Compare commits

...

12 Commits
b4932 ... b4944

Author SHA1 Message Date
Marius Gerdes
77f9c6bbe5 server : Add verbose output to OAI compatible chat endpoint. (#12246)
Add verbose output to server_task_result_cmpl_final::to_json_oaicompat_chat_stream, making it conform with server_task_result_cmpl_final::to_json_oaicompat_chat, as well as the other to_json methods.
2025-03-23 19:30:26 +01:00
Lars Sonchocky-Helldorf
18b663d8e4 install : add macports (#12518)
MacPorts section added
2025-03-23 10:21:48 +02:00
Xuan-Son Nguyen
fbdfefe74e llama : gemma3 : use output tensor if it exists in model weight (#12506)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : gemma3 : use output tensor if it exists in model weight

* also add to the llm_tensor_names
2025-03-22 23:28:19 +01:00
Georgi Gerganov
ba932dfb50 ggml : fix quantized cpy op (#12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-22 16:23:26 +02:00
R0CKSTAR
fac63a3d78 musa: refine compute capability (#12493)
* musa: refine compute capability

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-22 10:11:37 +01:00
Jeff Bolz
eddfb43850 vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00
stduhpf
4375415b4a Vulkan: RTE rounding for cpy to quant (#12480)
* Vulkan: RTE rounding for cpy to quant

Co-Authored-By: Jeff Bolz <jbolz@nvidia.com>

* remove trailing whitespace

* avoid duplicating pipeline_cpy_f32_quant

* fix copypasting issue

* remove duplicated code

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-03-21 20:34:50 +01:00
Eve
30c42ef5cb vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (#12472) 2025-03-21 20:27:47 +01:00
Georgi Gerganov
af04481e6b model : do not repack if a GPU device is present (#12498)
ggml-ci
2025-03-21 16:14:29 +02:00
Sigbjørn Skjæret
960e726077 chore : cleanup llama_model_loader::TENSOR_ usage (#12492) 2025-03-21 10:21:36 +01:00
marcoStocchi
ea1518e839 llama-tts : avoid crashes related to bad model file paths (#12482) 2025-03-21 11:12:45 +02:00
蕭澧邦
1aa87ee53d [SYCL] Fix build on Windows when ccache enabled (#9954) (#9976)
* [SYCL] Fix build on Windows when ccache enabled (#9954)

* take effect only on windows and force it to icl

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-21 14:58:47 +08:00
23 changed files with 443 additions and 174 deletions

View File

@@ -9,6 +9,13 @@ brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix
On Mac and Linux, the Nix package manager can be used via

View File

@@ -830,6 +830,11 @@ struct server_task_result_cmpl_final : server_task_result {
ret.push_back({"timings", timings.to_json()});
}
// extra fields for debugging purposes
if (verbose) {
ret["__verbose"] = to_json_non_oaicompat();
}
return ret;
}
};

View File

@@ -571,6 +571,10 @@ int main(int argc, char ** argv) {
model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
if (model_ttc == nullptr || ctx_ttc == nullptr) {
return ENOENT;
}
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
// TODO: refactor in a common struct
@@ -586,6 +590,10 @@ int main(int argc, char ** argv) {
model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
if (model_cts == nullptr || ctx_cts == nullptr) {
return ENOENT;
}
std::vector<common_sampler *> smpl(n_parallel);
for (int i = 0; i < n_parallel; ++i) {
params.sampling.no_perf = (i != 0);

View File

@@ -76,7 +76,11 @@ if (GGML_CCACHE)
set(GGML_CCACHE_VARIANT sccache)
endif()
# TODO: should not be set globally
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
if (GGML_SYCL AND GGML_CCACHE_FOUND AND WIN32)
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "ccache compiler_type=icl")
else ()
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
endif ()
set(ENV{CCACHE_SLOPPINESS} time_macros)
message(STATUS "${GGML_CCACHE_VARIANT} found, compilation results will be cached. Disable with GGML_CCACHE=OFF.")
else()

View File

@@ -3110,17 +3110,17 @@ static void ggml_compute_forward_dup_same_cont(
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by elements
const int ne = ggml_nelements(dst);
const int dr = (ne + nth - 1) / nth;
const int ie0 = dr * ith;
const int ie1 = MIN(ie0 + dr, ne);
// parallelize by blocks
const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
const int dr = (nk + nth - 1) / nth;
const int k0 = dr * ith;
const int k1 = MIN(k0 + dr, nk);
if (ie0 < ie1) {
if (k0 < k1) {
memcpy(
((char *) dst->data + ie0*nb0),
((char *) src0->data + ie0*nb0),
(ie1 - ie0) * nb0);
((char *) dst->data + k0*nb0),
((char *) src0->data + k0*nb0),
(k1 - k0) * nb0);
}
}
@@ -4055,7 +4055,6 @@ static void ggml_compute_forward_dup_f32(
static void ggml_compute_forward_dup_bytes(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
@@ -4069,10 +4068,10 @@ static void ggml_compute_forward_dup_bytes(
}
const size_t type_size = ggml_type_size(src0->type);
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by rows
const int nr = ne01;
// number of rows per thread
@@ -4082,10 +4081,10 @@ static void ggml_compute_forward_dup_bytes(
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
ggml_are_same_shape(src0, dst) &&
nb00 == type_size && nb0 == type_size) {
// copy by rows
const size_t rs = ne00 * type_size;
const size_t rs = ggml_row_size(src0->type, ne00);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
@@ -4140,17 +4139,20 @@ static void ggml_compute_forward_dup_bytes(
}
// dst counters
int64_t i10 = 0;
int64_t k10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
// number of blocks in a row
const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
k10 += nk00 * ir0;
while (k10 >= nk0) {
k10 -= nk0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
@@ -4162,14 +4164,14 @@ static void ggml_compute_forward_dup_bytes(
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
for (int64_t k00 = 0; k00 < nk00; k00++) {
const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, type_size);
if (++i10 == ne0) {
i10 = 0;
if (++k10 == nk0) {
k10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
@@ -4182,9 +4184,9 @@ static void ggml_compute_forward_dup_bytes(
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
k10 += nk00 * (ne01 - ir1);
while (k10 >= nk0) {
k10 -= nk0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
@@ -14308,7 +14310,9 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
}
// extra_buffer op?
if (ggml_cpu_extra_compute_forward(params, tensor)) return;
if (ggml_cpu_extra_compute_forward(params, tensor)) {
return;
}
switch (tensor->op) {
case GGML_OP_DUP:

View File

@@ -41,14 +41,17 @@
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
#define GGML_CUDA_CC_PASCAL 600
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define GGML_CUDA_CC_VOLTA 700
#define GGML_CUDA_CC_TURING 750
#define GGML_CUDA_CC_AMPERE 800
#define GGML_CUDA_CC_ADA_LOVELACE 890
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
#define GGML_CUDA_CC_PASCAL 600
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define GGML_CUDA_CC_VOLTA 700
#define GGML_CUDA_CC_TURING 750
#define GGML_CUDA_CC_AMPERE 800
#define GGML_CUDA_CC_ADA_LOVELACE 890
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
#define GGML_CUDA_CC_OFFSET_MTHREADS 0x0100000
#define GGML_CUDA_CC_IS_NVIDIA(cc) (cc < GGML_CUDA_CC_OFFSET_MTHREADS)
// AMD
// GCN/CNDA, wave size is 64
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
@@ -70,8 +73,17 @@
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_QY1 210
#define GGML_CUDA_CC_QY2 220
// Moore Threads
#define GGML_CUDA_MUSA_ARCH_IS_QY1 (__MUSA_ARCH__ <= 210)
#define GGML_CUDA_CC_QY1 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_MUSA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_MUSA_CC_OFFSET_MTHREADS + 0x310) // TBD
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NEXT)
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
#ifdef __CUDA_ARCH_LIST__
constexpr bool ggml_cuda_has_arch_impl(int) {
@@ -209,21 +221,21 @@ typedef float2 dfloat2;
#define CP_ASYNC_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && GGML_CUDA_MUSA_ARCH_IS_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= GGML_CUDA_CC_QY1)
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && GGML_CUDA_MUSA_ARCH_IS_QY1)
static bool fp16_available(const int cc) {
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
}
static bool fast_fp16_available(const int cc) {
return fp16_available(cc) && cc != 610;
return (GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fast_fp16_hardware_available(const int cc) {
return cc >= GGML_CUDA_CC_PASCAL && cc != 610;
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_PASCAL && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
}
// Any FP16 tensor core instructions are available for ggml code.
@@ -231,20 +243,20 @@ static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && cc >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
return GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc);
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
static bool new_mma_available(const int cc) {
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
}
static bool cp_async_available(const int cc) {

View File

@@ -253,7 +253,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
if (cc >= GGML_CUDA_CC_OFFSET_AMD) {
if (GGML_CUDA_CC_IS_AMD(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN)
if (fp16_mma_available(cc)) {
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);

View File

@@ -264,9 +264,9 @@ static ggml_cuda_device_info ggml_cuda_init() {
#elif defined(GGML_USE_MUSA)
// FIXME: Ensure compatibility with varying warp sizes across different MUSA archs.
info.devices[id].warp_size = 32;
// TODO: refine the .cc to reflect MUSA's actual CC capabilities
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
info.devices[id].cc = GGML_CUDA_CC_OFFSET_MTHREADS + prop.major * 0x100;
info.devices[id].cc += prop.minor * 0x10;
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
#else
@@ -1188,11 +1188,11 @@ static void ggml_cuda_op_mul_mat_cublas(
// ldc == nrows of the matrix that cuBLAS writes into
int64_t ldc = id == ctx.device ? ne0 : row_diff;
const int compute_capability = ggml_cuda_info().devices[id].cc;
const int cc = ggml_cuda_info().devices[id].cc;
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
if (compute_capability >= GGML_CUDA_CC_VOLTA && use_fp16) {
if (((cc >= GGML_CUDA_CC_VOLTA && GGML_CUDA_CC_IS_NVIDIA(cc)) || GGML_CUDA_CC_IS_AMD(cc)) && use_fp16) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
@@ -1216,7 +1216,7 @@ static void ggml_cuda_op_mul_mat_cublas(
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
if (GGML_CUDA_CC_IS_CDNA(compute_capability)) {
if (GGML_CUDA_CC_IS_CDNA(cc)) {
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(

View File

@@ -28,7 +28,7 @@ void ggml_cuda_op_mul_mat_q(
// Also its fixup needs to allocate a temporary buffer in the memory pool.
// There are multiple parallel CUDA streams for src1_ncols != ne11 which would introduce a race condition for this buffer.
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA &&
cc < GGML_CUDA_CC_OFFSET_AMD && src1_ncols == ne11;
GGML_CUDA_CC_IS_NVIDIA(cc) && src1_ncols == ne11;
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst, use_stream_k};
switch (src0->type) {
@@ -145,7 +145,7 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return true;
#endif //GGML_CUDA_FORCE_MMQ
if (cc < GGML_CUDA_CC_OFFSET_AMD) {
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -90,7 +90,7 @@ struct tile_x_sizes {
static int get_mmq_x_max_host(const int cc) {
return new_mma_available(cc) ? 128 :
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD ?
ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && GGML_CUDA_CC_IS_NVIDIA(cc) ?
#ifdef GGML_CUDA_FORCE_MMQ
128 : 64;
#else
@@ -123,8 +123,8 @@ static constexpr __device__ int get_mmq_x_max_device() {
}
static int get_mmq_y_host(const int cc) {
return cc >= GGML_CUDA_CC_OFFSET_AMD ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) :
(ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA ? 128 : 64);
return GGML_CUDA_CC_IS_AMD(cc) ? (GGML_CUDA_CC_IS_RDNA1(cc) ? 64 : 128) :
((ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && GGML_CUDA_CC_IS_NVIDIA(cc)) ? 128 : 64);
}
static constexpr __device__ int get_mmq_y_device() {
@@ -2772,14 +2772,14 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc);
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shmem_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
shmem_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && !defined(GGML_USE_MUSA)
const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
@@ -2832,7 +2832,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
const int mmq_x_max = get_mmq_x_max_host(cc);
const int mmq_y = get_mmq_y_host(cc);
const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && cc < GGML_CUDA_CC_OFFSET_AMD;
const bool use_stream_k = ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA && GGML_CUDA_CC_IS_NVIDIA(cc);
int mmq_x_best = 0;
int nparts_best = INT_MAX;

View File

@@ -149,6 +149,7 @@ class vk_perf_logger;
static void ggml_vk_destroy_buffer(vk_buffer& buf);
static constexpr uint32_t mul_mat_vec_max_cols = 8;
static constexpr uint32_t p021_max_gqa_ratio = 8;
enum vk_device_architecture {
OTHER,
@@ -231,6 +232,7 @@ struct vk_device_struct {
bool uma;
bool prefer_host_memory;
bool float_controls_rte_fp16;
bool subgroup_add;
bool subgroup_size_control;
uint32_t subgroup_min_size;
@@ -277,7 +279,7 @@ struct vk_device_struct {
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT][mul_mat_vec_max_cols];
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32;
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32[p021_max_gqa_ratio];
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
@@ -2265,7 +2267,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32, "mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
for (uint32_t i = 0; i < p021_max_gqa_ratio; ++i) {
if (device->subgroup_add && device->subgroup_require_full_support) {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_subgroup_add_len, mul_mat_vec_p021_f16_f32_subgroup_add_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32[i], "mul_mat_vec_p021_f16_f32"+std::to_string(i+1), mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {device->subgroup_size, i + 1}, 1, true);
}
}
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
@@ -2281,13 +2289,21 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
if (device->float_controls_rte_fp16) {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_rte_len, cpy_f32_q4_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_rte_len, cpy_f32_q4_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_rte_len, cpy_f32_q5_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_rte_len, cpy_f32_q5_1_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_rte_len, cpy_f32_q8_0_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_rte_len, cpy_f32_iq4_nl_rte_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
} else {
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
}
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_0], "cpy_q4_0_f32", cpy_q4_0_f32_len, cpy_q4_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_1], "cpy_q4_1_f32", cpy_q4_1_f32_len, cpy_q4_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
@@ -2471,13 +2487,15 @@ static vk_device ggml_vk_get_device(size_t idx) {
vk::PhysicalDeviceDriverProperties driver_props;
vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
vk::PhysicalDeviceVulkan11Properties vk11_props;
vk::PhysicalDeviceVulkan12Properties vk12_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
driver_props.pNext = &vk12_props;
driver_props.pNext = &vk11_props;
vk11_props.pNext = &vk12_props;
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_props;
@@ -2541,6 +2559,9 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
device->float_controls_rte_fp16 = vk12_props.shaderRoundingModeRTEFloat16;
device->subgroup_add = (vk11_props.subgroupSupportedStages & vk::ShaderStageFlagBits::eCompute) &&
(vk11_props.subgroupSupportedOperations & vk::SubgroupFeatureFlagBits::eArithmetic);
const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr;
device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
@@ -4627,9 +4648,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
const uint64_t d_sz = sizeof(float) * d_ne;
// With grouped query attention there are > 1 Q matrices per K, V matrix.
uint32_t gqa_ratio = (uint32_t)ne12 / (uint32_t)ne02;
if (gqa_ratio > 8 || gqa_ratio == 0 || ne12 != ne02 * gqa_ratio) {
gqa_ratio = 1;
}
if (dryrun) {
// Request descriptor sets
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, 1);
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], 1);
return;
}
@@ -4653,8 +4680,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
// compute
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
uint32_t workgroups_z = (uint32_t)ne12;
// When gqa_ratio > 1, each invocation does multiple rows and we can launch fewer workgroups
if (gqa_ratio > 1) {
workgroups_z /= gqa_ratio;
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32[gqa_ratio - 1], { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, workgroups_z });
}
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {

View File

@@ -1,5 +1,10 @@
#version 450
#if RTE16
#extension GL_EXT_spirv_intrinsics : enable
spirv_execution_mode(capabilities = [4467], 4462, 16); // RoundingModeRTE, 16 bits
#endif // RTE16
#include "types.comp"
#include "generic_unary_head.comp"

View File

@@ -82,8 +82,8 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1]));
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const i8vec2 v0 = unpack8(data_a_packed16[a_offset + ib].qs[iqs/2]);
const i8vec2 v1 = unpack8(data_a_packed16[a_offset + ib].qs[iqs/2 + 1]);
const i8vec2 v0 = unpack8(int32_t(data_a_packed16[a_offset + ib].qs[iqs/2])).xy; // vec4 used due to #12147
const i8vec2 v1 = unpack8(int32_t(data_a_packed16[a_offset + ib].qs[iqs/2 + 1])).xy;
return vec4(v0.x, v0.y, v1.x, v1.y);
}
#endif

View File

@@ -19,8 +19,8 @@ void calc_superblock(const uint a_offset, const uint b_offset, const uint itid,
const float db = d * (0.5 + scale) * 0.25;
const uint qh = data_a[ibi].qh[ib32];
const u8vec2 qs16 = unpack8(data_a_packed16[ibi].qs[itid]);
const u8vec2 sign16 = unpack8(data_a_packed16[ibi].qs[QUANT_K / 16 + itid]);
const u8vec2 qs16 = unpack8(uint32_t(data_a_packed16[ibi].qs[itid])).xy; // vec4 used due to #12147
const u8vec2 sign16 = unpack8(uint32_t(data_a_packed16[ibi].qs[QUANT_K / 16 + itid])).xy;
[[unroll]] for (uint l = 0; l < 2; ++l) {
const uint8_t sign = sign16[l];
const uint qs = qs16[l] | ((qh << (8 - nibble_shift - 2 * l)) & 0x300);

View File

@@ -21,7 +21,7 @@ void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32,
sum[j] = 0.0;
}
[[unroll]] for (uint l = 0; l < 4; ++l) {
const u8vec2 qs = unpack8(data_a_packed16[ibi].qs[4 * ib32 + l]);
const u8vec2 qs = unpack8(uint32_t(data_a_packed16[ibi].qs[4 * ib32 + l])).xy; // vec4 used due to #12147
const uint sign = data_a[ibi].signs[4 * ib32 + l];
const vec4 grid0 = vec4(unpack8(iq3s_grid[qs.x | ((qh << (8 - 2*l)) & 0x100)]));
const vec4 grid1 = vec4(unpack8(iq3s_grid[qs.y | ((qh << (7 - 2*l)) & 0x100)]));

View File

@@ -12,6 +12,9 @@ layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
layout (push_constant) uniform parameter
{
uint ncols_x;
@@ -37,25 +40,66 @@ void main() {
const uint idst = channel*nrows_dst + row_dst;
tmp[tid] = 0.0f;
FLOAT_TYPE temp = 0.0f;
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
const uint col_x = col_x0 + tid;
// Detect alignment for vector loads
bool is_aligned = (p.ncols_x % 4) == 0 && (p.row_stride_x % 4) == 0 && (p.channel_stride_x % 4) == 0;
if (col_x >= p.ncols_x) {
break;
for (uint col_x0 = 0; col_x0 < p.ncols_x;) {
// Unroll 2x and do vec4 loads if aligned
const uint unroll_count = 2;
if (col_x0 + unroll_count * 4 * BLOCK_SIZE <= p.ncols_x && is_aligned) {
[[unroll]] for (uint i = 0; i < unroll_count; ++i) {
const uint col_x = col_x0 + 4*tid;
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
temp += dot(av4, bv4);
col_x0 += 4*BLOCK_SIZE;
}
// do vec4 loads if aligned
} else if (col_x0 + 4*BLOCK_SIZE <= p.ncols_x && is_aligned) {
const uint col_x = col_x0 + 4*tid;
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
const vec4 bv4 = vec4(data_b_v4[iy / 4]);
temp += dot(av4, bv4);
col_x0 += 4*BLOCK_SIZE;
} else {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
temp = fma(xi, FLOAT_TYPE(data_b[iy]), temp);
col_x0 += BLOCK_SIZE;
}
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
tmp[tid] = fma(xi, FLOAT_TYPE(data_b[iy]), tmp[tid]);
}
tmp[tid] = temp;
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {

View File

@@ -2,16 +2,25 @@
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_arithmetic : enable
#endif
#define BLOCK_SIZE 32
#define FLOAT_TYPE float
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
layout (binding = 0) readonly buffer AV4 {A_TYPE_VEC4 data_a_v4[];};
layout (binding = 1) readonly buffer BV4 {B_TYPE_VEC4 data_b_v4[];};
layout(constant_id = 0) const int BLOCK_SIZE = 32;
// gqa_ratio is in the range [1,8]
layout(constant_id = 1) const uint gqa_ratio = 1;
layout (push_constant) uniform parameter
{
uint ncols_x;
@@ -22,52 +31,124 @@ layout (push_constant) uniform parameter
uint d_offset;
} p;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
#if !USE_SUBGROUP_ADD
shared FLOAT_TYPE tmp[8][BLOCK_SIZE];
#endif
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint channel_x = channel / (p.nchannels_y / p.nchannels_x);
uint channel, channel_x;
// When gqa_ratio > 1, each invocation does multiple rows.
// The row in the A matrix is starting from channel / gqa_ratio and the
// rows in the B matrix are [channel, channel+gqa_ratio).
// When gpa_ratio is 1, each invocation does one row.
if (gqa_ratio > 1) {
channel_x = gl_GlobalInvocationID.z;
channel = channel_x * gqa_ratio;
} else {
channel = gl_GlobalInvocationID.z;
channel_x = channel / (p.nchannels_y / p.nchannels_x);;
}
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
const uint row_dst = row_x;
tmp[tid] = FLOAT_TYPE(0.0f);
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
const uint row_y = col_x;
// y is not transposed but permuted
const uint iy = channel*nrows_y + row_y;
tmp[tid] = fma(xi, FLOAT_TYPE(data_b[iy]), tmp[tid]);
FLOAT_TYPE temp[8];
[[unroll]] for (uint i = 0; i < 8; ++i) {
temp[i] = FLOAT_TYPE(0.0f);
}
// dst is not transposed and not permuted
const uint idst = channel*nrows_dst + row_dst;
// Detect alignment for vector loads
bool is_aligned = (p.ncols_x % 4) == 0 && (p.nchannels_x % 4) == 0 && (nrows_y % 4) == 0;
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
// Use vec4 loads if aligned
if (col_x0 + 4*BLOCK_SIZE <= p.ncols_x && is_aligned) {
uint col_x = col_x0 + 4*tid;
const uint row_y = col_x;
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const vec4 av4 = vec4(data_a_v4[ix / 4]);
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// y is not transposed but permuted
const uint iy = (channel + c)*nrows_y + row_y;
vec4 bv4 = data_b_v4[iy / 4];
temp[c] += dot(av4, bv4);
}
col_x0 += 3*BLOCK_SIZE;
} else {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
const uint row_y = col_x;
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// y is not transposed but permuted
const uint iy = (channel + c)*nrows_y + row_y;
temp[c] = fma(xi, FLOAT_TYPE(data_b[iy]), temp[c]);
}
}
}
#if USE_SUBGROUP_ADD
// reduce vec4 at a time
vec4 t = vec4(temp[0], temp[1], temp[2], temp[3]);
t = subgroupAdd(t);
temp[0] = t[0];
temp[1] = t[1];
temp[2] = t[2];
temp[3] = t[3];
if (gqa_ratio > 4) {
t = vec4(temp[4], temp[5], temp[6], temp[7]);
t = subgroupAdd(t);
temp[4] = t[0];
temp[5] = t[1];
temp[6] = t[2];
temp[7] = t[3];
}
#else
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
tmp[c][tid] = temp[c];
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
temp[c] += tmp[c][tid + s];
tmp[c][tid] = temp[c];
}
}
barrier();
}
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
temp[c] = tmp[c][tid];
}
#endif
if (tid == 0) {
dst[idst] = tmp[0];
[[unroll]] for (uint c = 0; c < gqa_ratio; ++c) {
// dst is not transposed and not permuted
const uint idst = (channel + c)*nrows_dst + row_dst;
dst[idst] = temp[c];
}
}
}

View File

@@ -336,8 +336,8 @@ void main() {
const uint iqs = idx & 0x07;
const float d = float(data_a_packed16[ib].d);
const i8vec2 v0 = unpack8(data_a_packed16[ib].qs[2*iqs]);
const i8vec2 v1 = unpack8(data_a_packed16[ib].qs[2*iqs + 1]);
const i8vec2 v0 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs])).xy; // vec4 used due to #12147
const i8vec2 v1 = unpack8(int32_t(data_a_packed16[ib].qs[2*iqs + 1])).xy;
const vec4 v = vec4(v0.x, v0.y, v1.x, v1.y) * d;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
@@ -544,7 +544,7 @@ void main() {
const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (2 * (idx % 4));
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(int8_t(sign << 1), int8_t(sign))));
const uint grid = iq2xxs_grid[qs][(idx % 4) / 2] >> (16 * (idx & 1));
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy);
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy); // vec4 used due to #12147
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
@@ -564,7 +564,7 @@ void main() {
const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (2 * (idx % 4));
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(int8_t(sign << 1), int8_t(sign))));
const uint grid = iq2xs_grid[qs & 511][(idx % 4) / 2] >> (16 * (idx & 1));
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy);
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy); // vec4 used due to #12147
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
@@ -586,7 +586,7 @@ void main() {
const float db = d * 0.25 * (0.5 + scale);
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(int8_t(sign << 1), int8_t(sign))));
const uint16_t grid = unpack16(iq2s_grid[qs | ((qh << (8 - qhshift)) & 0x300)][(idx & 2) >> 1])[idx & 1];
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid));
const vec2 v = db * vec2(sign01) * vec2(unpack8(uint32_t(grid)).xy); // vec4 used due to #12147
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
@@ -611,7 +611,7 @@ void main() {
const uint sign = (sign7 | (bitCount(sign7) << 7)) >> (2 * (idx % 4));
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(int8_t(sign << 1), int8_t(sign))));
const uint grid = iq3xxs_grid[qs] >> (16 * (idx & 1));
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy);
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy); // vec4 used due to #12147
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);
@@ -631,7 +631,7 @@ void main() {
const i8vec2 sign01 = i8vec2(1 - (2 & i8vec2(sign << 1, sign)));
const float db = d * (1 + 2 * ((scale >> (4 * (iqh & 1))) & 0xf));
const uint32_t grid = iq3s_grid[qs | ((qh << (8 - (iqs % 8))) & 256)] >> (16 * (idx % 2));
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy);
const vec2 v = db * vec2(sign01) * vec2(unpack8(grid).xy); // vec4 used due to #12147
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);

View File

@@ -426,8 +426,9 @@ void process_shaders() {
}
}
string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("mul_mat_vec_p021_f16_f32_subgroup_add", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}});
string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}});
string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}});
// Norms
string_to_spv("norm_f32", "norm.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"D_TYPE", "float"}}));
@@ -445,6 +446,7 @@ void process_shaders() {
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("cpy_f32_" + t + "_rte", "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}});
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}

View File

@@ -1113,6 +1113,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
],
MODEL_ARCH.GEMMA3: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,

View File

@@ -778,6 +778,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },

View File

@@ -271,19 +271,32 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
}
}
// add extra buffer types
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) {
buft_list.emplace_back(cpu_dev, *extra_bufts);
++extra_bufts;
bool has_gpu_device = false;
for (auto * dev : devices) {
if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
has_gpu_device = true;
break;
}
}
// add extra buffer types, only if no GPU device is present
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
if (!has_gpu_device) {
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) {
buft_list.emplace_back(cpu_dev, *extra_bufts);
++extra_bufts;
}
}
} else {
LLAMA_LOG_WARN("%s: disabling extra buffer types (i.e. repacking) since a GPU device is available\n", __func__);
}
// add a host buffer type
// storing the tensors in a host buffer is useful when the processing of large batches
// is offloaded to a GPU device, since it reduces the time spent on data transfers
@@ -2329,7 +2342,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
@@ -2558,7 +2571,12 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
@@ -3215,16 +3233,16 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
@@ -3335,12 +3353,12 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
@@ -3370,7 +3388,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
const int time_mix_extra_dim = hparams.time_mix_extra_dim;
@@ -3396,7 +3414,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
@@ -3405,9 +3423,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
// optional bias tensors
layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
@@ -3528,8 +3546,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
}
layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
try {
layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
@@ -3546,8 +3564,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

View File

@@ -1463,11 +1463,13 @@ struct test_cpy : public test_case {
const ggml_type type_src;
const ggml_type type_dst;
const std::array<int64_t, 4> ne;
const std::array<int64_t, 4> permute;
const std::array<int64_t, 4> permute_src;
const std::array<int64_t, 4> permute_dst;
bool _src_use_permute;
bool _dst_use_permute;
std::string vars() override {
return VARS_TO_STR4(type_src, type_dst, ne, permute);
return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
}
double max_nmse_err() override {
@@ -1480,9 +1482,11 @@ struct test_cpy : public test_case {
test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 1},
std::array<int64_t, 4> permute = {0, 0, 0, 0})
: type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
_src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
: type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
_src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
_dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
@@ -1490,13 +1494,18 @@ struct test_cpy : public test_case {
ggml_set_name(src, "src");
if (_src_use_permute) {
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
ggml_set_name(src, "src_permuted");
}
ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
ggml_set_name(dst, "dst");
if (_dst_use_permute) {
dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
ggml_set_name(dst, "dst_permuted");
}
ggml_tensor * out = ggml_cpy(ctx, src, dst);
ggml_set_name(out, "out");
@@ -1964,9 +1973,10 @@ struct test_mul_mat : public test_case {
const std::array<int64_t, 2> bs; // dims 3 and 4
const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
const std::array<int64_t, 4> per; // permutation of dimensions
const bool v; // whether a is a non-contiguous view
std::string vars() override {
return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
}
double max_nmse_err() override {
@@ -1986,8 +1996,9 @@ struct test_mul_mat : public test_case {
int64_t m = 32, int64_t n = 32, int64_t k = 32,
std::array<int64_t, 2> bs = {10, 10},
std::array<int64_t, 2> nr = {2, 2},
std::array<int64_t, 4> per = {0, 1, 2, 3})
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
std::array<int64_t, 4> per = {0, 1, 2, 3},
bool v = false)
: type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
// C^T = A * B^T: (k, m) * (k, n) => (m, n)
@@ -1997,6 +2008,7 @@ struct test_mul_mat : public test_case {
const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
if (npermuted > 0) {
GGML_ASSERT(npermuted == 2);
GGML_ASSERT(!v); // not handled
GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
@@ -2020,7 +2032,13 @@ struct test_mul_mat : public test_case {
ggml_set_name(a, "a_permuted");
ggml_set_name(b, "b_permuted");
} else {
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
if (v) {
a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
} else {
a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
}
b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
if (!ggml_is_quantized(type_a)) {
if (bs[1] == 1 && nr[1] == 1) {
@@ -3995,14 +4013,25 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
}
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
// same-type copy
for (ggml_type type : all_types) {
const auto nk = ggml_blck_size(type);
for (int k = 1; k < 4; ++k) {
test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
}
}
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
for (ggml_type type_dst : all_types) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
}
}
for (ggml_type type_dst : {GGML_TYPE_F32}) {
for (ggml_type type_src : all_types) {
for (ggml_type type_src : all_types) {
for (ggml_type type_dst : {GGML_TYPE_F32}) {
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
}
@@ -4176,6 +4205,17 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
for (auto bs : {1,2,4,8}) {
for (auto nr : {1,4}) {
for (uint32_t m = 0; m < 2; ++m) {
for (uint32_t k = 0; k < 2; ++k) {
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
}
}
}
}
// sycl backend will limit task global_range < MAX_INT
// test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
// however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
@@ -4444,6 +4484,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
for (ggml_type type_a : all_types) {
for (ggml_type type_b : {GGML_TYPE_F32}) {