
auto n_ctx = llama_n_ctx(context);
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
auto n_kv_req = tokens_list.size() + n_len;
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
@@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
}

View File

@@ -5,6 +5,21 @@ point for more advanced projects.
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
### Building
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
the following script from the llama.cpp project root:
```console
$ ./build-xcframework.sh
```
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
a simulator or a real device.
To use the framework with a different project, the XCFramework can be added to the project by
adding `build-apple/llama.xcframework` by dragging and dropping it into the project navigator, or
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
of the project settings.
![image](https://github.com/ggml-org/llama.cpp/assets/1991296/2b40284f-8421-47a2-b634-74eece09a299)
Video demonstration:

View File

@@ -210,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -223,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -242,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@@ -292,7 +292,7 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {

View File

@@ -7,7 +7,6 @@
objects = {
/* Begin PBXBuildFile section */
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
@@ -18,9 +17,25 @@
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
@@ -33,6 +48,7 @@
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
@@ -42,9 +58,9 @@
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
@@ -86,6 +102,7 @@
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
DD84C9FC2D747FED007778EC /* llama.xcframework */,
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
@@ -144,6 +161,7 @@
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
);
buildRules = (
);
@@ -151,7 +169,6 @@
);
name = llama.swiftui;
packageProductDependencies = (
1809696C2D05A39F00400EE8 /* llama */,
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
@@ -427,13 +444,6 @@
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCSwiftPackageProductDependency section */
1809696C2D05A39F00400EE8 /* llama */ = {
isa = XCSwiftPackageProductDependency;
productName = llama;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@@ -124,15 +124,26 @@ struct ContentView: View {
}
}
}.sheet(isPresented: $showingHelp) { // Sheet for help modal
VStack(alignment: .leading) {
NavigationView {
VStack(alignment: .leading) {
Text("1. Make sure the model is in GGUF Format")
.padding()
Text("2. Copy the download link of the quantized model")
.padding()
VStack(alignment: .leading) {
Text("1. Make sure the model is in GGUF Format")
.padding()
Text("2. Copy the download link of the quantized model")
.padding()
}
Spacer()
}
Spacer()
}
.navigationTitle("Help")
.navigationBarTitleDisplayMode(.inline)
.toolbar {
ToolbarItem(placement: .navigationBarTrailing) {
Button("Done") {
showingHelp = false
}
}
}
}
}
}
}

View File

@@ -51,6 +51,13 @@ install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-gemma3-cli)
add_executable(${TARGET} gemma3-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)
add_executable(${TARGET} clip-quantize-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)

View File

@@ -0,0 +1,30 @@
# Gemma 3 vision
> [!IMPORTANT]
>
> This is very experimental, only used for demo purpose.
## How to get mmproj.gguf?
```bash
cd gemma-3-4b-it
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
# output file is mmproj.gguf
```
## How to run it?
What you need:
- The text model GGUF, can be converted using `convert_hf_to_gguf.py`
- The mmproj file from step above
- An image file
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# run it
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
```

View File

@@ -0,0 +1,190 @@
# Granite Vision
Download the model and point your `GRANITE_MODEL` environment variable to the path.
```bash
$ git clone https://huggingface.co/ibm-granite/granite-vision-3.2-2b
$ export GRANITE_MODEL=./granite-vision-3.2-2b
```
### 1. Running llava surgery v2.
First, we need to run the llava surgery script as shown below:
`python llava_surgery_v2.py -C -m $GRANITE_MODEL`
You should see two new files (`llava.clip` and `llava.projector`) written into your model's directory, as shown below.
```bash
$ ls $GRANITE_MODEL | grep -i llava
llava.clip
llava.projector
```
We should see that the projector and visual encoder get split out into the llava files. Quick check to make sure they aren't empty:
```python
import os
import torch
MODEL_PATH = os.getenv("GRANITE_MODEL")
if not MODEL_PATH:
raise ValueError("env var GRANITE_MODEL is unset!")
encoder_tensors = torch.load(os.path.join(MODEL_PATH, "llava.clip"))
projector_tensors = torch.load(os.path.join(MODEL_PATH, "llava.projector"))
assert len(encoder_tensors) > 0
assert len(projector_tensors) > 0
```
If you actually inspect the `.keys()` of the loaded tensors, you should see a lot of `vision_model` tensors in the `encoder_tensors`, and 5 tensors (`'multi_modal_projector.linear_1.bias'`, `'multi_modal_projector.linear_1.weight'`, `'multi_modal_projector.linear_2.bias'`, `'multi_modal_projector.linear_2.weight'`, `'image_newline'`) in the multimodal `projector_tensors`.
### 2. Creating the Visual Component GGUF
Next, create a new directory to hold the visual components, and copy the llava.clip/projector files, as shown below.
```bash
$ ENCODER_PATH=$PWD/visual_encoder
$ mkdir $ENCODER_PATH
$ cp $GRANITE_MODEL/llava.clip $ENCODER_PATH/pytorch_model.bin
$ cp $GRANITE_MODEL/llava.projector $ENCODER_PATH/
```
Now, we need to write a config for the visual encoder. In order to convert the model, be sure to use the correct `image_grid_pinpoints`, as these may vary based on the model. You can find the `image_grid_pinpoints` in `$GRANITE_MODEL/config.json`.
```json
{
"_name_or_path": "siglip-model",
"architectures": [
"SiglipVisionModel"
],
"image_grid_pinpoints": [
[384,384],
[384,768],
[384,1152],
[384,1536],
[384,1920],
[384,2304],
[384,2688],
[384,3072],
[384,3456],
[384,3840],
[768,384],
[768,768],
[768,1152],
[768,1536],
[768,1920],
[1152,384],
[1152,768],
[1152,1152],
[1536,384],
[1536,768],
[1920,384],
[1920,768],
[2304,384],
[2688,384],
[3072,384],
[3456,384],
[3840,384]
],
"mm_patch_merge_type": "spatial_unpad",
"hidden_size": 1152,
"image_size": 384,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
"layer_norm_eps": 1e-6,
"hidden_act": "gelu_pytorch_tanh",
"projection_dim": 0,
"vision_feature_layer": [-24, -20, -12, -1]
}
```
At this point you should have something like this:
```bash
$ ls $ENCODER_PATH
config.json llava.projector pytorch_model.bin
```
Now convert the components to GGUF; Note that we also override the image mean/std dev to `[.5,.5,.5]` since we use the SigLIP visual encoder - in the transformers model, you can find these numbers in the `preprocessor_config.json`.
```bash
$ python convert_image_encoder_to_gguf.py \
-m $ENCODER_PATH \
--llava-projector $ENCODER_PATH/llava.projector \
--output-dir $ENCODER_PATH \
--clip-model-is-vision \
--clip-model-is-siglip \
--image-mean 0.5 0.5 0.5 \
--image-std 0.5 0.5 0.5
```
This will create the first GGUF file at `$ENCODER_PATH/mmproj-model-f16.gguf`; we will refer to the absolute path of this file as the `$VISUAL_GGUF_PATH.`
### 3. Creating the LLM GGUF.
The granite vision model contains a granite LLM as its language model. For now, the easiest way to get the GGUF for LLM is by loading the composite model in `transformers` and exporting the LLM so that it can be directly converted with the normal conversion path.
First, set the `LLM_EXPORT_PATH` to the path to export the `transformers` LLM to.
```bash
$ export LLM_EXPORT_PATH=$PWD/granite_vision_llm
```
```python
import os
import transformers
MODEL_PATH = os.getenv("GRANITE_MODEL")
if not MODEL_PATH:
raise ValueError("env var GRANITE_MODEL is unset!")
LLM_EXPORT_PATH = os.getenv("LLM_EXPORT_PATH")
if not LLM_EXPORT_PATH:
raise ValueError("env var LLM_EXPORT_PATH is unset!")
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_PATH)
# NOTE: granite vision support was added to transformers very recently (4.49);
# if you get size mismatches, your version is too old.
# If you are running with an older version, set `ignore_mismatched_sizes=True`
# as shown below; it won't be loaded correctly, but the LLM part of the model that
# we are exporting will be loaded correctly.
model = transformers.AutoModelForImageTextToText.from_pretrained(MODEL_PATH, ignore_mismatched_sizes=True)
tokenizer.save_pretrained(LLM_EXPORT_PATH)
model.language_model.save_pretrained(LLM_EXPORT_PATH)
```
Now you can convert the exported LLM to GGUF with the normal converter in the root of the llama cpp project.
```bash
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm.gguf
...
$ python convert_hf_to_gguf.py --outfile $LLM_GGUF_PATH $LLM_EXPORT_PATH
```
### 4. Quantization
If you want to quantize the LLM, you can do so with `llama-quantize` as you would any other LLM. For example:
```bash
$ ./build/bin/llama-quantize $LLM_EXPORT_PATH/granite_llm.gguf $LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf Q4_K_M
$ LLM_GGUF_PATH=$LLM_EXPORT_PATH/granite_llm_q4_k_m.gguf
```
Note that currently you cannot quantize the visual encoder because granite vision models use SigLIP as the visual encoder, which has tensor dimensions that are not divisible by 32.
### 5. Running the Model in Llama cpp
Build llama cpp normally; you should have a target binary named `llama-llava-cli`, which you can pass two binaries to. As an example, we pass the the llama.cpp banner.
```bash
$ ./build/bin/llama-llava-cli -m $LLM_GGUF_PATH \
--mmproj $VISUAL_GGUF_PATH \
--image ./media/llama0-banner.png \
-c 16384 \
-p "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n<|user|>\n\<image>\nWhat does the text in this image say?\n<|assistant|>\n" \
--temp 0
```
Sample output: `The text in the image reads "LLAMA C++ Can it run DOOM Llama?"`

View File

@@ -5,13 +5,25 @@ Currently, this readme only supports minicpm-omni's image capabilities, and we w
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpm-omni
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-o 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
@@ -22,25 +34,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build llama.cpp using `CMake`:
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md
```bash
cmake -B build
cmake --build build --config Release
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
./build/bin/llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,26 @@
Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) PyTorch model from huggingface to "MiniCPM-Llama3-V-2_5" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
### Usage
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-Llama3-V 2.5
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf) by us)
@@ -20,80 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-Llama3-V-2_5/model
# quantize int4 version
./llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/model-8B-F16.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-Llama3-V-2_5/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-Llama3-V-2_5/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -4,13 +4,25 @@
Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch model from huggingface to "MiniCPM-V-2_6" folder.
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
git checkout minicpmv-main
```
Build llama.cpp using `CMake`:
```bash
cmake -B build
cmake --build build --config Release
```
### Usage of MiniCPM-V 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) by us)
@@ -21,87 +33,15 @@ python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-
python ./convert_hf_to_gguf.py ../MiniCPM-V-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
./build/bin/llama-quantize ../MiniCPM-V-2_6/model/ggml-model-f16.gguf ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build for Linux or Mac
```bash
make
make llama-minicpmv-cli
```
Inference on Linux or Mac
```
```bash
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```
### Video
Install FFmpeg
```
brew install ffmpeg
brew install pkg-config
```
### Android
#### Build on Android device using Termux
We found that build on Android device would bring better runtime performance, so we recommend to build on device.
[Termux](https://github.com/termux/termux-app#installation) is a terminal app on Android device (no root required).
Install tools in Termux:
```
apt update && apt upgrade -y
apt install git make cmake
```
It's recommended to move your model inside the `~/` directory for best performance:
```
cd storage/downloads
mv model.gguf ~/
```
#### Building the Project using Android NDK
Obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake.
Execute the following commands on your computer to avoid downloading the NDK to your mobile. Alternatively, you can also do this in Termux:
```bash
mkdir build-android
cd build-android
export NDK=/your_ndk_path
cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
make
```
Install [termux](https://github.com/termux/termux-app#installation) on your device and run `termux-setup-storage` to get access to your SD card (if Android 11+ then run the command twice).
Finally, copy these built `llama` binaries and the model file to your device storage. Because the file permissions in the Android sdcard cannot be changed, you can copy the executable files to the `/data/data/com.termux/files/home/bin` path, and then execute the following commands in Termux to add executable permission:
(Assumed that you have pushed the built executable files to the /sdcard/llama.cpp/bin path using `adb push`)
```
$cp -r /sdcard/llama.cpp/bin /data/data/com.termux/files/home/
$cd /data/data/com.termux/files/home/bin
$chmod +x ./*
```
Download models and push them to `/sdcard/llama.cpp/`, then move it to `/data/data/com.termux/files/home/model/`
```
$mv /sdcard/llama.cpp/ggml-model-Q4_K_M.gguf /data/data/com.termux/files/home/model/
$mv /sdcard/llama.cpp/mmproj-model-f16.gguf /data/data/com.termux/files/home/model/
```
Now, you can start chatting:
```
$cd /data/data/com.termux/files/home/bin
$./llama-minicpmv-cli -m ../model/ggml-model-Q4_K_M.gguf --mmproj ../model/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
./build/bin/llama-minicpmv-cli -m ../MiniCPM-V-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-V-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
```

View File

@@ -101,8 +101,27 @@ python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknow
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
```python
import os
import transformers
model_path = ...
llm_export_path = ...
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
tokenizer.save_pretrained(llm_export_path)
model.language_model.save_pretrained(llm_export_path)
```
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`

View File

@@ -4,31 +4,12 @@
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
#include "ggml.h"
#include "ggml-cpp.h"
#include "ggml-cpu.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
//#ifdef GGML_USE_CUDA
//#include "ggml-cuda.h"
//#endif
//
//#ifdef GGML_USE_SYCL
//#include "ggml-sycl.h"
//#endif
//
//#ifdef GGML_USE_METAL
//#include "ggml-metal.h"
//#endif
//
//#ifdef GGML_USE_CANN
//#include "ggml-cann.h"
//#endif
//
//#ifdef GGML_USE_VULKAN
//#include "ggml-vulkan.h"
//#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
@@ -40,6 +21,7 @@
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
@@ -120,6 +102,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@@ -153,6 +136,8 @@ static std::string format(const char * fmt, ...) {
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
@@ -179,6 +164,7 @@ enum projector_type {
PROJECTOR_TYPE_RESAMPLER,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_MERGER,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -189,6 +175,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_RESAMPLER, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
};
@@ -315,7 +302,7 @@ static projector_type clip_projector_type_from_string(const std::string & name)
return kv.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
throw std::runtime_error(format("Unknown projector type: %s", name.c_str()));
}
#ifdef CLIP_DEBUG_FUNCTIONS
@@ -444,8 +431,9 @@ struct clip_hparams {
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
int32_t image_grid_pinpoints[32];
std::vector<int32_t> image_grid_pinpoints;
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
};
struct clip_layer {
@@ -571,6 +559,10 @@ struct clip_vision_model {
struct ggml_tensor * mm_model_ln_kv_b;
struct ggml_tensor * mm_model_ln_post_w;
struct ggml_tensor * mm_model_ln_post_b;
// gemma3
struct ggml_tensor * mm_input_proj_w;
struct ggml_tensor * mm_soft_emb_norm_w;
};
struct clip_ctx {
@@ -585,6 +577,7 @@ struct clip_ctx {
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
int32_t max_feature_layer; // unused in newer models like gemma3
float image_mean[3];
float image_std[3];
bool use_gelu = false;
@@ -596,21 +589,209 @@ struct clip_ctx {
bool has_post_norm = false;
bool has_patch_bias = false;
struct gguf_context * ctx_gguf;
struct ggml_context * ctx_data;
struct gguf_context * ctx_gguf = nullptr;
struct ggml_context * ctx_data = nullptr;
std::vector<uint8_t> buf_compute_meta;
// memory buffers to evaluate the model
ggml_backend_buffer_t params_buffer = NULL;
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
ggml_backend_t backend = NULL;
ggml_gallocr_t compute_alloc = NULL;
ggml_backend_t backend = nullptr;
ggml_backend_t backend_cpu = nullptr;
ggml_backend_buffer_t buf = nullptr;
struct clip_image_size * load_image_size;
ggml_backend_sched_ptr sched;
struct clip_image_size * load_image_size = nullptr;
clip_ctx(clip_context_params & ctx_params) {
backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
backend = ctx_params.use_gpu
? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
: nullptr;
if (backend) {
LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
backend_ptrs.push_back(backend);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
} else {
backend = backend_cpu;
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
backend_ptrs.push_back(backend_cpu);
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
sched.reset(
ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
);
}
~clip_ctx() {
ggml_free(ctx_data);
gguf_free(ctx_gguf);
ggml_backend_buffer_free(buf);
ggml_backend_free(backend);
if (backend_cpu != backend) {
ggml_backend_free(backend_cpu);
}
}
};
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch * imgs) {
const auto & model = ctx->vision_model;
const auto & hparams = model.hparams;
const int image_size = hparams.image_size;
int image_size_width = image_size;
int image_size_height = image_size;
const int patch_size = hparams.patch_size;
const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
const int n_layer = hparams.n_layer;
const float eps = hparams.eps;
GGML_ASSERT(imgs->size == 1); // batch_size == 1
struct ggml_init_params params = {
/*.mem_size =*/ ctx->buf_compute_meta.size(),
/*.mem_buffer =*/ ctx->buf_compute_meta.data(),
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
// input raw
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
inp = ggml_add(ctx0, inp, model.patch_bias);
// position embeddings
struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
// loop over layers
for (int il = 0; il < n_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// layernorm1
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
}
// self-attention
{
struct ggml_tensor * Q =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
struct ggml_tensor * K =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
struct ggml_tensor * V =
ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
KQ = ggml_soft_max_inplace(ctx0, KQ);
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
}
// attention output
cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, embeddings);
embeddings = cur; // embeddings = residual, cur = hidden_states
// layernorm2
{
cur = ggml_norm(ctx0, cur, eps);
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
}
cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
// siglip uses gelu
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
// residual 2
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
if (ctx->has_post_norm) {
embeddings = ggml_norm(ctx0, embeddings, eps);
ggml_set_name(embeddings, "post_ln");
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
const int batch_size = 1;
const int mm_tokens_per_image = 256; // default value for gemma3
const int tokens_per_side = sqrt(mm_tokens_per_image);
const int patches_per_image = sqrt(num_patches);
const int kernel_size = patches_per_image / tokens_per_side;
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
// doing a pool2d to reduce the number of output tokens to 256
embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
// apply norm before projection
embeddings = ggml_rms_norm(ctx0, embeddings, eps);
embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
// apply projection
embeddings = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
embeddings);
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
ggml_free(ctx0);
return gf;
}
static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
if (!ctx->has_vision_encoder) {
LOG_ERR("This gguf file seems to have no vision encoder\n");
return nullptr;
@@ -651,7 +832,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
@@ -752,13 +932,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1
@@ -846,7 +1032,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
@@ -857,6 +1042,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// final layer is a vision feature layer
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
// llava projector
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@@ -1139,7 +1337,8 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
} else {
GGML_ABORT("fatel error");
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
}
else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -1161,8 +1360,25 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
return gf;
}
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
return clip_image_build_graph_siglip(ctx, imgs);
} else {
// TODO: we should have one build_* function per model
return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
}
}
// read and create ggml_context containing the tensors and their data
struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return clip_init(fname, clip_context_params{
/* use_gpu */ true,
/* verbosity */ verbosity,
});
}
struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
int verbosity = ctx_params.verbosity;
struct ggml_context * meta = NULL;
struct gguf_init_params params = {
@@ -1256,7 +1472,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
clip_ctx * new_clip = new clip_ctx{};
clip_ctx * new_clip = new clip_ctx(ctx_params);
// update projector type
{
@@ -1275,36 +1491,6 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
}
//#ifdef GGML_USE_CUDA
// new_clip->backend = ggml_backend_cuda_init(0);
// LOG_INF("%s: CLIP using CUDA backend\n", __func__);
//#endif
//
//#ifdef GGML_USE_METAL
// new_clip->backend = ggml_backend_metal_init();
// LOG_INF("%s: CLIP using Metal backend\n", __func__);
//#endif
//
//#ifdef GGML_USE_CANN
// new_clip->backend = ggml_backend_cann_init(0);
// LOG_INF("%s: CLIP using CANN backend\n", __func__);
//#endif
//
//#ifdef GGML_USE_VULKAN
// new_clip->backend = ggml_backend_vk_init(0);
// LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
//#endif
//
//#ifdef GGML_USE_SYCL
// new_clip->backend = ggml_backend_sycl_init(0);
// LOG_INF("%s: CLIP using SYCL backend\n", __func__);
//#endif
if (!new_clip->backend) {
new_clip->backend = ggml_backend_cpu_init();
LOG_INF("%s: CLIP using CPU backend\n", __func__);
}
// model size and capabilities
{
int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
@@ -1342,8 +1528,12 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
GGML_ASSERT(new_clip->has_vision_encoder);
GGML_ASSERT(!new_clip->has_text_encoder);
idx = get_key_idx(ctx, KEY_USE_GELU);
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
try {
idx = get_key_idx(ctx, KEY_USE_GELU);
new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
} catch (std::runtime_error & /*e*/) {
new_clip->use_gelu = false;
}
try {
idx = get_key_idx(ctx, KEY_USE_SILU);
@@ -1357,6 +1547,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
LOG_INF("%s: minicpmv_version: %d\n", __func__, new_clip->minicpmv_version);
LOG_INF("%s: glm_projector: %d\n", __func__, new_clip->has_glm_projector);
LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
@@ -1399,7 +1590,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
// alloc memory and offload data
new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(new_clip->backend);
new_clip->buf = ggml_backend_alloc_ctx_tensors_from_buft(new_clip->ctx_data, buft);
ggml_backend_buffer_set_usage(new_clip->buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name(ctx, i);
struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
@@ -1412,7 +1605,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
int num_bytes = ggml_nbytes(cur);
if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
if (ggml_backend_buft_is_host(buft)) {
// for the CPU and Metal backend, we can read directly into the tensor
fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
} else {
@@ -1443,14 +1636,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
hparams.image_grid_pinpoints[i] = pinpoints[i];
for (int i = 0; i < n; ++i) {
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
}
if (n < 32)
hparams.image_grid_pinpoints[n] = 0;
} catch (std::runtime_error & /*e*/) {
hparams.image_grid_pinpoints[0]=0;
}
} catch (std::runtime_error & /*e*/) { }
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
try {
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < n; ++i) {
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
}
} catch (std::runtime_error & /*e*/) { }
try {
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
@@ -1476,6 +1681,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->image_std[i] = std_data[i];
}
// Calculate the deepest feature layer based on hparams and projector type
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
if (verbosity >= 2) {
LOG_INF("\n%s: vision model hparams\n", __func__);
LOG_INF("image_size %d\n", hparams.image_size);
@@ -1489,8 +1697,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_INF("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
for (const auto & pp : hparams.image_grid_pinpoints) {
LOG_INF("%d ", pp);
}
LOG_INF("\n");
LOG_INF("v_vision_feature_layer: ");
for (const auto & feature_layer: hparams.vision_feature_layer) {
LOG_INF("%d ", feature_layer);
}
LOG_INF("\n");
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
@@ -1528,11 +1741,17 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
}
try {
vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
} catch(const std::exception& /*e*/) {
vision_model.patch_embeddings_0 = nullptr;
}
try {
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
} catch(const std::exception& /*e*/) {
LOG_ERR("%s: failed to load vision model tensors\n", __func__);
vision_model.position_embeddings = nullptr;
}
try {
vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
} catch(const std::exception& /*e*/) {
@@ -1643,6 +1862,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
}
else if (new_clip->proj_type == PROJECTOR_TYPE_GEMMA3) {
vision_model.mm_input_proj_w = get_tensor(new_clip->ctx_data, TN_MM_INP_PROJ);
vision_model.mm_soft_emb_norm_w = get_tensor(new_clip->ctx_data, TN_MM_SOFT_EMB_N);
}
else {
std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
@@ -1678,14 +1901,21 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
// measure mem requirement and allocate
{
new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
clip_image_f32_batch batch;
batch.size = 1;
batch.data = nullptr;
ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
ggml_gallocr_reserve(new_clip->compute_alloc, gf);
size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
ggml_backend_sched_reserve(new_clip->sched.get(), gf);
for (size_t i = 0; i < new_clip->backend_ptrs.size(); ++i) {
ggml_backend_t backend = new_clip->backend_ptrs[i];
ggml_backend_buffer_type_t buft = new_clip->backend_buft[i];
size_t size = ggml_backend_sched_get_buffer_size(new_clip->sched.get(), backend);
if (size > 1) {
LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
ggml_backend_buft_name(buft),
size / 1024.0 / 1024.0);
}
}
}
return new_clip;
@@ -1729,11 +1959,11 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
}
}
static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
memcpy(img->buf.data(), data, img->buf.size());
memcpy(img->buf.data(), rgb_pixels, img->buf.size());
}
bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
@@ -1743,7 +1973,7 @@ bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
@@ -1755,7 +1985,7 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
LOG_ERR("%s: failed to decode image bytes\n", __func__);
return false;
}
build_clip_img_from_data(data, nx, ny, img);
clip_build_img_from_pixels(data, nx, ny, img);
stbi_image_free(data);
return true;
}
@@ -2177,7 +2407,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
return true;
}
if (ctx->has_glm_projector) {
if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
res_imgs->size = 1;
res_imgs->data = new clip_image_f32[res_imgs->size];
clip_image_u8 resized_image;
@@ -2235,10 +2465,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
}
} else {
if (params.image_grid_pinpoints[0] != 0) {
if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
@@ -2366,12 +2596,6 @@ ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
}
void clip_free(clip_ctx * ctx) {
ggml_free(ctx->ctx_data);
gguf_free(ctx->ctx_gguf);
ggml_backend_buffer_free(ctx->params_buffer);
ggml_backend_free(ctx->backend);
ggml_gallocr_free(ctx->compute_alloc);
delete ctx;
}
@@ -2404,7 +2628,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints;
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
}
return nullptr;
}
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints.size();
}
int clip_n_patches(const struct clip_ctx * ctx) {
@@ -2560,8 +2791,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
// build the inference graph
ggml_backend_sched_reset(ctx->sched.get());
ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
// set inputs
const auto & model = ctx->vision_model;
@@ -2700,6 +2932,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
free(positions_data);
}
else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
// do nothing
}
else {
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
@@ -2712,9 +2947,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
if (!ctx->has_glm_projector) {
struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
// The patches vector is used to get rows to index into the embeds with;
// we should skip dim 0 only if we have CLS to avoid going out of bounds
// when retrieving the rows.
int patch_offset = ctx->has_class_embedding ? 1 : 0;
int* patches_data = (int*)malloc(ggml_nbytes(patches));
for (int i = 0; i < num_patches; i++) {
patches_data[i] = i + 1;
patches_data[i] = i + patch_offset;
}
ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
free(patches_data);
@@ -2722,11 +2961,13 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
}
if (ggml_backend_is_cpu(ctx->backend)) {
ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
}
ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
ggml_backend_graph_compute(ctx->backend, gf);
auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
if (status != GGML_STATUS_SUCCESS) {
LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
return false;
}
// the last node is the embedding tensor
struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
@@ -2906,6 +3147,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
return ctx->vision_model.mm_1_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
return ctx->vision_model.mm_input_proj_w->ne[0];
}
std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
@@ -2925,6 +3169,28 @@ bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
// Get the index of the second to last layer; this is the
// default for models that have a llava projector
const auto & hparams = ctx->vision_model.hparams;
int n_layer = hparams.n_layer - 1;
int deepest_feature_layer = -1;
// Handle other projectors; incrementing here indicates that we
// should use the last encoder layer for the vision features.
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;

View File

@@ -39,8 +39,15 @@ struct clip_image_f32_batch {
size_t size;
};
CLIP_API struct clip_ctx * clip_model_load (const char * fname, int verbosity);
CLIP_API struct clip_ctx * clip_model_load_cpu(const char * fname, int verbosity);
struct clip_context_params {
bool use_gpu;
int verbosity;
};
// deprecated, use clip_init
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params);
CLIP_API void clip_free(struct clip_ctx * ctx);
@@ -55,6 +62,7 @@ CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
@@ -73,6 +81,12 @@ CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
*/
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
@@ -89,11 +103,13 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
#ifdef __cplusplus
}

View File

@@ -6,7 +6,7 @@ import re
import torch
import numpy as np
from gguf import *
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
@@ -37,6 +37,18 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
def get_tensor_name(name: str) -> str:
# Standardize the transformers llava next keys for
# image newline / mm projector with the classes in haotian-liu LLaVA
if name == "image_newline":
return "model.image_newline"
if name.startswith("multi_modal_projector"):
name = name.replace("multi_modal_projector", "mm")
if "linear_1" in name:
name = name.replace("linear_1", "0")
if "linear_2" in name:
name = name.replace("linear_2", "2")
return name
if "projection" in name:
return name
if "mm_projector" in name:
@@ -77,14 +89,21 @@ def bytes_to_unicode():
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
# Selectable visual encoders that are compatible with this script
encoder_group = ap.add_mutually_exclusive_group()
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
help="the visual encoder is Siglip.")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
@@ -109,7 +128,12 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
if (
args.clip_model_is_vision or
not os.path.exists(dir_model + "/vocab.json") or
args.clip_model_is_openclip or
args.clip_model_is_siglip
):
vocab = None
tokens = None
else:
@@ -137,7 +161,10 @@ ftype = 1
if args.use_f32:
ftype = 0
if args.clip_model_is_vision or args.clip_model_is_openclip:
if args.clip_model_is_siglip:
model = SiglipVisionModel.from_pretrained(dir_model)
processor = None
elif args.clip_model_is_vision or args.clip_model_is_openclip:
model = CLIPVisionModel.from_pretrained(dir_model)
processor = None
else:
@@ -165,7 +192,7 @@ output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
@@ -187,26 +214,71 @@ else:
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
if args.clip_model_is_siglip:
text_projection_dim = 0
else:
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32("clip.text.projection_dim", text_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
fout.add_token_list(tokens)
def get_non_negative_vision_feature_layers(v_hparams):
"""
Determine the vision feature layer(s) for the llava model, which are indices into the
hidden states of the visual encoder. Note that the hidden states array generally takes the
form:
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
so feature indices should be offset as n+1 to get the output of encoder block n.
We convert all vision feature layers to non-negative so that -1 can be used in
the model as an unset value. If no vision feature layer is found, we leave it unset.
"""
num_hidden_layers = v_hparams["num_hidden_layers"]
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
feature_layers_key = None
# Key used for llava models in transformers
if "vision_feature_layer" in config:
feature_layers_key = "vision_feature_layer"
# Key used for llava models in the original format
elif "mm_vision_select_layer" in config:
feature_layers_key = "mm_vision_select_layer"
if feature_layers_key is not None:
feature_layers = config[feature_layers_key]
if isinstance(feature_layers, int):
feature_layers = [feature_layers]
return [to_non_negative(feature_layer) for feature_layer in feature_layers]
# Determine if we have explicitly specified vision feature layers in our config
feature_layers = get_non_negative_vision_feature_layers(v_hparams)
if has_vision_encoder:
# vision_model hparams
# Siglip does not have a visual projector; set projection dim to 0
if args.clip_model_is_siglip:
visual_projection_dim = 0
else:
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
# set vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
if feature_layers:
block_count = max(feature_layers)
else:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
# /**
# "image_grid_pinpoints": [
@@ -258,7 +330,8 @@ if has_vision_encoder:
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
if "mm_projector_type" in v_hparams:
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
if feature_layers:
fout.add_array("clip.vision.feature_layer", feature_layers)
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
@@ -274,7 +347,13 @@ fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
# By default, we drop the last layer for llava projector
# models unless we have explicitly set vision feature layers
if feature_layers is None:
model.vision_model.encoder.layers.pop(-1)
else:
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)

View File

@@ -0,0 +1,341 @@
#include "arg.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "stb_image.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include <vector>
#include <limits.h>
#include <inttypes.h>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
static bool g_is_generating = false;
/**
* Please note that this is NOT a production-ready stuff.
* It is a playground for trying Gemma 3 vision capabilities.
* For contributors: please keep this code simple and easy to understand.
*/
static void show_additional_info(int /*argc*/, char ** argv) {
LOG(
"Experimental CLI for using Gemma 3 vision model\n\n"
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
" -m and --mmproj are required\n"
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n",
argv[0]
);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (g_is_generating) {
g_is_generating = false;
} else {
console::cleanup();
LOG("\nInterrupted by user\n");
_exit(130);
}
}
}
#endif
struct gemma3_context {
struct clip_ctx * ctx_clip = NULL;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
int n_threads = 1;
llama_pos n_past = 0;
gemma3_context(common_params & params) : llama_init(common_init_from_params(params)) {
model = llama_init.model.get();
lctx = llama_init.context.get();
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
init_clip_model(params);
}
void init_clip_model(common_params & params) {
const char * clip_path = params.mmproj.c_str();
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
}
~gemma3_context() {
clip_free(ctx_clip);
}
};
struct decode_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
common_batch_clear(ctx.batch);
for (llama_token & t : tokens) {
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
}
if (logits_last) {
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
}
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("Failed to decode text\n");
return 1;
}
return 0;
}
static int eval_image(gemma3_context & ctx, std::string & fname) {
std::vector<float> image_embd_v;
int n_embd = llama_model_n_embd(ctx.model);
int n_tokens = 256;
image_embd_v.resize(n_tokens * n_embd);
bool ok;
struct clip_image_u8 * img_u8 = clip_image_u8_init();
ok = clip_image_load_from_file(fname.c_str(), img_u8);
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname.c_str());
clip_image_u8_free(img_u8);
return 2; // non-fatal error
}
clip_image_f32_batch batch_f32;
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
int64_t t0 = ggml_time_ms();
LOG("Encoding image %s\n", fname.c_str());
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
if (!ok) {
LOG_ERR("Unable to encode image\n");
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
return 1;
}
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
clip_image_f32_batch_free(&batch_f32);
clip_image_u8_free(img_u8);
// decode image embeddings
int64_t t1 = ggml_time_ms();
eval_text(ctx, "<start_of_image>");
llama_set_causal_attn(ctx.lctx, false);
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
if (llama_decode(ctx.lctx, batch_img.batch)) {
LOG_ERR("failed to decode image\n");
return 1;
}
ctx.n_past += n_tokens;
llama_set_causal_attn(ctx.lctx, true);
eval_text(ctx, "<end_of_image>");
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
return 0;
}
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating) {
printf("\n");
break;
}
llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
common_sampler_accept(smpl, token_id, true);
if (llama_vocab_is_eog(ctx.vocab, token_id)) {
printf("\n");
break; // end of generation
}
printf("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
fflush(stdout);
// eval the token
common_batch_clear(ctx.batch);
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("failed to decode token\n");
return 1;
}
}
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
params.sampling.temp = 0.2; // lower temp by default for better quality
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
return 1;
}
common_init();
if (params.mmproj.empty()) {
show_additional_info(argc, argv);
return 1;
}
gemma3_context ctx(params);
printf("%s: %s\n", __func__, params.model.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
// ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (eval_text(ctx, "<bos>")) {
return 1;
}
if (is_single_turn) {
g_is_generating = true;
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
}
for (auto & fname : params.image) {
if (eval_image(ctx, fname)) {
return 1;
}
}
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
} else {
LOG("\n Running in chat mode, available commands:");
LOG("\n /image <path> load an image");
LOG("\n /clear clear the chat history");
LOG("\n /quit or /exit exit the program");
LOG("\n");
if (eval_text(ctx, "<start_of_turn>user\n")) {
return 1;
}
while (true) {
g_is_generating = false;
LOG("\n> ");
console::set_display(console::user_input);
std::string line;
console::readline(line, false);
console::set_display(console::reset);
line = string_strip(line);
if (line.empty()) {
continue;
}
if (line == "/quit" || line == "/exit") {
break;
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
LOG("Chat history cleared\n\n");
continue;
}
g_is_generating = true;
if (line.find("/image") == 0) {
std::string image = line.substr(7);
int res = eval_image(ctx, image);
if (res == 2) {
continue; // image not found
}
if (res) {
return 1;
}
continue;
}
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
return 1;
}
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
return 1;
}
}
}
return 0;
}

View File

@@ -0,0 +1,307 @@
import gguf
import argparse
import logging
import sys
import torch
import json
import os
import numpy as np
from typing import cast, ContextManager, Any, Iterator
from pathlib import Path
from torch import Tensor
logger = logging.getLogger("gemma3-mmproj")
# (copied from convert_hf_to_gguf.py)
# tree of lazy tensors
class LazyTorchTensor(gguf.LazyBase):
_tensor_type = torch.Tensor
# to keep the type-checker happy
dtype: torch.dtype
shape: torch.Size
# only used when converting a torch.Tensor to a np.ndarray
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
}
# used for safetensors slices
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
_dtype_str_map: dict[str, torch.dtype] = {
"F64": torch.float64,
"F32": torch.float32,
"BF16": torch.bfloat16,
"F16": torch.float16,
# "U64": torch.uint64,
"I64": torch.int64,
# "U32": torch.uint32,
"I32": torch.int32,
# "U16": torch.uint16,
"I16": torch.int16,
"U8": torch.uint8,
"I8": torch.int8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
args=(self,),
func=(lambda s: s.numpy())
)
@classmethod
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
return cast(torch.Tensor, lazy)
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.Tensor.numpy:
return args[0].numpy()
return cls._wrap_fn(func)(*args, **kwargs)
class Gemma3VisionTower:
hparams: dict
gguf_writer: gguf.GGUFWriter
fname_out: Path
ftype: gguf.LlamaFileType
@staticmethod
def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@staticmethod
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
part_names: list[str] = []
for filename in os.listdir(dir_model):
if filename.startswith(prefix) and filename.endswith(suffix):
part_names.append(filename)
part_names.sort()
return part_names
def __init__(self,
dir_model: Path,
fname_out: Path,
ftype: gguf.LlamaFileType,
is_big_endian: bool,):
hparams = Gemma3VisionTower.load_hparams(dir_model)
self.hparams = hparams
self.fname_out = fname_out
self.ftype = ftype
endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.gguf_writer = gguf.GGUFWriter(path=None, arch="clip", endianess=endianess)
text_config = hparams["text_config"]
vision_config = hparams["vision_config"]
assert hparams["architectures"][0] == "Gemma3ForConditionalGeneration"
assert text_config is not None
assert vision_config is not None
self.gguf_writer.add_string ("clip.projector_type", "gemma3")
self.gguf_writer.add_bool ("clip.has_text_encoder", False)
self.gguf_writer.add_bool ("clip.has_vision_encoder", True)
self.gguf_writer.add_bool ("clip.has_llava_projector", False) # legacy
self.gguf_writer.add_uint32 ("clip.vision.image_size", vision_config["image_size"])
self.gguf_writer.add_uint32 ("clip.vision.patch_size", vision_config["patch_size"])
self.gguf_writer.add_uint32 ("clip.vision.embedding_length", vision_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.feed_forward_length", vision_config["intermediate_size"])
self.gguf_writer.add_uint32 ("clip.vision.projection_dim", text_config["hidden_size"])
self.gguf_writer.add_uint32 ("clip.vision.block_count", vision_config["num_hidden_layers"])
self.gguf_writer.add_uint32 ("clip.vision.attention.head_count", vision_config["num_attention_heads"])
self.gguf_writer.add_float32("clip.vision.attention.layer_norm_epsilon", vision_config.get("layer_norm_eps", 1e-6))
# default values taken from HF tranformers code
self.gguf_writer.add_array ("clip.vision.image_mean", [0.5, 0.5, 0.5])
self.gguf_writer.add_array ("clip.vision.image_std", [0.5, 0.5, 0.5])
self.gguf_writer.add_bool ("clip.use_gelu", True)
# load tensors
for name, data_torch in self.get_tensors(dir_model):
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
self.add_tensor(name, data_torch)
def get_tensors(self, dir_model: Path) -> Iterator[tuple[str, Tensor]]:
part_names = Gemma3VisionTower.get_model_part_names(dir_model, "model", ".safetensors")
tensor_names_from_parts: set[str] = set()
for part_name in part_names:
logger.info(f"gguf: loading model part '{part_name}'")
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(dir_model / part_name, framework="pt", device="cpu"))
with ctx as model_part:
tensor_names_from_parts.update(model_part.keys())
for name in model_part.keys():
data = model_part.get_slice(name)
data = LazyTorchTensor.from_safetensors_slice(data)
yield name, data
def add_tensor(self, name: str, data_torch: Tensor):
is_1d = len(data_torch.shape) == 1
is_embd = ".embeddings." in name
old_dtype = data_torch.dtype
can_quantize = not is_1d and not is_embd
data_qtype = gguf.GGMLQuantizationType.F32
# this is to support old checkpoint
# TODO: remove this when we have the final model
name = name.replace("vision_model.vision_model.", "vision_tower.vision_model.")
name = name.replace("multimodal_projector.", "multi_modal_projector.")
# filter only vision tensors
if not name.startswith("vision_tower.vision_model.") and not name.startswith("multi_modal_projector."):
return
# prefix
name = name.replace("vision_tower.vision_model.encoder.layers.", "v.blk.")
name = name.replace("vision_tower.vision_model.", "v.")
# projector and input embd
name = name.replace(".embeddings.patch_embedding.", ".patch_embd.")
name = name.replace(".embeddings.position_embedding.", ".position_embd.")
name = name.replace(
"multi_modal_projector.mm_input_projection_weight",
"mm.input_projection.weight"
)
name = name.replace(
"multi_modal_projector.mm_soft_emb_norm.weight",
"mm.soft_emb_norm.weight"
)
name = name.replace("post_layernorm.", "post_ln.")
# each block
name = name.replace(".self_attn.k_proj.", ".attn_k.")
name = name.replace(".self_attn.v_proj.", ".attn_v.")
name = name.replace(".self_attn.q_proj.", ".attn_q.")
name = name.replace(".self_attn.out_proj.", ".attn_out.")
name = name.replace(".layer_norm1.", ".ln1.")
name = name.replace(".layer_norm2.", ".ln2.")
name = name.replace(".mlp.fc1.", ".ffn_down.")
name = name.replace(".mlp.fc2.", ".ffn_up.")
if can_quantize:
if self.ftype == gguf.LlamaFileType.ALL_F32:
data_qtype = gguf.GGMLQuantizationType.F32
elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
data_qtype = gguf.GGMLQuantizationType.F16
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
data_qtype = gguf.GGMLQuantizationType.Q8_0
else:
raise ValueError(f"Unsupported file type: {self.ftype}")
# corrent norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
# the other norm values are part of SigLIP model, and they are already correct
# ref code: Gemma3RMSNorm
if "soft_emb_norm.weight" in name:
logger.info(f"Correcting norm value for '{name}'")
data_torch = data_torch + 1
data = data_torch.numpy()
try:
data = gguf.quants.quantize(data, data_qtype)
except Exception as e:
logger.error(f"Error quantizing tensor '{name}': {e}, fallback to F16")
data_qtype = gguf.GGMLQuantizationType.F16
data = gguf.quants.quantize(data, data_qtype)
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"{{{', '.join(str(n) for n in reversed(data_torch.shape))}}}"
logger.info(f"{f'%-32s' % f'{name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_tensor(name, data, raw_dtype=data_qtype)
def write(self):
self.gguf_writer.write_header_to_file(path=self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file(progress=True)
self.gguf_writer.close()
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert Gemma 3 vision tower safetensors to GGUF format",)
parser.add_argument(
"--outfile", type=Path, default="mmproj.gguf",
help="path to write to",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0"], default="f16",
help="output format",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file",
nargs="?",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
args = parser.parse_args()
if args.model is None:
parser.error("the following arguments are required: model")
return args
def main() -> None:
args = parse_args()
if args.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
dir_model = args.model
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
}
logger.info(f"Loading model: {dir_model.name}")
with torch.inference_mode():
gemma3_vision_tower = Gemma3VisionTower(
dir_model=dir_model,
fname_out=args.outfile,
ftype=ftype_map[args.outtype],
is_big_endian=args.bigendian,
)
gemma3_vision_tower.write()
if __name__ == '__main__':
main()

View File

@@ -353,9 +353,10 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
std::vector<std::pair<int, int>> grid_pinpoints;
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
for (size_t i = 0; i < num_gridpoints; i += 2) {
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
@@ -405,7 +406,8 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
int num_max_patches = 6;
// Granite vision uses up to 10 patches + base patch
int num_max_patches = 11;
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}

View File

@@ -33,6 +33,33 @@ def save_model(model, file_path, file_type):
else:
torch.save(model, file_path)
# Helpers to match weight names from specific components or
# determine if a saved shard contains that component
def is_vision_tower(weight_name):
return (
weight_name.startswith("model.vision_tower") or
weight_name.startswith("vit.") or
weight_name.startswith("vision_tower")
)
def is_newline(weight_name):
return (
weight_name.startswith("model.image_newline") or
weight_name.startswith("image_newline")
)
def is_mm_projector(weight_name):
return (
weight_name.startswith("model.mm_projector") or
weight_name.startswith("vision_proj.") or
weight_name.startswith("multi_modal_projector")
)
def newline_criteria(checkpoint):
return any(is_newline(k) for k in checkpoint.keys())
def proj_criteria(checkpoint):
return any(is_mm_projector(k) for k in checkpoint.keys())
# Adapted function to clean vision tower from checkpoint
def clean_vision_tower_from_checkpoint(checkpoint_path):
@@ -40,7 +67,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path):
# file_type = 'pytorch'
model_path = os.path.dirname(checkpoint_path)
print(f"Searching for vision tower tensors in {checkpoint_path}")
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))]
clip_tensors = [k for k, v in checkpoint.items() if is_vision_tower(k)]
if len(clip_tensors) > 0:
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
@@ -84,12 +111,6 @@ def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
return newline_checkpoint_path, projector_checkpoint_path
def newline_criteria(checkpoint):
return any(k.startswith("model.image_newline") for k in checkpoint.keys())
def proj_criteria(checkpoint):
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys())
# Command-line interface setup
ap = argparse.ArgumentParser()
@@ -123,14 +144,14 @@ first_checkpoint = None
if newline_checkpoint_path is not None:
print(f"Taking newline from {newline_checkpoint_path}")
first_checkpoint, file_type = load_model(newline_checkpoint_path)
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")]
first_mm_tensors = [k for k, v in first_checkpoint.items() if is_newline(k)]
# Load the checkpoint
mm_tensors = []
last_checkpoint = None
if projector_checkpoint_path is not None:
last_checkpoint, file_type = load_model(projector_checkpoint_path)
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")]
mm_tensors = [k for k, v in last_checkpoint.items() if is_mm_projector(k)]
if len(mm_tensors) == 0:
if last_checkpoint is not None:
@@ -155,5 +176,5 @@ if len(projector) > 0:
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
print("Done!")
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")

View File

@@ -86,7 +86,11 @@ static struct clip_ctx * clip_init_context(common_params * params) {
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto * ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
struct clip_context_params clip_params = {
/* use_gpu */ params->n_gpu_layers != 0,
/* verbosity */ params->verbosity,
};
auto * ctx_clip = clip_init(clip_path, clip_params);
return ctx_clip;
}
@@ -148,19 +152,34 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (num_image_embeds > 1) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
if (has_minicpmv_projector == 2) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</image>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 3 || has_minicpmv_projector == 4) {
size_t num_image_embeds_col = clip_uhd_num_image_embeds_col(ctx_llava->ctx_clip);
for (size_t i = 0; i < (num_image_embeds-1)/num_image_embeds_col; ++i) {
for (size_t j = 0; j < num_image_embeds_col; ++j) {
eval_string(ctx_llava->ctx_llama, std::string("<slice>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
if (j == num_image_embeds_col - 1) {
eval_string(ctx_llava->ctx_llama, std::string("\n").c_str(), params->n_batch, &n_past, false);
}
}
}
}
eval_string(ctx_llava->ctx_llama, std::string("</slice>").c_str(), params->n_batch, &n_past, false);
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
}

View File

@@ -597,7 +597,6 @@ elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
minicpmv_version = 4
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
struct ngram_data {
bool active = false;
@@ -95,7 +96,7 @@ int main(int argc, char ** argv) {
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
@@ -437,17 +438,17 @@ int main(int argc, char ** argv) {
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
llama_kv_self_seq_keep(ctx, seq_id_best);
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
}
}

View File

@@ -192,7 +192,7 @@ int main(int argc, char ** argv){
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

View File

@@ -27,12 +27,24 @@ Once downloaded, place your model in the models folder in llama.cpp.
##### Input prompt (One-and-done)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
@@ -44,12 +56,24 @@ Once downloaded, place your model in the models folder in llama.cpp.
##### Input prompt (One-and-done)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --prompt "Once upon a time"
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -cnv --chat-template gemma
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
@@ -77,6 +101,8 @@ The `llama-cli` program provides several ways to interact with the LLaMA models
- `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--system-prompt PROMPT`: Provide a system prompt (will otherwise use the default one in the chat template (if provided)).
- `--system-prompt-file FNAME`: Provide a file containing a system prompt.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
@@ -89,7 +115,10 @@ In interactive mode, users can participate in text generation by injecting their
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default chat template) (default: false)
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default or provided chat template) (default: true if chat template found)
- `-no-cnv`: Disable conversation mode (default: false)
- `-st, --single-turn`: Only process a single conversation turn (user input) and then exit.
- `--jinja`: Enable jinja chat template parser, will use the model's built-in template or a user-provided one (default: false)
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
@@ -125,6 +154,8 @@ When --in-prefix or --in-suffix options are enabled the chat template ( --chat-t
Example usage: `--chat-template gemma`
`--chat-template-file FNAME`: Load a custom jinja chat template from an external file, useful if the model contains outdated or incompatible template, some examples can be found in models/templates. Up-to-date chat templates can be downloaded from Hugging Face using scripts/get_chat_template.py
## Context Management
During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations.

View File

@@ -4,7 +4,7 @@
#include "log.h"
#include "sampling.h"
#include "llama.h"
#include "chat-template.hpp"
#include "chat.h"
#include <cstdio>
#include <cstring>
@@ -31,8 +31,6 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static const char * DEFAULT_SYSTEM_MESSAGE = "You are a helpful assistant";
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
@@ -47,8 +45,8 @@ static void print_usage(int argc, char ** argv) {
(void) argc;
LOG("\nexample usage:\n");
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]);
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n", argv[0]);
LOG("\n");
}
@@ -158,7 +156,7 @@ int main(int argc, char ** argv) {
}
const llama_vocab * vocab = llama_model_get_vocab(model);
auto chat_templates = common_chat_templates_from_model(model, params.chat_template);
auto chat_templates = common_chat_templates_init(model, params.chat_template);
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
@@ -201,7 +199,7 @@ int main(int argc, char ** argv) {
}
// auto enable conversation mode if chat template is available
const bool has_chat_template = chat_templates.has_explicit_template && chat_templates.template_default;
const bool has_chat_template = common_chat_templates_was_explicit(chat_templates.get());
if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
if (has_chat_template) {
LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
@@ -219,7 +217,11 @@ int main(int argc, char ** argv) {
// print chat template example in conversation mode
if (params.conversation_mode) {
if (params.enable_chat_template) {
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(*chat_templates.template_default, params.use_jinja).c_str());
if (!params.prompt.empty() && params.system_prompt.empty()) {
LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n");
}
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
@@ -263,21 +265,45 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp;
bool waiting_for_first_input = false;
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content, {}};
auto formatted = common_chat_format_single(*chat_templates.template_default, chat_msgs, new_msg, role == "user", g_params->use_jinja);
chat_msgs.push_back({role, content, {}});
common_chat_msg new_msg;
new_msg.role = role;
new_msg.content = content;
auto formatted = common_chat_format_single(chat_templates.get(), chat_msgs, new_msg, role == "user", g_params->use_jinja);
chat_msgs.push_back(new_msg);
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
};
std::string prompt;
{
auto prompt = (params.conversation_mode && params.enable_chat_template)
// format the system prompt in conversation mode (fallback to default if empty)
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
if (params.conversation_mode && params.enable_chat_template) {
if (!params.system_prompt.empty()) {
// format the system prompt (will use template default if empty)
chat_add_and_format("system", params.system_prompt);
}
if (!params.prompt.empty()) {
// format and append the user prompt
chat_add_and_format("user", params.prompt);
} else {
waiting_for_first_input = true;
}
if (!params.system_prompt.empty() || !params.prompt.empty()) {
common_chat_templates_inputs inputs;
inputs.messages = chat_msgs;
inputs.add_generation_prompt = !params.prompt.empty();
prompt = common_chat_templates_apply(chat_templates.get(), inputs).prompt;
}
} else {
// otherwise use the prompt as is
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
prompt = params.prompt;
}
if (params.interactive_first || !prompt.empty() || session_tokens.empty()) {
LOG_DBG("tokenize the prompt\n");
embd_inp = common_tokenize(ctx, prompt, true, true);
} else {
@@ -290,7 +316,7 @@ int main(int argc, char ** argv) {
}
// Should not run without any tokens
if (embd_inp.empty()) {
if (!waiting_for_first_input && embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
@@ -328,7 +354,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
@@ -350,7 +376,12 @@ int main(int argc, char ** argv) {
}
if (params.conversation_mode) {
params.interactive_first = true;
if (params.single_turn && !params.prompt.empty()) {
params.interactive = false;
params.interactive_first = false;
} else {
params.interactive_first = true;
}
}
// enable interactive mode if interactive start is specified
@@ -474,8 +505,8 @@ int main(int argc, char ** argv) {
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s", control_message);
if (params.conversation_mode && params.enable_chat_template && params.prompt.empty()) {
LOG_INF( " - Using default system message. To change it, set a different value via -p PROMPT or -f FILE argument.\n");
if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
}
LOG_INF("\n");
@@ -571,8 +602,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
@@ -595,9 +626,9 @@ int main(int argc, char ** argv) {
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;
@@ -755,11 +786,14 @@ int main(int argc, char ** argv) {
// check for reverse prompt using special tokens
llama_token last_token = common_sampler_last(smpl);
if (std::find(antiprompt_token.begin(), antiprompt_token.end(), last_token) != antiprompt_token.end()) {
if (params.interactive) {
is_interacting = true;
for (auto token : antiprompt_token) {
if (token == last_token) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
is_antiprompt = true;
}
if (is_antiprompt) {
@@ -768,7 +802,7 @@ int main(int argc, char ** argv) {
}
// deal with end of generation tokens in interactive mode
if (llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
if (!waiting_for_first_input && llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
@@ -788,12 +822,17 @@ int main(int argc, char ** argv) {
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation_mode) {
if (params.conversation_mode && !waiting_for_first_input) {
const auto id = common_sampler_last(smpl);
assistant_ss << common_token_to_piece(ctx, id, false);
if (!prompt.empty()) {
prompt.clear();
is_interacting = false;
}
}
if (n_past > 0 && is_interacting) {
if ((n_past > 0 || waiting_for_first_input) && is_interacting) {
LOG_DBG("waiting for user input\n");
if (params.conversation_mode) {
@@ -883,11 +922,17 @@ int main(int argc, char ** argv) {
input_echo = false; // do not echo this again
}
if (n_past > 0) {
if (n_past > 0 || waiting_for_first_input) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
if (waiting_for_first_input && params.single_turn) {
params.interactive = false;
params.interactive_first = false;
}
waiting_for_first_input = false;
}
}

View File

@@ -12,6 +12,7 @@
#include <string>
#include <vector>
#include <ctime>
#include <algorithm>
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
@@ -201,7 +202,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("\n");
@@ -233,9 +234,9 @@ int main(int argc, char ** argv) {
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
llama_kv_self_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("%s: clearing the KV cache\n", __func__);
@@ -371,8 +372,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n");
@@ -132,11 +133,11 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_cache_update (ctx);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
common_batch_clear(batch);
@@ -166,12 +167,12 @@ int main(int argc, char ** argv) {
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
common_batch_clear(batch);
@@ -197,12 +198,12 @@ int main(int argc, char ** argv) {
if (n_discard > 0) {
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
}

View File

@@ -361,7 +361,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
@@ -547,7 +547,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@@ -924,7 +924,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -1203,7 +1203,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -1575,7 +1575,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@@ -1765,7 +1765,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);

View File

@@ -1,6 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "llama-context.h"
#include "llama-model.h"
#include "common.h"
#include <algorithm>
@@ -328,7 +328,7 @@ int main(int argc, char ** argv) {
}
}
const auto & tensors = llama_internal_get_tensor_map(ctx);
const auto & tensors = llama_internal_get_tensor_map(model);
// check layer tensors
int included_layers = 0;

View File

@@ -8,6 +8,7 @@
#include <unordered_map>
#include <fstream>
#include <cmath>
#include <cctype>
struct quant_option {
std::string name;

View File

@@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

File diff suppressed because it is too large Load Diff

View File

@@ -47,27 +47,27 @@ extern "C" {
#include <stddef.h> /* For size_t. */
#include <stdlib.h>
extern const char *linenoiseEditMore;
extern const char * linenoiseEditMore;
/* The linenoiseState structure represents the state during line editing.
* We pass this state to functions implementing specific editing
* functionalities. */
struct linenoiseState {
int in_completion; /* The user pressed TAB and we are now in completion
int in_completion; /* The user pressed TAB and we are now in completion
* mode, so input is handled by completeLine(). */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char *buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char *prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldpos; /* Previous refresh cursor position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refrehsed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char * buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char * prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldcolpos; /* Previous refresh cursor column position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refreshed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
};
struct linenoiseCompletions {
@@ -89,19 +89,20 @@ struct linenoiseCompletions {
};
/* Non blocking API. */
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);
const char *linenoiseEditFeed(struct linenoiseState *l);
void linenoiseEditStop(struct linenoiseState *l);
void linenoiseHide(struct linenoiseState *l);
void linenoiseShow(struct linenoiseState *l);
int linenoiseEditStart(struct linenoiseState * l, int stdin_fd, int stdout_fd, char * buf, size_t buflen,
const char * prompt);
const char * linenoiseEditFeed(struct linenoiseState * l);
void linenoiseEditStop(struct linenoiseState * l);
void linenoiseHide(struct linenoiseState * l);
void linenoiseShow(struct linenoiseState * l);
/* Blocking API. */
const char *linenoise(const char *prompt);
void linenoiseFree(void *ptr);
const char * linenoise(const char * prompt);
void linenoiseFree(void * ptr);
/* Completion API. */
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
typedef const char*(linenoiseHintsCallback)(const char *, int *color, int *bold);
typedef const char *(linenoiseHintsCallback) (const char *, int * color, int * bold);
typedef void(linenoiseFreeHintsCallback)(const char *);
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
@@ -109,10 +110,10 @@ void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
/* History API. */
int linenoiseHistoryAdd(const char *line);
int linenoiseHistoryAdd(const char * line);
int linenoiseHistorySetMaxLen(int len);
int linenoiseHistorySave(const char *filename);
int linenoiseHistoryLoad(const char *filename);
int linenoiseHistorySave(const char * filename);
int linenoiseHistoryLoad(const char * filename);
/* Other utilities. */
void linenoiseClearScreen(void);
@@ -121,6 +122,14 @@ void linenoisePrintKeyCodes(void);
void linenoiseMaskModeEnable(void);
void linenoiseMaskModeDisable(void);
/* Encoding functions. */
typedef size_t(linenoisePrevCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseNextCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseReadCode)(int fd, char * buf, size_t buf_len, int * c);
void linenoiseSetEncodingFunctions(linenoisePrevCharLen * prevCharLenFunc, linenoiseNextCharLen * nextCharLenFunc,
linenoiseReadCode * readCodeFunc);
#ifdef __cplusplus
}
#endif

View File

@@ -24,7 +24,7 @@
#include <string>
#include <vector>
#include "chat-template.hpp"
#include "chat.h"
#include "common.h"
#include "json.hpp"
#include "linenoise.cpp/linenoise.h"
@@ -79,6 +79,7 @@ class Opt {
ctx_params = llama_context_default_params();
model_params = llama_model_default_params();
context_size_default = ctx_params.n_batch;
n_threads_default = ctx_params.n_threads;
ngl_default = model_params.n_gpu_layers;
common_params_sampling sampling;
temperature_default = sampling.temp;
@@ -104,6 +105,7 @@ class Opt {
ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
ctx_params.n_ctx = ctx_params.n_batch;
ctx_params.n_threads = ctx_params.n_threads_batch = n_threads >= 0 ? n_threads : n_threads_default;
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
temperature = temperature >= 0 ? temperature : temperature_default;
@@ -113,14 +115,15 @@ class Opt {
llama_context_params ctx_params;
llama_model_params model_params;
std::string model_;
std::string chat_template_file;
std::string user;
bool use_jinja = false;
int context_size = -1, ngl = -1;
int context_size = -1, ngl = -1, n_threads = -1;
float temperature = -1;
bool verbose = false;
private:
int context_size_default = -1, ngl_default = -1;
int context_size_default = -1, ngl_default = -1, n_threads_default = -1;
float temperature_default = -1;
bool help = false;
@@ -148,48 +151,104 @@ class Opt {
return 0;
}
int handle_option_with_value(int argc, const char ** argv, int & i, std::string & option_value) {
if (i + 1 >= argc) {
return 1;
}
option_value = argv[++i];
return 0;
}
int parse_options_with_value(int argc, const char ** argv, int & i, bool & options_parsing) {
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing &&
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
} else if (options_parsing && (strcmp(argv[i], "-t") == 0 || strcmp(argv[i], "--threads") == 0)) {
if (handle_option_with_value(argc, argv, i, n_threads) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--chat-template-file") == 0) {
if (handle_option_with_value(argc, argv, i, chat_template_file) == 1) {
return 1;
}
use_jinja = true;
} else {
return 2;
}
return 0;
}
int parse_options(const char ** argv, int & i, bool & options_parsing) {
if (options_parsing && (parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
options_parsing = false;
} else {
return 2;
}
return 0;
}
int parse_positional_args(const char ** argv, int & i, int & positional_args_i) {
if (positional_args_i == 0) {
if (!argv[i][0] || argv[i][0] == '-') {
return 1;
}
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user = argv[i];
} else {
user += " " + std::string(argv[i]);
}
return 0;
}
int parse(int argc, const char ** argv) {
bool options_parsing = true;
for (int i = 1, positional_args_i = 0; i < argc; ++i) {
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing &&
(strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "-ngl") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
return 1;
}
} else if (options_parsing &&
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
options_parsing = false;
} else if (positional_args_i == 0) {
if (!argv[i][0] || argv[i][0] == '-') {
return 1;
}
int ret = parse_options_with_value(argc, argv, i, options_parsing);
if (ret == 0) {
continue;
} else if (ret == 1) {
return ret;
}
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user = argv[i];
} else {
user += " " + std::string(argv[i]);
ret = parse_options(argv, i, options_parsing);
if (ret == 0) {
continue;
} else if (ret == 1) {
return ret;
}
if (parse_positional_args(argv, i, positional_args_i)) {
return 1;
}
}
if (model_.empty()){
if (model_.empty()) {
return 1;
}
@@ -207,10 +266,17 @@ class Opt {
"Options:\n"
" -c, --context-size <value>\n"
" Context size (default: %d)\n"
" --chat-template-file <path>\n"
" Path to the file containing the chat template to use with the model.\n"
" Only supports jinja templates and implicitly sets the --jinja flag.\n"
" --jinja\n"
" Use jinja templating for the chat template of the model\n"
" -n, -ngl, --ngl <value>\n"
" Number of GPU layers (default: %d)\n"
" --temp <value>\n"
" Temperature (default: %.1f)\n"
" -t, --threads <value>\n"
" Number of threads to use during generation (default: %d)\n"
" -v, --verbose, --log-verbose\n"
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
" -h, --help\n"
@@ -239,7 +305,7 @@ class Opt {
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 999 some-file4.gguf\n"
" llama-run --ngl 999 some-file5.gguf Hello World\n",
context_size_default, ngl_default, temperature_default);
context_size_default, ngl_default, temperature_default, n_threads_default);
}
};
@@ -261,13 +327,12 @@ static int get_terminal_width() {
#endif
}
#ifdef LLAMA_USE_CURL
class File {
public:
FILE * file = nullptr;
FILE * open(const std::string & filename, const char * mode) {
file = fopen(filename.c_str(), mode);
file = ggml_fopen(filename.c_str(), mode);
return file;
}
@@ -303,6 +368,20 @@ class File {
return 0;
}
std::string to_string() {
fseek(file, 0, SEEK_END);
const size_t size = ftell(file);
fseek(file, 0, SEEK_SET);
std::string out;
out.resize(size);
const size_t read_size = fread(&out[0], 1, size, file);
if (read_size != size) {
printe("Error reading file: %s", strerror(errno));
}
return out;
}
~File() {
if (fd >= 0) {
# ifdef _WIN32
@@ -327,6 +406,7 @@ class File {
# endif
};
#ifdef LLAMA_USE_CURL
class HttpClient {
public:
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
@@ -557,7 +637,7 @@ class LlamaData {
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
std::vector<llama_chat_message> messages; // TODO: switch to common_chat_msg
std::list<std::string> msg_strs;
std::vector<char> fmtted;
@@ -834,50 +914,29 @@ static void add_message(const char * role, const std::string & text, LlamaData &
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) {
if (use_jinja) {
json messages = json::array();
for (const auto & msg : llama_data.messages) {
messages.push_back({
{"role", msg.role},
{"content", msg.content},
});
}
try {
minja::chat_template_inputs tmpl_inputs;
tmpl_inputs.messages = messages;
tmpl_inputs.add_generation_prompt = append;
minja::chat_template_options tmpl_opts;
tmpl_opts.use_bos_token = false;
tmpl_opts.use_eos_token = false;
auto result = tmpl.apply(tmpl_inputs, tmpl_opts);
llama_data.fmtted.resize(result.size() + 1);
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
return result.size();
} catch (const std::exception & e) {
printe("failed to render the chat template: %s\n", e.what());
return -1;
}
}
int result = llama_chat_apply_template(
tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(),
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
static int apply_chat_template(const struct common_chat_templates * tmpls, LlamaData & llama_data, const bool append, bool use_jinja) {
common_chat_templates_inputs inputs;
for (const auto & msg : llama_data.messages) {
common_chat_msg cmsg;
cmsg.role = msg.role;
cmsg.content = msg.content;
inputs.messages.push_back(cmsg);
}
inputs.add_generation_prompt = append;
inputs.use_jinja = use_jinja;
return result;
auto chat_params = common_chat_templates_apply(tmpls, inputs);
// TODO: use other params for tool calls.
auto result = chat_params.prompt;
llama_data.fmtted.resize(result.size() + 1);
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
return result.size();
}
// Function to tokenize the prompt
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
const bool is_first = llama_kv_self_used_cells(llama_data.context.get()) == 0;
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
prompt_tokens.resize(n_prompt_tokens);
@@ -893,7 +952,7 @@ static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
const int n_ctx_used = llama_kv_self_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf(LOG_COL_DEFAULT "\n");
printe("context size exceeded\n");
@@ -963,7 +1022,8 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
}
static int read_user_input(std::string & user_input) {
static const char * prompt_prefix = "> ";
static const char * prompt_prefix_env = std::getenv("LLAMA_PROMPT_PREFIX");
static const char * prompt_prefix = prompt_prefix_env ? prompt_prefix_env : "> ";
#ifdef WIN32
printf("\r" LOG_CLR_TO_EOL LOG_COL_DEFAULT "%s", prompt_prefix);
@@ -1015,8 +1075,8 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja);
static int apply_chat_template_with_error_handling(const common_chat_templates * tmpls, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
const int new_len = apply_chat_template(tmpls, llama_data, append, use_jinja);
if (new_len < 0) {
printe("failed to apply the chat template\n");
return -1;
@@ -1074,40 +1134,68 @@ static int get_user_input(std::string & user_input, const std::string & user) {
return 0;
}
// Reads a chat template file to be used
static std::string read_chat_template_file(const std::string & chat_template_file) {
File file;
if (!file.open(chat_template_file, "r")) {
printe("Error opening chat template file '%s': %s", chat_template_file.c_str(), strerror(errno));
return "";
}
return file.to_string();
}
static int process_user_message(const Opt & opt, const std::string & user_input, LlamaData & llama_data,
const common_chat_templates_ptr & chat_templates, int & prev_len,
const bool stdout_a_terminal) {
add_message("user", opt.user.empty() ? user_input : opt.user, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, true, new_len, opt.use_jinja) < 0) {
return 1;
}
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response, stdout_a_terminal)) {
return 1;
}
if (!opt.user.empty()) {
return 2;
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(chat_templates.get(), llama_data, false, prev_len, opt.use_jinja) < 0) {
return 1;
}
return 0;
}
// Main chat loop function
static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) {
static int chat_loop(LlamaData & llama_data, const Opt & opt) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), "");
GGML_ASSERT(chat_templates.template_default);
std::string chat_template;
if (!opt.chat_template_file.empty()) {
chat_template = read_chat_template_file(opt.chat_template_file);
}
common_chat_templates_ptr chat_templates = common_chat_templates_init(llama_data.model.get(), chat_template);
static const bool stdout_a_terminal = is_stdout_a_terminal();
while (true) {
// Get user input
std::string user_input;
if (get_user_input(user_input, user) == 1) {
if (get_user_input(user_input, opt.user) == 1) {
return 0;
}
add_message("user", user.empty() ? user_input : user, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) {
const int ret = process_user_message(opt, user_input, llama_data, chat_templates, prev_len, stdout_a_terminal);
if (ret == 1) {
return 1;
}
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response, stdout_a_terminal)) {
return 1;
}
if (!user.empty()) {
} else if (ret == 2) {
break;
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) {
return 1;
}
}
return 0;
@@ -1165,7 +1253,7 @@ int main(int argc, const char ** argv) {
return 1;
}
if (chat_loop(llama_data, opt.user, opt.use_jinja)) {
if (chat_loop(llama_data, opt)) {
return 1;
}

View File

@@ -15,7 +15,7 @@ int main(int argc, char ** argv) {
return 1;
}
print_build_info();
common_init();
if (params.n_predict < 0) {
params.n_predict = 16;
@@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_cache_clear(ctx3);
llama_kv_self_clear(ctx3);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1

View File

@@ -13,6 +13,7 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
* Multimodal (wip)
* Monitoring endpoints
* Schema-constrained JSON response format
* [Function calling](../../docs/function-calling.md) / tool use for ~any model
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggml-org/llama.cpp/issues/4216).
@@ -1120,381 +1121,9 @@ curl http://localhost:8080/v1/chat/completions \
*Tool call support*
[Function calling](https://platform.openai.com/docs/guides/function-calling) is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
[OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) is supported with the `--jinja` flag (and may require a `--chat-template-file` override to get the right tool-use compatible Jinja template; worst case, `--chat-template chatml` may also work).
- Requires `--jinja` flag
- Native tool call formats supported:
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
- Functionary v3.1 / v3.2
- Hermes 2/3, Qwen 2.5
- Mistral Nemo
- Firefunction v2
- Command R7B
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
<details>
<summary>Show some common templates and which format handler they use</summary>
| Template | Format |
|----------|--------|
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
| CohereForAI-aya-expanse-8b.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
| HelpingAI-HAI-SER.jinja | Generic |
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
| LatitudeGames-Wayfarer-12B.jinja | Generic |
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
| NexaAIDev-Octopus-v2.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
| OnlyCheeini-greesychat-turbo.jinja | Generic |
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
| Qwen-QVQ-72B-Preview.jinja | Generic |
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
| THUDM-glm-4-9b-chat.jinja | Generic |
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| databricks-dbrx-instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
| dicta-il-dictalm2.0-instruct.jinja | Generic |
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
| google-gemma-2-27b-it.jinja | Generic |
| google-gemma-2-2b-it.jinja | Generic |
| google-gemma-2-2b-jpn-it.jinja | Generic |
| google-gemma-7b-it.jinja | Generic |
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
| jinaai-ReaderLM-v2.jinja | Generic |
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
| microsoft-phi-4.jinja | Generic |
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
| ministral-Ministral-3b-instruct.jinja | Generic |
| mistralai-Codestral-22B-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| mlabonne-AlphaMonarch-7B.jinja | Generic |
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
| netcat420-MFANNv0.20.jinja | Generic |
| netcat420-MFANNv0.24.jinja | Generic |
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
| openchat-openchat-3.5-0106.jinja | Generic |
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
| prithivMLmods-GWQ2b.jinja | Generic |
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
| sthenno-tempesthenno-icy-0130.jinja | Generic |
| sumink-qwft.jinja | Hermes 2 Pro |
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
| thirdeyeai-elevate360m.jinja | Generic |
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
| upstage-solar-pro-preview-instruct.jinja | Generic |
| whyhow-ai-PatientSeek.jinja | Generic |
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
This table can be generated with:
```bash
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
```
</details>
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
- Run with:
```shell
# Native support:
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
# Native support for DeepSeek R1 works best w/ our own template (official template buggy)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
# Native support requires the right template for these GGUFs:
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-2-Pro-Llama-3-8B tool_use )
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
--chat-template-file <( python scripts/get_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use )
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
--chat-template-file <( python scripts/get_chat_template.py fireworks-ai/llama-3-firefunction-v2 tool_use )
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
--chat-template-file <( python scripts/get_chat_template.py CohereForAI/c4ai-command-r7b-12-2024 tool_use )
# Generic format support
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
```
- Test in CLI:
```bash
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
}
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
```
<details>
<summary>Show output</summary>
```json
{
"choices": [
{
"finish_reason": "tool",
"index": 0,
"message": {
"content": null,
"tool_calls": [
{
"name": "python",
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
}
],
"role": "assistant"
}
}
],
"created": 1727287211,
"model": "gpt-3.5-turbo",
"object": "chat.completion",
"usage": {
"completion_tokens": 16,
"prompt_tokens": 44,
"total_tokens": 60
},
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
}
```
</details>
**See our [Function calling](../../docs/function-calling.md) docs** for more details, supported native tool call styles (generic tool call style is used as fallback) / examples of use.
### POST `/v1/embeddings`: OpenAI-compatible embeddings API

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -1,5 +1,5 @@
// WARNING: This file was ported from json_schema_to_grammar.py, please fix bugs / add features there first.
const SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}';
const SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}';
function _buildRepetition(itemRule, minItems, maxItems, opts={}) {
if (minItems === 0 && maxItems === 1) {

View File

@@ -131,9 +131,9 @@ struct slot_params {
lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
}
std::vector<std::string> grammar_trigger_words;
for (const auto & trigger : sampling.grammar_trigger_words) {
grammar_trigger_words.push_back(trigger.word);
auto grammar_triggers = json::array();
for (const auto & trigger : sampling.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
}
return json {
@@ -170,8 +170,8 @@ struct slot_params {
{"n_probs", sampling.n_probs},
{"min_keep", sampling.min_keep},
{"grammar", sampling.grammar},
{"grammar_trigger_words", grammar_trigger_words},
{"grammar_trigger_tokens", sampling.grammar_trigger_tokens},
{"grammar_lazy", sampling.grammar_lazy},
{"grammar_triggers", grammar_triggers},
{"preserved_tokens", sampling.preserved_tokens},
{"chat_format", common_chat_format_name(oaicompat_chat_format)},
{"samplers", samplers},
@@ -274,7 +274,7 @@ struct server_task {
params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
params.speculative.n_min = std::max(params.speculative.n_min, 2);
params.speculative.n_min = std::max(params.speculative.n_min, 0);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
// Use OpenAI API logprobs only if n_probs wasn't provided
@@ -329,9 +329,6 @@ struct server_task {
}
// process "json_schema" and "grammar"
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
@@ -359,24 +356,6 @@ struct server_task {
}
{
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
common_grammar_trigger trigger;
trigger.word = t.at("word");
trigger.at_start = t.at("at_start");
auto ids = common_tokenize(vocab, trigger.word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
SRV_DBG("Grammar trigger token: %d (`%s`)\n", ids[0], trigger.word.c_str());
params.sampling.grammar_trigger_tokens.push_back(ids[0]);
params.sampling.preserved_tokens.insert(ids[0]);
continue;
}
SRV_DBG("Grammar trigger word: `%s`\n", trigger.word.c_str());
params.sampling.grammar_trigger_words.push_back(trigger);
}
}
const auto preserved_tokens = data.find("preserved_tokens");
if (preserved_tokens != data.end()) {
for (const auto & t : *preserved_tokens) {
@@ -386,12 +365,39 @@ struct server_task {
params.sampling.preserved_tokens.insert(ids[0]);
} else {
// This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
SRV_WRN("Not preserved because more than 1 token (wrong chat template override?): %s\n", t.get<std::string>().c_str());
SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
}
}
}
if (params.sampling.grammar_lazy) {
GGML_ASSERT(params.sampling.grammar_trigger_tokens.size() > 0 || params.sampling.grammar_trigger_words.size() > 0);
const auto grammar_triggers = data.find("grammar_triggers");
if (grammar_triggers != data.end()) {
for (const auto & t : *grammar_triggers) {
auto ct = common_grammar_trigger::from_json(t);
if (ct.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
const auto & word = ct.value;
auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
if (ids.size() == 1) {
auto token = ids[0];
if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
}
SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
common_grammar_trigger trigger;
trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
trigger.value = word;
trigger.token = token;
params.sampling.grammar_triggers.push_back(std::move(trigger));
} else {
SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
}
} else {
params.sampling.grammar_triggers.push_back(ct);
}
}
}
if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
throw std::runtime_error("Error: no triggers set for lazy grammar!");
}
}
@@ -745,7 +751,10 @@ struct server_task_result_cmpl_final : server_task_result {
{"name", tc.name},
{"arguments", tc.arguments},
}},
{"id", tc.id},
// Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
// We only generate a random id for the ones that don't generate one by themselves
// (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
{"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
});
}
message["tool_calls"] = tool_calls;
@@ -821,6 +830,11 @@ struct server_task_result_cmpl_final : server_task_result {
ret.push_back({"timings", timings.to_json()});
}
// extra fields for debugging purposes
if (verbose) {
ret["__verbose"] = to_json_non_oaicompat();
}
return ret;
}
};
@@ -1307,7 +1321,7 @@ struct server_slot {
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
}
bool can_batch_with(server_slot & other_slot) {
bool can_batch_with(server_slot & other_slot) const {
return is_non_causal() == other_slot.is_non_causal()
&& are_lora_equal(lora, other_slot.lora);
}
@@ -1807,7 +1821,7 @@ struct server_context {
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
common_chat_templates chat_templates;
common_chat_templates_ptr chat_templates;
~server_context() {
// Clear any sampling context
@@ -1863,6 +1877,10 @@ struct server_context {
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
// force F16 KV cache for the draft model for extra performance
params_dft.cache_type_k = GGML_TYPE_F16;
params_dft.cache_type_v = GGML_TYPE_F16;
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model.get();
@@ -1883,53 +1901,22 @@ struct server_context {
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
if (params_base.chat_template.empty() && !validate_builtin_chat_template(params.use_jinja)) {
chat_templates = common_chat_templates_init(model, params_base.chat_template);
try {
common_chat_format_example(chat_templates.get(), params.use_jinja);
} catch (const std::exception & e) {
SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
chat_templates = common_chat_templates_from_model(model, "chatml");
} else {
chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
chat_templates = common_chat_templates_init(model, "chatml");
}
GGML_ASSERT(chat_templates.template_default.get() != nullptr);
return true;
}
bool validate_builtin_chat_template(bool use_jinja) const {
llama_chat_message chat[] = {{"user", "test"}};
if (use_jinja) {
auto templates = common_chat_templates_from_model(model, "");
common_chat_inputs inputs;
inputs.messages = json::array({{
{"role", "user"},
{"content", "test"},
}});
GGML_ASSERT(templates.template_default);
try {
common_chat_params_init(*templates.template_default, inputs);
if (templates.template_tool_use) {
common_chat_params_init(*templates.template_tool_use, inputs);
}
return true;
} catch (const std::exception & e) {
SRV_ERR("failed to apply template: %s\n", e.what());
return false;
}
} else {
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
}
}
void init() {
const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
@@ -2058,6 +2045,18 @@ struct server_context {
return ret;
}
bool can_be_detokenized(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int32_t n_vocab = llama_vocab_n_tokens(vocab);
for (const auto & token : tokens) {
if (token < 0 || token >= n_vocab) {
return false;
}
}
return true;
}
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
slot.reset();
slot.id_task = task.id;
@@ -2072,11 +2071,16 @@ struct server_context {
slot.lora = task.params.lora;
}
bool can_detokenize = can_be_detokenized(ctx, slot.prompt_tokens);
if (!can_detokenize) {
send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
return false;
}
SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
// Might be better to reject the request with a 400 ?
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.params.n_predict, slot.n_predict);
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
slot.params.n_predict = slot.n_predict;
}
@@ -2114,7 +2118,7 @@ struct server_context {
SRV_DBG("%s", "clearing KV cache\n");
// clear the entire KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
clean_kv_cache = false;
}
@@ -2179,14 +2183,6 @@ struct server_context {
}
if (slot.has_new_line) {
// if we have already seen a new line, we stop after a certain time limit
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
// require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
if (slot.params.n_indent > 0) {
// check the current indentation
@@ -2225,6 +2221,14 @@ struct server_context {
// check if there is a new line in the generated text
if (result.text_to_send.find('\n') != std::string::npos) {
slot.has_new_line = true;
// if we have seen a new line, we stop after a certain time limit, but only upon another new line
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
slot.stop = STOP_TYPE_LIMIT;
slot.has_next_token = false;
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
}
}
// if context shift is disabled, we stop when it reaches the context limit
@@ -2656,8 +2660,8 @@ struct server_context {
res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
res->t_start = metrics.t_start;
res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
res->t_prompt_processing_total = metrics.t_prompt_processing_total;
@@ -2773,7 +2777,7 @@ struct server_context {
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
slot->cache_tokens.clear();
auto res = std::make_unique<server_task_result_slot_erase>();
@@ -2841,8 +2845,8 @@ struct server_context {
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
@@ -3033,8 +3037,8 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
@@ -3072,9 +3076,9 @@ struct server_context {
}
// keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
@@ -3314,7 +3318,7 @@ struct server_context {
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;
@@ -3656,7 +3660,7 @@ int main(int argc, char ** argv) {
}, {
{"name", "n_busy_slots_per_decode"},
{"help", "Average number of busy slots per llama_decode() call"},
{"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
{"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
@@ -3822,13 +3826,15 @@ int main(int argc, char ** argv) {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model },
{ "chat_template", ctx_server.chat_templates.template_default->source() },
{ "bos_token", ctx_server.chat_templates.template_default->bos_token() },
{ "eos_token", ctx_server.chat_templates.template_default->eos_token() },
{ "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
{ "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
{ "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
{ "build_info", build_info },
};
if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
if (ctx_server.params_base.use_jinja) {
if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
data["chat_template_tool_use"] = tool_use_src;
}
}
res_ok(res, data);
@@ -4063,7 +4069,7 @@ int main(int argc, char ** argv) {
}
auto body = json::parse(req.body);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
@@ -4076,7 +4082,7 @@ int main(int argc, char ** argv) {
// same with handle_chat_completions, but without inference part
const auto handle_apply_template = [&ctx_server, &params, &res_ok](const httplib::Request & req, httplib::Response & res) {
auto body = json::parse(req.body);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates);
json data = oaicompat_completion_params_parse(body, params.use_jinja, params.reasoning_format, ctx_server.chat_templates.get());
res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
};
@@ -4263,6 +4269,11 @@ int main(int argc, char ** argv) {
// return;
//}
// if true, use TEI API format, otherwise use Jina API format
// Jina: https://jina.ai/reranker/
// TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
bool is_tei_format = body.contains("texts");
json query;
if (body.count("query") == 1) {
query = body.at("query");
@@ -4275,7 +4286,8 @@ int main(int argc, char ** argv) {
return;
}
std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
std::vector<std::string> documents = json_value(body, "documents",
json_value(body, "texts", std::vector<std::string>()));
if (documents.empty()) {
res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
return;
@@ -4320,7 +4332,12 @@ int main(int argc, char ** argv) {
}
// write JSON response
json root = format_response_rerank(body, responses);
json root = format_response_rerank(
body,
responses,
is_tei_format,
documents);
res_ok(res, root);
};
@@ -4482,8 +4499,8 @@ int main(int argc, char ** argv) {
// print sample chat example to make it clear which template is used
LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
ctx_server.chat_templates.template_default->source().c_str(),
common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
common_chat_templates_source(ctx_server.chat_templates.get()),
common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
ctx_server.queue_tasks.on_new_task([&ctx_server](const server_task & task) {
ctx_server.process_single_task(task);

View File

@@ -48,7 +48,7 @@ DEBUG=1 ./tests.sh -s -v -x
To run all the tests in a file:
```shell
./tests.sh unit/test_chat_completion.py.py -v -x
./tests.sh unit/test_chat_completion.py -v -x
```
To run a single test:

View File

@@ -21,6 +21,8 @@ def create_server():
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
(None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", False, None),
(None, "Book", [{"type": "text", "text": "What is"}, {"type": "text", "text": "the best book"}], 8, "Whillicter", 79, 8, "length", True, None),
]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
@@ -44,7 +46,7 @@ def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_conte
assert res.body["usage"]["completion_tokens"] == n_predicted
choice = res.body["choices"][0]
assert "assistant" == choice["message"]["role"]
assert match_regex(re_content, choice["message"]["content"])
assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'
assert choice["finish_reason"] == finish_reason
@@ -142,6 +144,7 @@ def test_apply_chat_template():
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
({"type": "json_schema", "json_schema": {"schema": {"const": "foooooo"}}}, 10, "\"foooooo\""),
({"type": "json_object"}, 10, "(\\{|John)+"),
({"type": "sound"}, 0, None),
# invalid response format (expected to fail)
@@ -169,6 +172,47 @@ def test_completion_with_response_format(response_format: dict, n_predicted: int
assert "error" in res.body
@pytest.mark.parametrize("jinja,json_schema,n_predicted,re_content", [
(False, {"const": "42"}, 6, "\"42\""),
(True, {"const": "42"}, 6, "\"42\""),
])
def test_completion_with_json_schema(jinja: bool, json_schema: dict, n_predicted: int, re_content: str):
global server
server.jinja = jinja
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predicted,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
{"role": "user", "content": "Write an example"},
],
"json_schema": json_schema,
})
assert res.status_code == 200, f'Expected 200, got {res.status_code}'
choice = res.body["choices"][0]
assert match_regex(re_content, choice["message"]["content"]), f'Expected {re_content}, got {choice["message"]["content"]}'
@pytest.mark.parametrize("jinja,grammar,n_predicted,re_content", [
(False, 'root ::= "a"{5,5}', 6, "a{5,5}"),
(True, 'root ::= "a"{5,5}', 6, "a{5,5}"),
])
def test_completion_with_grammar(jinja: bool, grammar: str, n_predicted: int, re_content: str):
global server
server.jinja = jinja
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predicted,
"messages": [
{"role": "user", "content": "Does not matter what I say, does it?"},
],
"grammar": grammar,
})
assert res.status_code == 200, res.body
choice = res.body["choices"][0]
assert match_regex(re_content, choice["message"]["content"]), choice["message"]["content"]
@pytest.mark.parametrize("messages", [
None,
"string",

View File

@@ -10,17 +10,20 @@ def create_server():
server = ServerPreset.jina_reranker_tiny()
TEST_DOCUMENTS = [
"A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.",
"Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.",
"Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.",
"Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine."
]
def test_rerank():
global server
server.start()
res = server.make_request("POST", "/rerank", data={
"query": "Machine learning is",
"documents": [
"A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.",
"Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.",
"Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.",
"Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine."
]
"documents": TEST_DOCUMENTS,
})
assert res.status_code == 200
assert len(res.body["results"]) == 4
@@ -38,6 +41,29 @@ def test_rerank():
assert least_relevant["index"] == 3
def test_rerank_tei_format():
global server
server.start()
res = server.make_request("POST", "/rerank", data={
"query": "Machine learning is",
"texts": TEST_DOCUMENTS,
})
assert res.status_code == 200
assert len(res.body) == 4
most_relevant = res.body[0]
least_relevant = res.body[0]
for doc in res.body:
if doc["score"] > most_relevant["score"]:
most_relevant = doc
if doc["score"] < least_relevant["score"]:
least_relevant = doc
assert most_relevant["score"] > least_relevant["score"]
assert most_relevant["index"] == 2
assert least_relevant["index"] == 3
@pytest.mark.parametrize("documents", [
[],
None,

243
examples/server/tests/unit/test_tool_call.py Normal file → Executable file
View File

@@ -1,4 +1,12 @@
#!/usr/bin/env python
import pytest
# ensure grandparent path is in sys.path
from pathlib import Path
import sys
path = Path(__file__).resolve().parents[1]
sys.path.insert(0, str(path))
from utils import *
server: ServerProcess
@@ -66,15 +74,8 @@ WEATHER_TOOL = {
}
def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, argument_key: str | None):
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
def do_test_completion_with_required_tool_tiny(server: ServerProcess, tool: dict, argument_key: str | None, n_predict, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -83,16 +84,15 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
"tool_choice": "required",
"tools": [tool],
"parallel_tool_calls": False,
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
})
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
assert expected_function_name == tool_call["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
@@ -108,7 +108,14 @@ def do_test_completion_with_required_tool_tiny(template_name: str, tool: dict, a
("meta-llama-Llama-3.3-70B-Instruct", PYTHON_TOOL, "code"),
])
def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict, argument_key: str | None):
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict, temperature=0.0, top_k=1, top_p=1.0)
@pytest.mark.slow
@@ -130,10 +137,17 @@ def test_completion_with_required_tool_tiny_fast(template_name: str, tool: dict,
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", TEST_TOOL, "success"),
("deepseek-ai-DeepSeek-R1-Distill-Llama-8B", PYTHON_TOOL, "code"),
("fireworks-ai-llama-3-firefunction-v2", TEST_TOOL, "success"),
("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
# ("fireworks-ai-llama-3-firefunction-v2", PYTHON_TOOL, "code"),
])
def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict, argument_key: str | None):
do_test_completion_with_required_tool_tiny(template_name, tool, argument_key)
global server
n_predict = 512
# server = ServerPreset.stories15m_moe()
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_with_required_tool_tiny(server, tool, argument_key, n_predict)
@pytest.mark.slow
@@ -142,25 +156,33 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
(TEST_TOOL, "success", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
# (PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(PYTHON_TOOL, "code", "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
# (PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(PYTHON_TOOL, "code", "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
@@ -176,10 +198,10 @@ def test_completion_with_required_tool_tiny_slow(template_name: str, tool: dict,
(TEST_TOOL, "success", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama/Llama-3.2-3B-Instruct", None)),
# (PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
# TODO: fix these
# (TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
# (PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
(TEST_TOOL, "success", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(PYTHON_TOOL, "code", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
])
def test_completion_with_required_tool_real_model(tool: dict, argument_key: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
@@ -197,7 +219,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -215,7 +237,7 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
expected_function_name = "python" if tool["type"] == "code_interpreter" else tool["function"]["name"]
assert expected_function_name == tool_call["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
@@ -225,13 +247,8 @@ def test_completion_with_required_tool_real_model(tool: dict, argument_key: str
assert argument_key in actual_arguments, f"tool arguments: {json.dumps(actual_arguments)}, expected: {argument_key}"
def do_test_completion_without_tool_call(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
def do_test_completion_without_tool_call(server: ServerProcess, n_predict: int, tools: list[dict], tool_choice: str | None, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
@@ -239,9 +256,7 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
],
"tools": tools if tools else None,
"tool_choice": tool_choice,
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
@@ -254,7 +269,12 @@ def do_test_completion_without_tool_call(template_name: str, n_predict: int, too
("meta-llama-Llama-3.3-70B-Instruct", 128, [PYTHON_TOOL], 'none'),
])
def test_completion_without_tool_call_fast(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
@pytest.mark.slow
@@ -270,7 +290,12 @@ def test_completion_without_tool_call_fast(template_name: str, n_predict: int, t
("meta-llama-Llama-3.2-3B-Instruct", 256, [PYTHON_TOOL], 'none'),
])
def test_completion_without_tool_call_slow(template_name: str, n_predict: int, tools: list[dict], tool_choice: str | None):
do_test_completion_without_tool_call(template_name, n_predict, tools, tool_choice)
global server
server.jinja = True
server.n_predict = n_predict
server.chat_template_file = f'../../../models/templates/{template_name}.jinja'
server.start(timeout_seconds=TIMEOUT_SERVER_START)
do_test_completion_without_tool_call(server, n_predict, tools, tool_choice)
@pytest.mark.slow
@@ -281,6 +306,12 @@ def test_completion_without_tool_call_slow(template_name: str, n_predict: int, t
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-1.5B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
@@ -324,48 +355,53 @@ def test_weather(hf_repo: str, template_override: str | Tuple[str, str | None] |
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predict,
do_test_weather(server, max_tokens=n_predict)
def do_test_weather(server: ServerProcess, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
{"role": "user", "content": "What is the weather in Istanbul?"},
],
"tools": [WEATHER_TOOL],
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"]
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == WEATHER_TOOL["function"]["name"], f'Expected weather tool call, got {tool_call["function"]["name"]}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'location' in actual_arguments, f"location not found in {json.dumps(actual_arguments)}"
location = actual_arguments["location"]
assert isinstance(location, str), f"Expected location to be a string, got {type(location)}: {json.dumps(location)}"
assert re.match('^Istanbul(, (TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
assert re.match('^Istanbul(( |, ?)(TR|Turkey|Türkiye))?$', location), f'Expected Istanbul for location, got {location}'
@pytest.mark.slow
@pytest.mark.parametrize("result_override,n_predict,hf_repo,template_override", [
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Qwen2.5-Coder-3B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(None, 128, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-3-Llama-3.1-8B", "tool_use")),
(None, 128, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai/functionary-medium-v3.2", None)),
(None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
("^> 0.56$", 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
(None, 128, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
# TODO: fix these (wrong results, either didn't respect decimal instruction or got wrong value)
("^The y-coordinate [\\s\\S]*?\\*\\*0.5\\*\\*", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
("[\\s\\S]*?\\*\\*0\\.5\\*\\*", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
# (None, 128, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
# ("[\\s\\S]*?\\*\\*\\s*0.5($|\\*\\*)", 8192, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
])
def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
# n_predict = 512
server.n_slots = 1
server.jinja = True
server.n_ctx = 8192 * 2
@@ -379,10 +415,14 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
do_test_calc_result(server, result_override, n_predict)
def do_test_calc_result(server: ServerProcess, result_override: str | None, n_predict: int, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things, and provide very concise answers. Do not explain your reasoning to the user. Provide any numerical values back to the user with at most two decimals."},
{"role": "system", "content": "You are a tools-calling assistant. You express numerical values with at most two decimals."},
{"role": "user", "content": "What's the y coordinate of a point on the unit sphere at angle 30 degrees?"},
{
"role": "assistant",
@@ -401,7 +441,7 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
{
"role": "tool",
"name": "calculate",
"content": 0.55644242476,
"content": "0.55644242476",
"tool_call_id": "call_6789"
}
],
@@ -423,7 +463,8 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
}
}
}
]
],
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
@@ -434,19 +475,19 @@ def test_calc_result(result_override: str | None, n_predict: int, hf_repo: str,
if result_override is not None:
assert re.match(result_override, content), f'Expected {result_override}, got {content}'
else:
assert re.match('^[\\s\\S]*?The (y[ -])?coordinate [\\s\\S]*?is (approximately )?0\\.56\\b|^0\\.56$', content), \
assert re.match('^[\\s\\S]*?((That\'s|\\bis) (approximately )?)?\\b0\\.(5\\b|56\\b|556)', content), \
f'Expected something like "The y coordinate is 0.56.", got {content}'
@pytest.mark.slow
@pytest.mark.parametrize("n_predict,reasoning_format,expect_content,expect_reasoning_content,hf_repo,template_override", [
(128, 'deepseek', "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, None, "^The sum of 102 and 7 is 109.*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, 'deepseek', "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(128, None, "^The sum of 102 and 7 is 109[\\s\\S]*", None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of.*", "I need to calculate the sum of 102 and 7.*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'none', "<think>\n?I need[\\s\\S]*?</think>\n?To find.*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "I need to calculate the sum of 102 and 7[\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'none', "^(<think>\\s*)?I need[\\s\\S]*?</think>\\s*To find[\\s\\S]*", None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(1024, 'deepseek', "To find the sum of.*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
(1024, 'deepseek', "To find the sum of[\\s\\S]*", "First, I [\\s\\S]*", "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", ("llama-cpp-deepseek-r1", None)),
])
def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none'] | None, expect_content: str | None, expect_reasoning_content: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
@@ -464,7 +505,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
res = server.make_request("POST", "/v1/chat/completions", data={
"max_tokens": n_predict,
"messages": [
{"role": "user", "content": "What's the sum of 102 and 7?"},
@@ -476,7 +517,7 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
content = choice["message"].get("content")
if expect_content is None:
assert content is None, f'Expected no content in {choice["message"]}'
assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
else:
assert re.match(expect_content, content), f'Expected {expect_content}, got {content}'
@@ -488,46 +529,46 @@ def test_thoughts(n_predict: int, reasoning_format: Literal['deepseek', 'none']
@pytest.mark.slow
@pytest.mark.parametrize("expected_arguments_override,hf_repo,template_override", [
(None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
# (None, "bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", "chatml"),
@pytest.mark.parametrize("hf_repo,template_override", [
("bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q4_K_M", None),
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", None),
("bartowski/Phi-3.5-mini-instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
(None, "bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
("bartowski/functionary-small-v3.2-GGUF:Q8_0", ("meetkai-functionary-medium-v3.2", None)),
("bartowski/functionary-small-v3.2-GGUF:Q8_0", "chatml"),
('{"code":"print("}', "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
# ("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Meta-Llama-3.1-8B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
(None, "bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
("bartowski/Llama-3.2-1B-Instruct-GGUF:Q4_K_M", None),
('{"code":"print("}', "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
(None, "bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", ("meta-llama-Llama-3.2-3B-Instruct", None)),
("bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
(None, "bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", None),
("bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
(None, "bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", ("NousResearch/Hermes-2-Pro-Llama-3-8B", "tool_use")),
("bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
(None, "bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", ("NousResearch-Hermes-3-Llama-3.1-8B", "tool_use")),
("bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M", "chatml"),
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
(None, "bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", None),
("bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q4_K_M", "chatml"),
# Note: gemma-2-2b-it knows itself as "model", not "assistant", so we don't test the ill-suited chatml on it.
(None, "bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", None),
("bartowski/gemma-2-2b-it-GGUF:Q4_K_M", "chatml"),
])
def test_hello_world(expected_arguments_override: str | None, hf_repo: str, template_override: str | Tuple[str, str | None] | None):
def test_hello_world(hf_repo: str, template_override: str | Tuple[str, str | None] | None):
global server
n_predict = 512 # High because of DeepSeek R1
server.n_slots = 1
server.jinja = True
server.n_ctx = 8192
server.n_predict = 512 # High because of DeepSeek R1
server.n_predict = n_predict
server.model_hf_repo = hf_repo
server.model_hf_file = None
if isinstance(template_override, tuple):
@@ -537,31 +578,29 @@ def test_hello_world(expected_arguments_override: str | None, hf_repo: str, temp
elif isinstance(template_override, str):
server.chat_template = template_override
server.start(timeout_seconds=TIMEOUT_SERVER_START)
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": 256,
do_test_hello_world(server, max_tokens=n_predict)
def do_test_hello_world(server: ServerProcess, **kwargs):
res = server.make_request("POST", "/v1/chat/completions", data={
"messages": [
{"role": "system", "content": "You are a coding assistant."},
{"role": "system", "content": "You are a tool-calling agent."},
{"role": "user", "content": "say hello world with python"},
],
"tools": [PYTHON_TOOL],
# Note: without these greedy params, Functionary v3.2 writes `def hello_world():\n print("Hello, World!")\nhello_world()` which is correct but a pain to test.
"temperature": 0.0,
"top_k": 1,
"top_p": 1.0,
**kwargs,
}, timeout=TIMEOUT_HTTP_REQUEST)
assert res.status_code == 200, f"Expected status code 200, got {res.status_code}"
choice = res.body["choices"][0]
tool_calls = choice["message"].get("tool_calls")
assert tool_calls and len(tool_calls) == 1, f'Expected 1 tool call in {choice["message"]}'
tool_call = tool_calls[0]
assert choice["message"].get("content") is None, f'Expected no content in {choice["message"]}'
# assert choice["message"].get("content") in (None, ""), f'Expected no content in {choice["message"]}'
assert tool_call["function"]["name"] == PYTHON_TOOL["function"]["name"]
actual_arguments = tool_call["function"]["arguments"]
if expected_arguments_override is not None:
assert actual_arguments == expected_arguments_override
else:
actual_arguments = json.loads(actual_arguments)
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
code = actual_arguments["code"]
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'
assert len(tool_call.get("id", "")) > 0, f'Expected non empty tool call id in {tool_call}'
actual_arguments = json.loads(tool_call["function"]["arguments"])
assert 'code' in actual_arguments, f"code not found in {json.dumps(actual_arguments)}"
code = actual_arguments["code"]
assert isinstance(code, str), f"Expected code to be a string, got {type(code)}: {json.dumps(code)}"
assert re.match(r'''print\(("[Hh]ello,? [Ww]orld!?"|'[Hh]ello,? [Ww]orld!?')\)''', code), f'Expected hello world, got {code}'

View File

@@ -26,7 +26,10 @@ from re import RegexFlag
import wget
DEFAULT_HTTP_TIMEOUT = 12 if "LLAMA_SANITIZE" not in os.environ else 30
DEFAULT_HTTP_TIMEOUT = 12
if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
DEFAULT_HTTP_TIMEOUT = 30
class ServerResponse:
@@ -64,6 +67,9 @@ class ServerProcess:
id_slot: int | None = None
cache_prompt: bool | None = None
n_slots: int | None = None
ctk: str | None = None
ctv: str | None = None
fa: bool | None = None
server_continuous_batching: bool | None = False
server_embeddings: bool | None = False
server_reranking: bool | None = False
@@ -81,6 +87,7 @@ class ServerProcess:
reasoning_format: Literal['deepseek', 'none'] | None = None
chat_template: str | None = None
chat_template_file: str | None = None
server_path: str | None = None
# session variables
process: subprocess.Popen | None = None
@@ -94,7 +101,9 @@ class ServerProcess:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
if self.server_path is not None:
server_path = self.server_path
elif "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
server_path = "../../../build/bin/Release/llama-server.exe"
@@ -148,6 +157,12 @@ class ServerProcess:
server_args.extend(["--ctx-size", self.n_ctx])
if self.n_slots:
server_args.extend(["--parallel", self.n_slots])
if self.ctk:
server_args.extend(["-ctk", self.ctk])
if self.ctv:
server_args.extend(["-ctv", self.ctv])
if self.fa is not None:
server_args.append("-fa")
if self.n_predict:
server_args.extend(["--n-predict", self.n_predict])
if self.slot_save_path:
@@ -181,7 +196,7 @@ class ServerProcess:
server_args.extend(["--chat-template-file", self.chat_template_file])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
print(f"tests: starting server with: {' '.join(args)}")
flags = 0
if "nt" == os.name:
@@ -212,6 +227,10 @@ class ServerProcess:
return # server is ready
except Exception as e:
pass
# Check if process died
if self.process.poll() is not None:
raise RuntimeError(f"Server process died with return code {self.process.returncode}")
print(f"Waiting for server to start...")
time.sleep(0.5)
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
@@ -283,7 +302,7 @@ class ServerPreset:
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_ctx = 512
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64

View File

@@ -7,14 +7,14 @@
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
// disable Nagle's algorithm
#define CPPHTTPLIB_TCP_NODELAY true
#include "httplib.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "minja.hpp"
#include "chat.hpp"
#include "chat-template.hpp"
#include "chat.h"
#include <random>
#include <sstream>
@@ -347,41 +347,6 @@ static llama_tokens format_infill(
return embd_inp;
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) {
std::vector<common_chat_msg> chat;
for (size_t i = 0; i < messages.size(); ++i) {
const auto & curr_msg = messages[i];
std::string role = json_value(curr_msg, "role", std::string(""));
std::string content;
if (curr_msg.contains("content")) {
if (curr_msg["content"].is_string()) {
content = curr_msg["content"].get<std::string>();
} else if (curr_msg["content"].is_array()) {
for (const auto & part : curr_msg["content"]) {
if (part.contains("text")) {
content += "\n" + part["text"].get<std::string>();
}
}
} else {
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
} else {
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
}
chat.push_back({role, content, /* tool_calls= */ {}});
}
const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false);
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
return formatted_chat;
}
//
// base64 utils (TODO: move to common in the future)
//
@@ -470,6 +435,10 @@ static std::string gen_chatcmplid() {
return "chatcmpl-" + random_string();
}
static std::string gen_tool_call_id() {
return random_string();
}
//
// other common utils
//
@@ -556,8 +525,13 @@ static json oaicompat_completion_params_parse(const json & body) {
throw std::runtime_error("Only one completion choice is allowed");
}
// Handle "echo" field
if (json_value(body, "echo", false)) {
throw std::runtime_error("Only no echo is supported");
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "best_of", "echo", "suffix" };
static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
@@ -579,12 +553,9 @@ static json oaicompat_completion_params_parse(
const json & body, /* openai api json semantics */
bool use_jinja,
common_reasoning_format reasoning_format,
const common_chat_templates & chat_templates)
const struct common_chat_templates * tmpls)
{
json llama_params;
const auto & tmpl = body.contains("tools") && chat_templates.template_tool_use
? *chat_templates.template_tool_use
: *chat_templates.template_default;
auto tools = json_value(body, "tools", json());
auto stream = json_value(body, "stream", false);
@@ -610,62 +581,58 @@ static json oaicompat_completion_params_parse(
llama_params["stop"] = json_value(body, "stop", json::array());
}
auto json_schema = json_value(body, "json_schema", json());
auto grammar = json_value(body, "grammar", std::string());
if (!json_schema.is_null() && !grammar.empty()) {
throw std::runtime_error("Cannot use both json_schema and grammar");
}
// Handle "response_format" field
if (body.contains("response_format")) {
json response_format = json_value(body, "response_format", json::object());
std::string response_type = json_value(response_format, "type", std::string());
if (response_type == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
json_schema = json_value(response_format, "schema", json::object());
} else if (response_type == "json_schema") {
json json_schema = json_value(response_format, "json_schema", json::object());
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
auto schema_wrapper = json_value(response_format, "json_schema", json::object());
json_schema = json_value(schema_wrapper, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
}
// Apply chat template to the list of messages
if (use_jinja) {
auto tool_choice = json_value(body, "tool_choice", std::string("auto"));
if (tool_choice != "none" && tool_choice != "auto" && tool_choice != "required") {
throw std::runtime_error("Invalid tool_choice: " + tool_choice);
}
if (tool_choice != "none" && llama_params.contains("grammar")) {
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
}
common_chat_inputs inputs;
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
inputs.messages = body.at("messages");
inputs.tools = tools;
inputs.tool_choice = tool_choice;
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) {
LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n");
inputs.parallel_tool_calls = false;
}
inputs.stream = stream;
// TODO: support mixing schema w/ tools beyond generic format.
inputs.json_schema = json_value(llama_params, "json_schema", json());
auto chat_params = common_chat_params_init(tmpl, inputs);
common_chat_templates_inputs inputs;
inputs.messages = common_chat_msgs_parse_oaicompat(body.at("messages"));
inputs.tools = common_chat_tools_parse_oaicompat(tools);
inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(json_value(body, "tool_choice", std::string("auto")));
inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
inputs.grammar = grammar;
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
inputs.use_jinja = use_jinja;
inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
inputs.extract_reasoning = reasoning_format != COMMON_REASONING_FORMAT_NONE;
inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && body.contains("grammar")) {
throw std::runtime_error("Cannot use custom grammar constraints with tools.");
}
llama_params["chat_format"] = static_cast<int>(chat_params.format);
llama_params["prompt"] = chat_params.prompt;
// Apply chat template to the list of messages
auto chat_params = common_chat_templates_apply(tmpls, inputs);
llama_params["chat_format"] = static_cast<int>(chat_params.format);
llama_params["prompt"] = chat_params.prompt;
if (!chat_params.grammar.empty()) {
llama_params["grammar"] = chat_params.grammar;
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
grammar_triggers.push_back({
{"word", trigger.word},
{"at_start", trigger.at_start},
});
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
for (const auto & stop : chat_params.additional_stops) {
llama_params["stop"].push_back(stop);
}
} else {
llama_params["prompt"] = format_chat(tmpl, body.at("messages"));
}
llama_params["grammar_lazy"] = chat_params.grammar_lazy;
auto grammar_triggers = json::array();
for (const auto & trigger : chat_params.grammar_triggers) {
grammar_triggers.push_back(trigger.to_json<json>());
}
llama_params["grammar_triggers"] = grammar_triggers;
llama_params["preserved_tokens"] = chat_params.preserved_tokens;
for (const auto & stop : chat_params.additional_stops) {
llama_params["stop"].push_back(stop);
}
// Handle "n" field
@@ -737,29 +704,51 @@ static json format_embeddings_response_oaicompat(const json & request, const jso
return res;
}
static json format_response_rerank(const json & request, const json & ranks) {
json data = json::array();
int32_t n_tokens = 0;
int i = 0;
for (const auto & rank : ranks) {
data.push_back(json{
{"index", i++},
{"relevance_score", json_value(rank, "score", 0.0)},
});
static json format_response_rerank(
const json & request,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts) {
json res;
if (is_tei_format) {
// TEI response format
res = json::array();
bool return_text = json_value(request, "return_text", false);
for (const auto & rank : ranks) {
int index = json_value(rank, "index", 0);
json elem = json{
{"index", index},
{"score", json_value(rank, "score", 0.0)},
};
if (return_text) {
elem["text"] = std::move(texts[index]);
}
res.push_back(elem);
}
} else {
// Jina response format
json results = json::array();
int32_t n_tokens = 0;
for (const auto & rank : ranks) {
results.push_back(json{
{"index", json_value(rank, "index", 0)},
{"relevance_score", json_value(rank, "score", 0.0)},
});
n_tokens += json_value(rank, "tokens_evaluated", 0);
n_tokens += json_value(rank, "tokens_evaluated", 0);
}
res = json{
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json{
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", results}
};
}
json res = json {
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
{"object", "list"},
{"usage", json {
{"prompt_tokens", n_tokens},
{"total_tokens", n_tokens}
}},
{"results", data}
};
return res;
}

View File

@@ -159,6 +159,35 @@ export default function ChatMessage({
</div>
</details>
)}
{msg.extra && msg.extra.length > 0 && (
<details
className={classNames({
'collapse collapse-arrow mb-4 bg-base-200': true,
'bg-opacity-10': msg.role !== 'assistant',
})}
>
<summary className="collapse-title">
Extra content
</summary>
<div className="collapse-content">
{msg.extra.map(
(extra, i) =>
extra.type === 'textFile' ? (
<div key={extra.name}>
<b>{extra.name}</b>
<pre>{extra.content}</pre>
</div>
) : extra.type === 'context' ? (
<div key={i}>
<pre>{extra.content}</pre>
</div>
) : null // TODO: support other extra types
)}
</div>
</details>
)}
<MarkdownDisplay
content={content}
isGenerating={isPending}

View File

@@ -1,10 +1,11 @@
import { useEffect, useMemo, useState } from 'react';
import { useEffect, useMemo, useRef, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
import { classNames, throttle } from '../utils/misc';
import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
/**
* A message display is a message node with additional information for rendering.
@@ -17,6 +18,24 @@ export interface MessageDisplay {
isPending?: boolean;
}
/**
* If the current URL contains "?m=...", prefill the message input with the value.
* If the current URL contains "?q=...", prefill and SEND the message.
*/
const prefilledMsg = {
content() {
const url = new URL(window.location.href);
return url.searchParams.get('m') ?? url.searchParams.get('q') ?? '';
},
shouldSend() {
const url = new URL(window.location.href);
return url.searchParams.has('q');
},
clear() {
cleanCurrentUrl(['m', 'q']);
},
};
function getListMessageDisplay(
msgs: Readonly<Message[]>,
leafNodeId: Message['id']
@@ -80,7 +99,11 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const [inputMsg, setInputMsg] = useState('');
const textarea = useOptimizedTextarea(prefilledMsg.content());
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
// TODO: improve this when we have "upload file" feature
const currExtra: Message['extra'] = extraContext ? [extraContext] : undefined;
// keep track of leaf node for rendering
const [currNodeId, setCurrNodeId] = useState<number>(-1);
@@ -108,17 +131,28 @@ export default function ChatScreen() {
};
const sendNewMessage = async () => {
if (inputMsg.trim().length === 0 || isGenerating(currConvId ?? '')) return;
const lastInpMsg = inputMsg;
setInputMsg('');
const lastInpMsg = textarea.value();
if (lastInpMsg.trim().length === 0 || isGenerating(currConvId ?? ''))
return;
textarea.setValue('');
scrollToBottom(false);
setCurrNodeId(-1);
// get the last message node
const lastMsgNodeId = messages.at(-1)?.msg.id ?? null;
if (!(await sendMessage(currConvId, lastMsgNodeId, inputMsg, onChunk))) {
if (
!(await sendMessage(
currConvId,
lastMsgNodeId,
lastInpMsg,
currExtra,
onChunk
))
) {
// restore the input message if failed
setInputMsg(lastInpMsg);
textarea.setValue(lastInpMsg);
}
// OK
clearExtraContext();
};
const handleEditMessage = async (msg: Message, content: string) => {
@@ -129,6 +163,7 @@ export default function ChatScreen() {
viewingChat.conv.id,
msg.parent,
content,
msg.extra,
onChunk
);
setCurrNodeId(-1);
@@ -143,6 +178,7 @@ export default function ChatScreen() {
viewingChat.conv.id,
msg.parent,
null,
msg.extra,
onChunk
);
setCurrNodeId(-1);
@@ -151,6 +187,19 @@ export default function ChatScreen() {
const hasCanvas = !!canvasData;
useEffect(() => {
if (prefilledMsg.shouldSend()) {
// send the prefilled message if needed
sendNewMessage();
} else {
// otherwise, focus on the input
textarea.focus();
}
prefilledMsg.clear();
// no need to keep track of sendNewMessage
// eslint-disable-next-line react-hooks/exhaustive-deps
}, [textarea.ref]);
// due to some timing issues of StorageUtils.appendMsg(), we need to make sure the pendingMsg is not duplicated upon rendering (i.e. appears once in the saved conversation and once in the pendingMsg)
const pendingMsgDisplay: MessageDisplay[] =
pendingMsg && messages.at(-1)?.msg.id !== pendingMsg.id
@@ -203,9 +252,9 @@ export default function ChatScreen() {
<textarea
className="textarea textarea-bordered w-full"
placeholder="Type a message (Shift+Enter to add a new line)"
value={inputMsg}
onChange={(e) => setInputMsg(e.target.value)}
ref={textarea.ref}
onKeyDown={(e) => {
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
if (e.key === 'Enter' && e.shiftKey) return;
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
@@ -223,11 +272,7 @@ export default function ChatScreen() {
Stop
</button>
) : (
<button
className="btn btn-primary ml-2"
onClick={sendNewMessage}
disabled={inputMsg.trim().length === 0}
>
<button className="btn btn-primary ml-2" onClick={sendNewMessage}>
Send
</button>
)}
@@ -241,3 +286,43 @@ export default function ChatScreen() {
</div>
);
}
export interface OptimizedTextareaValue {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
function useOptimizedTextarea(initValue: string): OptimizedTextareaValue {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
useEffect(() => {
if (textareaRef.current && savedInitValue) {
textareaRef.current.value = savedInitValue;
setSavedInitValue('');
}
}, [textareaRef, savedInitValue, setSavedInitValue]);
return {
value: () => {
return textareaRef.current?.value ?? savedInitValue;
},
setValue: (value: string) => {
if (textareaRef.current) {
textareaRef.current.value = value;
}
},
focus: () => {
if (textareaRef.current) {
// focus and move the cursor to the end
textareaRef.current.focus();
textareaRef.current.selectionStart = textareaRef.current.value.length;
}
},
ref: textareaRef,
};
}

View File

@@ -148,13 +148,13 @@ const SETTING_SECTIONS: SettingSection[] = [
fields: [
{
type: SettingInputType.CHECKBOX,
label: 'Expand though process by default for generating message',
label: 'Expand thought process by default when generating messages',
key: 'showThoughtInProgress',
},
{
type: SettingInputType.CHECKBOX,
label:
'Exclude thought process when sending request to API (Recommended for DeepSeek-R1)',
'Exclude thought process when sending requests to API (Recommended for DeepSeek-R1)',
key: 'excludeThoughtOnReq',
},
],
@@ -247,7 +247,7 @@ const SETTING_SECTIONS: SettingSection[] = [
This feature uses{' '}
<OpenInNewTab href="https://pyodide.org">pyodide</OpenInNewTab>,
downloaded from CDN. To use this feature, ask the LLM to generate
python code inside a markdown code block. You will see a "Run"
Python code inside a Markdown code block. You will see a "Run"
button on the code block, near the "Copy" button.
</small>
</>
@@ -274,7 +274,7 @@ export default function SettingDialog({
);
const resetConfig = () => {
if (window.confirm('Are you sure to reset all settings?')) {
if (window.confirm('Are you sure you want to reset all settings?')) {
setLocalConfig(CONFIG_DEFAULT);
}
};
@@ -296,9 +296,9 @@ export default function SettingDialog({
return;
}
} else if (mustBeNumeric) {
const trimedValue = value.toString().trim();
const numVal = Number(trimedValue);
if (isNaN(numVal) || !isNumeric(numVal) || trimedValue.length === 0) {
const trimmedValue = value.toString().trim();
const numVal = Number(trimmedValue);
if (isNaN(numVal) || !isNumeric(numVal) || trimmedValue.length === 0) {
alert(`Value for ${key} must be numeric`);
return;
}

View File

@@ -25,6 +25,7 @@ interface AppContextValue {
convId: string | null,
leafNodeId: Message['id'] | null,
content: string,
extra: Message['extra'],
onChunk: CallbackGeneratedChunk
) => Promise<boolean>;
stopGenerating: (convId: string) => void;
@@ -32,6 +33,7 @@ interface AppContextValue {
convId: string,
parentNodeId: Message['id'], // the parent node of the message to be replaced
content: string | null,
extra: Message['extra'],
onChunk: CallbackGeneratedChunk
) => Promise<void>;
@@ -274,6 +276,7 @@ export const AppContextProvider = ({
convId: string | null,
leafNodeId: Message['id'] | null,
content: string,
extra: Message['extra'],
onChunk: CallbackGeneratedChunk
): Promise<boolean> => {
if (isGenerating(convId ?? '') || content.trim().length === 0) return false;
@@ -298,6 +301,7 @@ export const AppContextProvider = ({
convId,
role: 'user',
content,
extra,
parent: leafNodeId,
children: [],
},
@@ -324,6 +328,7 @@ export const AppContextProvider = ({
convId: string,
parentNodeId: Message['id'], // the parent node of the message to be replaced
content: string | null,
extra: Message['extra'],
onChunk: CallbackGeneratedChunk
) => {
if (isGenerating(convId)) return;
@@ -339,6 +344,7 @@ export const AppContextProvider = ({
convId,
role: 'user',
content,
extra,
parent: parentNodeId,
children: [],
},

View File

@@ -0,0 +1,60 @@
import { useEffect, useState } from 'react';
import { MessageExtraContext } from './types';
import { OptimizedTextareaValue } from '../components/ChatScreen';
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
interface SetTextEvData {
text: string;
context: string;
}
/**
* To test it:
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
*/
export const useVSCodeContext = (textarea: OptimizedTextareaValue) => {
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
null
);
// Accept setText message from a parent window and set inputMsg and extraContext
useEffect(() => {
const handleMessage = (event: MessageEvent) => {
if (event.data?.command === 'setText') {
const data: SetTextEvData = event.data;
textarea.setValue(data?.text);
if (data?.context && data.context.length > 0) {
setExtraContext({
type: 'context',
content: data.context,
});
}
textarea.focus();
}
};
window.addEventListener('message', handleMessage);
return () => window.removeEventListener('message', handleMessage);
}, [textarea]);
// Add a keydown listener that sends the "escapePressed" message to the parent window
useEffect(() => {
const handleKeyDown = (event: KeyboardEvent) => {
if (event.key === 'Escape') {
window.parent.postMessage({ command: 'escapePressed' }, '*');
}
};
window.addEventListener('keydown', handleKeyDown);
return () => window.removeEventListener('keydown', handleKeyDown);
}, []);
return {
extraContext,
// call once the user message is sent, to clear the extra context
clearExtraContext: () => setExtraContext(null),
};
};

View File

@@ -53,12 +53,23 @@ export const copyStr = (textToCopy: string) => {
/**
* filter out redundant fields upon sending to API
* also format extra into text
*/
export function normalizeMsgsForAPI(messages: Readonly<Message[]>) {
return messages.map((msg) => {
let newContent = '';
for (const extra of msg.extra ?? []) {
if (extra.type === 'context') {
newContent += `${extra.content}\n\n`;
}
}
newContent += msg.content;
return {
role: msg.role,
content: msg.content,
content: newContent,
};
}) as APIMessage[];
}
@@ -107,3 +118,11 @@ export const throttle = <T extends unknown[]>(
}, delay);
};
};
export const cleanCurrentUrl = (removeQueryParams: string[]) => {
const url = new URL(window.location.href);
removeQueryParams.forEach((param) => {
url.searchParams.delete(param);
});
window.history.replaceState({}, '', url.toString());
};

View File

@@ -42,11 +42,25 @@ export interface Message {
role: 'user' | 'assistant' | 'system';
content: string;
timings?: TimingReport;
extra?: MessageExtra[];
// node based system for branching
parent: Message['id'];
children: Message['id'][];
}
type MessageExtra = MessageExtraTextFile | MessageExtraContext; // TODO: will add more in the future
export interface MessageExtraTextFile {
type: 'textFile';
name: string;
content: string;
}
export interface MessageExtraContext {
type: 'context';
content: string;
}
export type APIMessage = Pick<Message, 'role' | 'content'>;
export interface Conversation {

View File

@@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
const bool is_first = llama_kv_self_used_cells(ctx) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
@@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
int n_ctx_used = llama_kv_self_used_cells(ctx);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");

Some files were not shown because too many files have changed in this diff Show More