mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
276 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c7aa1364fd | ||
|
|
1a67fcc306 | ||
|
|
204f2cf168 | ||
|
|
138b288b59 | ||
|
|
bbd0f91779 | ||
|
|
0a5036bee9 | ||
|
|
8ad7b3e65b | ||
|
|
bda62193b2 | ||
|
|
c556418b60 | ||
|
|
db16e2831c | ||
|
|
cd1fce6d4f | ||
|
|
00fa15fedc | ||
|
|
946b1f6859 | ||
|
|
6c6e397aff | ||
|
|
afc0e89698 | ||
|
|
a5771c9eea | ||
|
|
c35f9eaf09 | ||
|
|
1f45f2890e | ||
|
|
613c5095c3 | ||
|
|
7f97599581 | ||
|
|
bf78f5439e | ||
|
|
bbfc849274 | ||
|
|
ca0ef2dddb | ||
|
|
89d1029559 | ||
|
|
f1a4e72de5 | ||
|
|
4762ad7316 | ||
|
|
1dc9614e06 | ||
|
|
446595b9b3 | ||
|
|
66906cd82a | ||
|
|
11dd5a44eb | ||
|
|
9b8f3c6c77 | ||
|
|
c7f3169cd5 | ||
|
|
793c0d7f46 | ||
|
|
ce111d39d6 | ||
|
|
e7fecba934 | ||
|
|
e2b7621e7c | ||
|
|
c1dbea752a | ||
|
|
749e0d27f0 | ||
|
|
64bf1c3744 | ||
|
|
c12bbde372 | ||
|
|
3f4fc97f1d | ||
|
|
2df255da3c | ||
|
|
60f816a79d | ||
|
|
5592f278b6 | ||
|
|
e4868d16d2 | ||
|
|
820de57d4f | ||
|
|
cb4a63aad6 | ||
|
|
86f5623d90 | ||
|
|
39cffdf188 | ||
|
|
065908cb09 | ||
|
|
4ec6291a24 | ||
|
|
a12363bbf0 | ||
|
|
a86f52b285 | ||
|
|
b284197df4 | ||
|
|
221c0e0c58 | ||
|
|
07a19e27a2 | ||
|
|
18f3b5ff9e | ||
|
|
7233358d29 | ||
|
|
6c88b3bb25 | ||
|
|
14c28dfc50 | ||
|
|
8c988fa41d | ||
|
|
acd6cb1c41 | ||
|
|
84712b6043 | ||
|
|
d4d1522b20 | ||
|
|
d1aa0cc5d1 | ||
|
|
c8ade30036 | ||
|
|
e28c0b80c2 | ||
|
|
8e6f8bc875 | ||
|
|
adef81781a | ||
|
|
48b86c4fdb | ||
|
|
38d3af1b73 | ||
|
|
6c9ee3b17e | ||
|
|
cd465d823c | ||
|
|
922042601b | ||
|
|
2ba1333b35 | ||
|
|
c2e058f1b4 | ||
|
|
c82d48ec23 | ||
|
|
b4efd77f8a | ||
|
|
2be60cbc27 | ||
|
|
b526ad2668 | ||
|
|
938b785764 | ||
|
|
36c153248f | ||
|
|
a979ca22db | ||
|
|
90083283ec | ||
|
|
d4b91ea7b2 | ||
|
|
83f5872404 | ||
|
|
f0d4d176df | ||
|
|
b17230917c | ||
|
|
bf9087f59a | ||
|
|
9fb1042ce6 | ||
|
|
2adf8d83ac | ||
|
|
021cc28bef | ||
|
|
d498af3d5a | ||
|
|
eacdeb5bfc | ||
|
|
e0cb5c5cb8 | ||
|
|
f9a31eea06 | ||
|
|
8f974bc1e9 | ||
|
|
09651d09ff | ||
|
|
349ea79fce | ||
|
|
670e1360cd | ||
|
|
760b4484e3 | ||
|
|
cb887f1bc1 | ||
|
|
d6fb3f6b49 | ||
|
|
01612b7409 | ||
|
|
086cf81e88 | ||
|
|
d9b691081c | ||
|
|
ad57d3edd2 | ||
|
|
1ba45d4982 | ||
|
|
19e5943d9e | ||
|
|
496957e1cb | ||
|
|
21c021745d | ||
|
|
b0f0ecc3dc | ||
|
|
225e7a1438 | ||
|
|
ab14019821 | ||
|
|
64978340b0 | ||
|
|
6ffd4e9c44 | ||
|
|
e4841d24d3 | ||
|
|
538cc77f7f | ||
|
|
5cae766541 | ||
|
|
4b91d6f71f | ||
|
|
cf91f217f1 | ||
|
|
79e0b68c17 | ||
|
|
c81f4192f9 | ||
|
|
4a4f426944 | ||
|
|
ba1ceb3456 | ||
|
|
10a0351a97 | ||
|
|
68e37a61a7 | ||
|
|
cbc68be51d | ||
|
|
bdca38376f | ||
|
|
55c509daf5 | ||
|
|
9c9e4fc635 | ||
|
|
494c5899cb | ||
|
|
0f4c6ec0f1 | ||
|
|
65a3ebb0aa | ||
|
|
0d9226763c | ||
|
|
982e347255 | ||
|
|
923e3ea2e3 | ||
|
|
e743cddb60 | ||
|
|
05fec5bd29 | ||
|
|
dcf7f2ea3c | ||
|
|
84b396e051 | ||
|
|
c31e60647d | ||
|
|
67eade1bf9 | ||
|
|
7de5c7cab6 | ||
|
|
8eff95544e | ||
|
|
3120413ccd | ||
|
|
215535701d | ||
|
|
74bb294591 | ||
|
|
3e303b1107 | ||
|
|
0c1df14b5f | ||
|
|
b3ad3a0191 | ||
|
|
98197e5c98 | ||
|
|
f5e96b368f | ||
|
|
756aa1020a | ||
|
|
aaa088d87f | ||
|
|
0d5375d54b | ||
|
|
576c82eda2 | ||
|
|
0aedae00e6 | ||
|
|
6bdda13981 | ||
|
|
0b8855775c | ||
|
|
4bb625b713 | ||
|
|
11ee0fea2a | ||
|
|
a457551332 | ||
|
|
704bb7a71c | ||
|
|
435a6d10d6 | ||
|
|
f9a867f592 | ||
|
|
ac44eb6c80 | ||
|
|
a57d1bcb3c | ||
|
|
cb9178f885 | ||
|
|
4a5686da22 | ||
|
|
98bab638fb | ||
|
|
26a48ad699 | ||
|
|
ffd59e7d18 | ||
|
|
105554595f | ||
|
|
04655063c4 | ||
|
|
20b7bf8a32 | ||
|
|
6efcd65945 | ||
|
|
699f4392a3 | ||
|
|
08382869a2 | ||
|
|
bb4f7a9e4e | ||
|
|
b8eeb8741d | ||
|
|
17a1f0d2d4 | ||
|
|
8f22dc0a53 | ||
|
|
53903ae6fa | ||
|
|
4d0dcd4a06 | ||
|
|
75c91de6e9 | ||
|
|
68155c66f0 | ||
|
|
e1a7059053 | ||
|
|
12f55c302b | ||
|
|
b9c3eefde1 | ||
|
|
6491d6e4f1 | ||
|
|
e592be1575 | ||
|
|
a0374a67e2 | ||
|
|
ddef99522d | ||
|
|
6681688146 | ||
|
|
bac8bed248 | ||
|
|
b81510a7b7 | ||
|
|
ef797db357 | ||
|
|
67d1ef23c6 | ||
|
|
7b50f7c025 | ||
|
|
c79184d2d1 | ||
|
|
499a8f5a78 | ||
|
|
28657a8229 | ||
|
|
bee28421be | ||
|
|
2b72bedec1 | ||
|
|
c8c4495b8d | ||
|
|
7b63a71a6b | ||
|
|
0c2ee38ab7 | ||
|
|
a70c8a0c4b | ||
|
|
9067487c44 | ||
|
|
d4cdd9c1c3 | ||
|
|
55c2646b45 | ||
|
|
e75ba4c043 | ||
|
|
5d46babdc2 | ||
|
|
e17991c466 | ||
|
|
c46944aa25 | ||
|
|
f3ed38d793 | ||
|
|
55a1c5a5fd | ||
|
|
12a81af45f | ||
|
|
8875523eb3 | ||
|
|
ec68e84c32 | ||
|
|
307e79d33d | ||
|
|
d7f5f4e578 | ||
|
|
c8a4e470f6 | ||
|
|
603e43dc91 | ||
|
|
611ba4b264 | ||
|
|
85841e121d | ||
|
|
68b3cd6514 | ||
|
|
de56944147 | ||
|
|
1b2aaf28ac | ||
|
|
343b6e94b6 | ||
|
|
6a746cf9c4 | ||
|
|
eff5e45443 | ||
|
|
a6a47958a1 | ||
|
|
f61c05d4b1 | ||
|
|
431b2c24f3 | ||
|
|
497be7c01d | ||
|
|
79b33b2317 | ||
|
|
0a5a3b5cdf | ||
|
|
745f11fed0 | ||
|
|
5dd942de59 | ||
|
|
a7417f5594 | ||
|
|
eb3fa2913e | ||
|
|
c839a2da1a | ||
|
|
e9b6350e61 | ||
|
|
caf5681fcb | ||
|
|
83790b0e7e | ||
|
|
f47c1d7106 | ||
|
|
a5d1fb6212 | ||
|
|
a0535ffa0d | ||
|
|
bd9c981d72 | ||
|
|
27208bf657 | ||
|
|
63a7bb3c7e | ||
|
|
00d5282c7f | ||
|
|
566c16fcce | ||
|
|
b25e92774e | ||
|
|
6609507a91 | ||
|
|
ceb1bf5a34 | ||
|
|
72babea5de | ||
|
|
43678060c1 | ||
|
|
8d94219a4a | ||
|
|
f667f1e624 | ||
|
|
8846aace49 | ||
|
|
a01047b041 | ||
|
|
b25346221d | ||
|
|
e8215dbb96 | ||
|
|
5783ae4359 | ||
|
|
bf5bcd0b85 | ||
|
|
716301d1b0 | ||
|
|
60ef23d6c1 | ||
|
|
b193d53069 | ||
|
|
2bf9d539dd | ||
|
|
73e53dc834 | ||
|
|
62af464227 | ||
|
|
c148cf1946 | ||
|
|
1b809cee22 |
@@ -22,8 +22,8 @@ AllowShortIfStatementsOnASingleLine: Never
|
||||
AllowShortLambdasOnASingleLine: Inline
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
BinPackArguments: true
|
||||
BinPackParameters: true # OnePerLine
|
||||
BinPackArguments: false
|
||||
BinPackParameters: false # OnePerLine
|
||||
BitFieldColonSpacing: Both
|
||||
BreakBeforeBraces: Custom # Attach
|
||||
BraceWrapping:
|
||||
@@ -70,15 +70,18 @@ ExperimentalAutoDetectBinPacking: false
|
||||
FixNamespaceComments: true
|
||||
IncludeBlocks: Regroup
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h>'
|
||||
- Regex: '".*"'
|
||||
Priority: 1
|
||||
SortPriority: 0
|
||||
- Regex: '^<.*'
|
||||
- Regex: '^<.*\.h>'
|
||||
Priority: 2
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
- Regex: '^<.*'
|
||||
Priority: 3
|
||||
SortPriority: 0
|
||||
- Regex: '.*'
|
||||
Priority: 4
|
||||
SortPriority: 0
|
||||
IncludeIsMainRegex: '([-_](test|unittest))?$'
|
||||
IncludeIsMainSourceRegex: ''
|
||||
IndentAccessModifiers: false
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG MUSA_VERSION=rc4.0.1
|
||||
ARG MUSA_VERSION=rc4.2.0
|
||||
# Target the MUSA build image
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-devel-ubuntu${UBUNTU_VERSION}
|
||||
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64
|
||||
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-mudnn-runtime-ubuntu${UBUNTU_VERSION}
|
||||
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64
|
||||
|
||||
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
|
||||
|
||||
|
||||
@@ -47,6 +47,7 @@ let
|
||||
inherit (lib)
|
||||
cmakeBool
|
||||
cmakeFeature
|
||||
optionalAttrs
|
||||
optionals
|
||||
strings
|
||||
;
|
||||
@@ -197,7 +198,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
|
||||
];
|
||||
|
||||
# Environment variables needed for ROCm
|
||||
env = optionals useRocm {
|
||||
env = optionalAttrs useRocm {
|
||||
ROCM_PATH = "${rocmPackages.clr}";
|
||||
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||
};
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG ROCM_VERSION=6.3
|
||||
ARG AMDGPU_VERSION=6.3
|
||||
ARG ROCM_VERSION=6.4
|
||||
ARG AMDGPU_VERSION=6.4
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
# Read the first argument into a variable
|
||||
|
||||
@@ -40,7 +40,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
2
.github/ISSUE_TEMPLATE/011-bug-results.yml
vendored
@@ -42,7 +42,7 @@ body:
|
||||
attributes:
|
||||
label: GGML backends
|
||||
description: Which GGML backends do you know to be affected?
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
|
||||
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL]
|
||||
multiple: true
|
||||
validations:
|
||||
required: true
|
||||
|
||||
11
.github/labeler.yml
vendored
11
.github/labeler.yml
vendored
@@ -1,10 +1,4 @@
|
||||
# https://github.com/actions/labeler
|
||||
Kompute:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-kompute.h
|
||||
- ggml/src/ggml-kompute/**
|
||||
- README-kompute.md
|
||||
Apple Metal:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
@@ -93,3 +87,8 @@ Ascend NPU:
|
||||
- ggml/include/ggml-cann.h
|
||||
- ggml/src/ggml-cann/**
|
||||
- docs/backend/CANN.md
|
||||
OpenCL:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/include/ggml-opencl.h
|
||||
- ggml/src/ggml-opencl/**
|
||||
|
||||
238
.github/workflows/build-linux-cross.yml
vendored
238
.github/workflows/build-linux-cross.yml
vendored
@@ -48,98 +48,98 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-riscv64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
# ubuntu-24-riscv64-vulkan-cross:
|
||||
# runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Setup Riscv
|
||||
# run: |
|
||||
# sudo dpkg --add-architecture riscv64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
# # Add arch-specific repositories for non-amd64 architectures
|
||||
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
# EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
libvulkan-dev:riscv64
|
||||
# sudo apt-get install -y --no-install-recommends \
|
||||
# build-essential \
|
||||
# glslc \
|
||||
# gcc-14-riscv64-linux-gnu \
|
||||
# g++-14-riscv64-linux-gnu \
|
||||
# libvulkan-dev:riscv64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cmake -B build -DLLAMA_CURL=OFF \
|
||||
# -DCMAKE_BUILD_TYPE=Release \
|
||||
# -DGGML_VULKAN=ON \
|
||||
# -DGGML_OPENMP=OFF \
|
||||
# -DLLAMA_BUILD_EXAMPLES=ON \
|
||||
# -DLLAMA_BUILD_TOOLS=ON \
|
||||
# -DLLAMA_BUILD_TESTS=OFF \
|
||||
# -DCMAKE_SYSTEM_NAME=Linux \
|
||||
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
# cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-arm64-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
# ubuntu-24-arm64-vulkan-cross:
|
||||
# runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Arm64
|
||||
run: |
|
||||
sudo dpkg --add-architecture arm64
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Setup Arm64
|
||||
# run: |
|
||||
# sudo dpkg --add-architecture arm64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
# # Add arch-specific repositories for non-amd64 architectures
|
||||
# cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
|
||||
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
# EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
crossbuild-essential-arm64 \
|
||||
libvulkan-dev:arm64
|
||||
# sudo apt-get install -y --no-install-recommends \
|
||||
# build-essential \
|
||||
# glslc \
|
||||
# crossbuild-essential-arm64 \
|
||||
# libvulkan-dev:arm64
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cmake -B build -DLLAMA_CURL=OFF \
|
||||
# -DCMAKE_BUILD_TYPE=Release \
|
||||
# -DGGML_VULKAN=ON \
|
||||
# -DGGML_OPENMP=OFF \
|
||||
# -DLLAMA_BUILD_EXAMPLES=ON \
|
||||
# -DLLAMA_BUILD_TOOLS=ON \
|
||||
# -DLLAMA_BUILD_TESTS=OFF \
|
||||
# -DCMAKE_SYSTEM_NAME=Linux \
|
||||
# -DCMAKE_SYSTEM_PROCESSOR=aarch64 \
|
||||
# -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
|
||||
# -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
|
||||
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
# cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-ppc64el-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
@@ -185,52 +185,52 @@ jobs:
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
ubuntu-24-ppc64el-vulkan-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
# ubuntu-24-ppc64el-vulkan-cross:
|
||||
# runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup PowerPC64le
|
||||
run: |
|
||||
sudo dpkg --add-architecture ppc64el
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Setup PowerPC64le
|
||||
# run: |
|
||||
# sudo dpkg --add-architecture ppc64el
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
# # Add arch-specific repositories for non-amd64 architectures
|
||||
# cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
|
||||
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
# EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
glslc \
|
||||
gcc-14-powerpc64le-linux-gnu \
|
||||
g++-14-powerpc64le-linux-gnu \
|
||||
libvulkan-dev:ppc64el
|
||||
# sudo apt-get install -y --no-install-recommends \
|
||||
# build-essential \
|
||||
# glslc \
|
||||
# gcc-14-powerpc64le-linux-gnu \
|
||||
# g++-14-powerpc64le-linux-gnu \
|
||||
# libvulkan-dev:ppc64el
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_VULKAN=ON \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
|
||||
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cmake -B build -DLLAMA_CURL=OFF \
|
||||
# -DCMAKE_BUILD_TYPE=Release \
|
||||
# -DGGML_VULKAN=ON \
|
||||
# -DGGML_OPENMP=OFF \
|
||||
# -DLLAMA_BUILD_EXAMPLES=ON \
|
||||
# -DLLAMA_BUILD_TOOLS=ON \
|
||||
# -DLLAMA_BUILD_TESTS=OFF \
|
||||
# -DCMAKE_SYSTEM_NAME=Linux \
|
||||
# -DCMAKE_SYSTEM_PROCESSOR=ppc64 \
|
||||
# -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
|
||||
# -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
|
||||
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
# cmake --build build --config Release -j $(nproc)
|
||||
|
||||
debian-13-loongarch64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
161
.github/workflows/build.yml
vendored
161
.github/workflows/build.yml
vendored
@@ -84,7 +84,8 @@ jobs:
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=OFF \
|
||||
-DGGML_METAL_SHADER_DEBUG=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
@@ -134,6 +135,69 @@ jobs:
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
macOS-latest-cmake-arm64-webgpu:
|
||||
runs-on: macos-14
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: macOS-latest-cmake-arm64-webgpu
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Dawn Dependency
|
||||
id: dawn-depends
|
||||
run: |
|
||||
ARTIFACTS_JSON=$(curl -s -L \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"https://api.github.com/repos/google/dawn/actions/artifacts")
|
||||
echo "Finding latest macos-latest-Release artifact..."
|
||||
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
|
||||
| sort_by(.created_at)
|
||||
| reverse
|
||||
| map(select(.name | test("macos-latest-Release$")))
|
||||
| .[0].archive_download_url')
|
||||
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
|
||||
echo "No suitable Dawn artifact found!"
|
||||
exit 1
|
||||
fi
|
||||
echo "Downloading from: $DOWNLOAD_URL"
|
||||
curl -L \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
|
||||
-o artifact.zip "$DOWNLOAD_URL"
|
||||
unzip artifact.zip
|
||||
mkdir dawn
|
||||
tar_file=$(find . -name '*.tar.gz' | head -n 1)
|
||||
echo "Extracting: $tar_file"
|
||||
tar -xvf "$tar_file" -C dawn --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
export CMAKE_PREFIX_PATH=dawn
|
||||
cmake -B build -DGGML_WEBGPU=ON -DGGML_METAL=OFF -DGGML_BLAS=OFF
|
||||
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
ubuntu-cpu-cmake:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -341,6 +405,72 @@ jobs:
|
||||
cd build
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 4200
|
||||
|
||||
ubuntu-22-cmake-webgpu:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: hendrikmuhs/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-22-cmake-webgpu
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Vulkan SDK Dependencies
|
||||
id: vulkan-depends
|
||||
run: |
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
|
||||
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
|
||||
|
||||
- name: Dawn Dependency
|
||||
id: dawn-depends
|
||||
run: |
|
||||
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
|
||||
ARTIFACTS_JSON=$(curl -s -L \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
"https://api.github.com/repos/google/dawn/actions/artifacts")
|
||||
echo "Finding latest ubuntu-latest-Release artifact..."
|
||||
DOWNLOAD_URL=$(echo "$ARTIFACTS_JSON" | jq -r '.artifacts
|
||||
| sort_by(.created_at)
|
||||
| reverse
|
||||
| map(select(.name | test("ubuntu-latest-Release$")))
|
||||
| .[0].archive_download_url')
|
||||
if [ "$DOWNLOAD_URL" = "null" ] || [ -z "$DOWNLOAD_URL" ]; then
|
||||
echo "No suitable Dawn artifact found!"
|
||||
exit 1
|
||||
fi
|
||||
echo "Downloading from: $DOWNLOAD_URL"
|
||||
curl -L \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}" \
|
||||
-o artifact.zip "$DOWNLOAD_URL"
|
||||
unzip artifact.zip
|
||||
mkdir dawn
|
||||
tar_file=$(find . -name '*.tar.gz' | head -n 1)
|
||||
echo "Extracting: $tar_file"
|
||||
tar -xvf "$tar_file" -C dawn --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
export Dawn_DIR=dawn/lib64/cmake/Dawn
|
||||
cmake -B build -DGGML_WEBGPU=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
@@ -385,7 +515,7 @@ jobs:
|
||||
|
||||
ubuntu-22-cmake-musa:
|
||||
runs-on: ubuntu-22.04
|
||||
container: mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
|
||||
container: mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -664,7 +794,7 @@ jobs:
|
||||
./build-xcframework.sh
|
||||
|
||||
windows-msys2:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
strategy:
|
||||
fail-fast: false
|
||||
@@ -714,7 +844,7 @@ jobs:
|
||||
cmake --build build --config ${{ matrix.build }} -j $(nproc)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
@@ -725,17 +855,20 @@ jobs:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'cpu-x64 (static)'
|
||||
arch: 'x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF'
|
||||
- build: 'openblas-x64'
|
||||
arch: 'x64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'vulkan-x64'
|
||||
arch: 'x64'
|
||||
defines: '-DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
|
||||
- build: 'llvm-arm64'
|
||||
arch: 'arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON'
|
||||
- build: 'llvm-arm64-opencl-adreno'
|
||||
arch: 'arm64'
|
||||
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
|
||||
# - build: 'kompute-x64'
|
||||
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -749,12 +882,6 @@ jobs:
|
||||
variant: ccache
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute-x64' }}
|
||||
run: |
|
||||
git submodule update --init ggml/src/ggml-kompute/kompute
|
||||
|
||||
- name: Download OpenBLAS
|
||||
id: get_openblas
|
||||
if: ${{ matrix.build == 'openblas-x64' }}
|
||||
@@ -770,7 +897,7 @@ jobs:
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute-x64' || matrix.build == 'vulkan-x64' }}
|
||||
if: ${{ matrix.build == 'vulkan-x64' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
@@ -805,6 +932,8 @@ jobs:
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
with:
|
||||
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -825,7 +954,7 @@ jobs:
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
if: ${{ matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' }}
|
||||
if: ${{ matrix.arch == 'x64' }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
@@ -930,7 +1059,7 @@ jobs:
|
||||
cmake --build build --config Release
|
||||
|
||||
windows-latest-cmake-sycl:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
defaults:
|
||||
run:
|
||||
@@ -964,7 +1093,7 @@ jobs:
|
||||
|
||||
windows-latest-cmake-hip:
|
||||
if: ${{ github.event.inputs.create_release != 'true' }}
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
||||
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
@@ -17,7 +17,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
with:
|
||||
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
|
||||
exempt-issue-labels: "refactoring,help wanted,good first issue,research,bug,roadmap"
|
||||
days-before-issue-stale: 30
|
||||
days-before-issue-close: 14
|
||||
stale-issue-label: "stale"
|
||||
|
||||
22
.github/workflows/release.yml
vendored
22
.github/workflows/release.yml
vendored
@@ -49,7 +49,8 @@ jobs:
|
||||
run: |
|
||||
sysctl -a
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DCMAKE_INSTALL_RPATH='@loader_path' \
|
||||
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=ON \
|
||||
@@ -103,7 +104,8 @@ jobs:
|
||||
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
|
||||
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DCMAKE_INSTALL_RPATH='@loader_path' \
|
||||
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON
|
||||
@@ -160,6 +162,8 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
|
||||
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
@@ -211,6 +215,8 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
|
||||
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
@@ -235,7 +241,7 @@ jobs:
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
windows-cpu:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -271,7 +277,7 @@ jobs:
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch }}
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch == 'x64' && 'x64' || 'amd64_arm64' }}
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
@@ -288,7 +294,7 @@ jobs:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.42.34433\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
@@ -298,7 +304,7 @@ jobs:
|
||||
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
|
||||
|
||||
windows:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2025
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
@@ -448,7 +454,7 @@ jobs:
|
||||
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
|
||||
|
||||
windows-sycl:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
defaults:
|
||||
run:
|
||||
@@ -520,7 +526,7 @@ jobs:
|
||||
name: llama-bin-win-sycl-x64.zip
|
||||
|
||||
windows-hip:
|
||||
runs-on: windows-latest
|
||||
runs-on: windows-2022
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
|
||||
40
.github/workflows/update-ops-docs.yml
vendored
Normal file
40
.github/workflows/update-ops-docs.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
name: Update Operations Documentation
|
||||
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'docs/ops/**'
|
||||
- 'scripts/create_ops_docs.py'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'docs/ops/**'
|
||||
- 'scripts/create_ops_docs.py'
|
||||
|
||||
jobs:
|
||||
update-ops-docs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.x'
|
||||
|
||||
- name: Generate operations documentation to temporary file
|
||||
run: |
|
||||
mkdir -p /tmp/ops_check
|
||||
./scripts/create_ops_docs.py /tmp/ops_check/ops.md
|
||||
|
||||
- name: Check if docs/ops.md matches generated version
|
||||
run: |
|
||||
if ! diff -q docs/ops.md /tmp/ops_check/ops.md; then
|
||||
echo "Operations documentation (docs/ops.md) is not up to date with the backend CSV files."
|
||||
echo "To fix: run ./scripts/create_ops_docs.py and commit the updated docs/ops.md along with your changes"
|
||||
echo "Differences found:"
|
||||
diff docs/ops.md /tmp/ops_check/ops.md || true
|
||||
exit 1
|
||||
fi
|
||||
echo "Operations documentation is up to date."
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -82,6 +82,7 @@ models/*
|
||||
models-mnt
|
||||
!models/.editorconfig
|
||||
!models/ggml-vocab-*.gguf*
|
||||
!models/templates
|
||||
|
||||
# Zig
|
||||
zig-out/
|
||||
|
||||
3
.gitmodules
vendored
3
.gitmodules
vendored
@@ -1,3 +0,0 @@
|
||||
[submodule "kompute"]
|
||||
path = ggml/src/ggml-kompute/kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
||||
|
||||
@@ -95,7 +95,7 @@ endif()
|
||||
if (NOT DEFINED LLAMA_BUILD_COMMIT)
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
endif()
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${LLAMA_BUILD_NUMBER})
|
||||
|
||||
# override ggml options
|
||||
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
|
||||
@@ -120,7 +120,6 @@ endfunction()
|
||||
|
||||
llama_option_depr(FATAL_ERROR LLAMA_CUBLAS GGML_CUDA)
|
||||
llama_option_depr(WARNING LLAMA_CUDA GGML_CUDA)
|
||||
llama_option_depr(WARNING LLAMA_KOMPUTE GGML_KOMPUTE)
|
||||
llama_option_depr(WARNING LLAMA_METAL GGML_METAL)
|
||||
llama_option_depr(WARNING LLAMA_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
|
||||
llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)
|
||||
|
||||
@@ -55,6 +55,17 @@
|
||||
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "x64-linux-gcc", "hidden": true,
|
||||
"cacheVariables": {
|
||||
"CMAKE_C_COMPILER": "gcc",
|
||||
"CMAKE_CXX_COMPILER": "g++"
|
||||
}
|
||||
},
|
||||
{ "name": "x64-linux-gcc-debug", "inherits": [ "base", "x64-linux-gcc", "debug" ] },
|
||||
{ "name": "x64-linux-gcc-release", "inherits": [ "base", "x64-linux-gcc", "release" ] },
|
||||
{ "name": "x64-linux-gcc-reldbg", "inherits": [ "base", "x64-linux-gcc", "reldbg" ] },
|
||||
{ "name": "x64-linux-gcc+static-release", "inherits": [ "base", "x64-linux-gcc", "release", "static" ] },
|
||||
|
||||
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
|
||||
|
||||
@@ -9,3 +9,4 @@
|
||||
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/gguf.cpp @JohannesGaessler
|
||||
/ggml/src/ggml-vulkan/ @0cc4m
|
||||
|
||||
16
README.md
16
README.md
@@ -6,9 +6,9 @@
|
||||
[](https://github.com/ggml-org/llama.cpp/releases)
|
||||
[](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
|
||||
[Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml) / [ops](https://github.com/ggml-org/llama.cpp/blob/master/docs/ops.md)
|
||||
|
||||
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
|
||||
LLM inference in C/C++
|
||||
|
||||
## Recent API changes
|
||||
|
||||
@@ -17,10 +17,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
|
||||
|
||||
## Hot topics
|
||||
|
||||
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
|
||||
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
|
||||
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
@@ -134,6 +133,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@@ -269,6 +269,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
|
||||
## Obtaining and quantizing models
|
||||
@@ -434,7 +435,7 @@ To learn more about model quantization, [read this documentation](tools/quantize
|
||||
|
||||
## [`llama-perplexity`](tools/perplexity)
|
||||
|
||||
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
|
||||
#### A tool for measuring the [perplexity](tools/perplexity/README.md) [^1] (and other quality metrics) of a model over a given text.
|
||||
|
||||
- <details open>
|
||||
<summary>Measure the perplexity over a text file</summary>
|
||||
@@ -457,8 +458,7 @@ To learn more about model quantization, [read this documentation](tools/quantize
|
||||
|
||||
</details>
|
||||
|
||||
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
|
||||
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
[^1]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
|
||||
|
||||
## [`llama-bench`](tools/llama-bench)
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# Options
|
||||
IOS_MIN_OS_VERSION=16.4
|
||||
|
||||
@@ -54,7 +54,7 @@ docker run --privileged -it \
|
||||
-v $HOME/llama.cpp/ci-cache:/ci-cache \
|
||||
-v $HOME/llama.cpp/ci-results:/ci-results \
|
||||
-v $PWD:/ws -w /ws \
|
||||
mthreads/musa:rc4.0.1-mudnn-devel-ubuntu22.04
|
||||
mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
|
||||
```
|
||||
|
||||
Inside the container, execute the following commands:
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
@@ -16,6 +16,9 @@
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with WebGPU support
|
||||
# GG_BUILD_WEBGPU=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with MUSA support
|
||||
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
@@ -81,6 +84,10 @@ if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_MUSA} ]; then
|
||||
# Use qy1 by default (MTT S80)
|
||||
MUSA_ARCH=${MUSA_ARCH:-21}
|
||||
|
||||
@@ -86,8 +86,7 @@ if (LLAMA_CURL)
|
||||
endif()
|
||||
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
|
||||
include_directories(${CURL_INCLUDE_DIRS})
|
||||
find_library(CURL_LIBRARY curl REQUIRED)
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
|
||||
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
|
||||
endif ()
|
||||
|
||||
if (LLAMA_LLGUIDANCE)
|
||||
@@ -112,13 +111,13 @@ if (LLAMA_LLGUIDANCE)
|
||||
|
||||
ExternalProject_Add(llguidance_ext
|
||||
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
|
||||
# v0.7.20 (+ fix to build on GCC 15):
|
||||
GIT_TAG b5b8b64dba11c4e4ee6b1d1450d3a3ae279891e8
|
||||
# v1.0.1:
|
||||
GIT_TAG d795912fedc7d393de740177ea9ea761e7905774
|
||||
PREFIX ${CMAKE_BINARY_DIR}/llguidance
|
||||
SOURCE_DIR ${LLGUIDANCE_SRC}
|
||||
BUILD_IN_SOURCE TRUE
|
||||
CONFIGURE_COMMAND ""
|
||||
BUILD_COMMAND cargo build --release
|
||||
BUILD_COMMAND cargo build --release --package llguidance
|
||||
INSTALL_COMMAND ""
|
||||
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
|
||||
UPDATE_COMMAND ""
|
||||
|
||||
@@ -1464,6 +1464,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.swa_full = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_SWA_FULL"));
|
||||
add_opt(common_arg(
|
||||
{"--kv-unified", "-kvu"},
|
||||
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
|
||||
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.kv_unified = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_KV_SPLIT"));
|
||||
add_opt(common_arg(
|
||||
{"--no-context-shift"},
|
||||
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
@@ -1604,7 +1612,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.antiprompt.emplace_back(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-sp", "--special"},
|
||||
string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
|
||||
@@ -2647,6 +2655,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.i_chunk = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
add_opt(common_arg(
|
||||
{"--show-statistics"},
|
||||
string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.show_statistics = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
|
||||
add_opt(common_arg(
|
||||
{"--parse-special"},
|
||||
string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
|
||||
@@ -2734,6 +2749,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.public_path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
|
||||
add_opt(common_arg(
|
||||
{"--api-prefix"}, "PREFIX",
|
||||
string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.api_prefix = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
|
||||
add_opt(common_arg(
|
||||
{"--no-webui"},
|
||||
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
|
||||
@@ -2794,6 +2816,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.ssl_file_cert = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"--chat-template-kwargs"}, "STRING",
|
||||
string_format("sets additional params for the json template parser"),
|
||||
[](common_params & params, const std::string & value) {
|
||||
auto parsed = json::parse(value);
|
||||
for (const auto & item : parsed.items()) {
|
||||
params.default_template_kwargs[item.key()] = item.value().dump();
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
|
||||
add_opt(common_arg(
|
||||
{"-to", "--timeout"}, "N",
|
||||
string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
|
||||
@@ -3406,5 +3438,34 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
|
||||
// diffusion parameters
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-steps" }, "N",
|
||||
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
|
||||
[](common_params & params, int value) { params.diffusion.steps = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-eps" }, "F",
|
||||
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-algorithm" }, "N",
|
||||
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
|
||||
params.diffusion.algorithm),
|
||||
[](common_params & params, int value) { params.diffusion.algorithm = value; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-alg-temp" }, "F",
|
||||
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
|
||||
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
add_opt(common_arg(
|
||||
{ "--diffusion-visual" },
|
||||
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
|
||||
params.diffusion.visual_mode ? "true" : "false"),
|
||||
[](common_params & params) { params.diffusion.visual_mode = true; }
|
||||
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
|
||||
|
||||
return ctx_arg;
|
||||
}
|
||||
|
||||
@@ -17,6 +17,8 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
|
||||
auto time = std::chrono::system_clock::to_time_t(now);
|
||||
auto local_time = *std::localtime(&time);
|
||||
@@ -140,6 +142,7 @@ struct templates_params {
|
||||
bool add_generation_prompt = true;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
json extra_context;
|
||||
};
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
|
||||
@@ -720,16 +723,23 @@ static void foreach_function(const json & tools, const std::function<void(const
|
||||
|
||||
static std::string apply(
|
||||
const common_chat_template & tmpl,
|
||||
const nlohmann::ordered_json & messages,
|
||||
const nlohmann::ordered_json & tools,
|
||||
bool add_generation_prompt,
|
||||
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json())
|
||||
const struct templates_params & inputs,
|
||||
const std::optional<json> & messages_override = std::nullopt,
|
||||
const std::optional<json> & tools_override = std::nullopt,
|
||||
const std::optional<json> & additional_context = std::nullopt)
|
||||
{
|
||||
minja::chat_template_inputs tmpl_inputs;
|
||||
tmpl_inputs.messages = messages;
|
||||
tmpl_inputs.tools = tools;
|
||||
tmpl_inputs.add_generation_prompt = add_generation_prompt;
|
||||
tmpl_inputs.extra_context = extra_context;
|
||||
tmpl_inputs.messages = messages_override ? *messages_override : inputs.messages;
|
||||
if (tools_override) {
|
||||
tmpl_inputs.tools = *tools_override;
|
||||
} else {
|
||||
tmpl_inputs.tools = inputs.tools.empty() ? json() : inputs.tools;
|
||||
}
|
||||
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
|
||||
tmpl_inputs.extra_context = inputs.extra_context;
|
||||
if (additional_context) {
|
||||
tmpl_inputs.extra_context.merge_patch(*additional_context);
|
||||
}
|
||||
// TODO: add flag to control date/time, if only for testing purposes.
|
||||
// tmpl_inputs.now = std::chrono::system_clock::now();
|
||||
|
||||
@@ -828,7 +838,7 @@ static common_chat_params common_chat_params_init_generic(const common_chat_temp
|
||||
inputs.messages,
|
||||
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
|
||||
|
||||
data.prompt = apply(tmpl, tweaked_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
|
||||
data.format = COMMON_CHAT_FORMAT_GENERIC;
|
||||
return data;
|
||||
}
|
||||
@@ -904,7 +914,7 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
||||
data.preserved_tokens = {
|
||||
"[TOOL_CALLS]",
|
||||
};
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||||
return data;
|
||||
}
|
||||
@@ -934,7 +944,7 @@ static common_chat_params common_chat_params_init_command_r7b(const common_chat_
|
||||
adjusted_messages.push_back(msg);
|
||||
}
|
||||
}
|
||||
data.prompt = apply(tmpl, adjusted_messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {});
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||||
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||||
if (string_ends_with(data.prompt, "<|START_THINKING|>")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
@@ -1122,7 +1132,7 @@ static common_chat_params common_chat_params_init_llama_3_x(const common_chat_te
|
||||
} else {
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
}
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, json {
|
||||
{"date_string", format_time(inputs.now, "%d %b %Y")},
|
||||
{"tools_in_user_message", false},
|
||||
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
|
||||
@@ -1187,7 +1197,7 @@ static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool w
|
||||
|
||||
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
auto prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
auto prompt = apply(tmpl, inputs);
|
||||
|
||||
// Hacks to fix the official (broken) prompt.
|
||||
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
|
||||
@@ -1282,7 +1292,7 @@ static void common_chat_parse_deepseek_r1(common_chat_msg_parser & builder) {
|
||||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
LOG_DBG("%s\n", __func__);
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, /* tools= */ nullptr, inputs.add_generation_prompt, {
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ json(), json {
|
||||
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
|
||||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||||
});
|
||||
@@ -1338,7 +1348,7 @@ static common_chat_params common_chat_params_init_functionary_v3_2(const common_
|
||||
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
|
||||
// If the function is python, we also allow raw python code (if the line after `python\n` doesn't start w/ opening `{`), which the model seems to prefer for multiline code.
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
@@ -1465,7 +1475,7 @@ static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(con
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
}
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
// TODO: if (has_raw_python)
|
||||
return data;
|
||||
}
|
||||
@@ -1498,14 +1508,15 @@ static void common_chat_parse_functionary_v3_1_llama_3_1(common_chat_msg_parser
|
||||
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
json additional_context = {
|
||||
json extra_context = json {
|
||||
{"enable_thinking", inputs.enable_thinking},
|
||||
};
|
||||
extra_context.update(inputs.extra_context);
|
||||
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt, additional_context);
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, extra_context);
|
||||
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||||
if (!inputs.enable_thinking) {
|
||||
if (!extra_context["enable_thinking"]) {
|
||||
data.prompt += "</think>";
|
||||
} else {
|
||||
data.thinking_forced_open = true;
|
||||
@@ -1691,7 +1702,7 @@ static void common_chat_parse_hermes_2_pro(common_chat_msg_parser & builder) {
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs.messages, inputs.tools.empty() ? json() : inputs.tools, inputs.add_generation_prompt);
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||||
data.grammar_lazy = false;
|
||||
if (!inputs.json_schema.is_null()) {
|
||||
@@ -1722,6 +1733,12 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
params.enable_thinking = inputs.enable_thinking;
|
||||
params.grammar = inputs.grammar;
|
||||
params.now = inputs.now;
|
||||
|
||||
params.extra_context = json::object();
|
||||
for (auto el : inputs.chat_template_kwargs) {
|
||||
params.extra_context[el.first] = json::parse(el.second);
|
||||
}
|
||||
|
||||
if (!inputs.json_schema.empty()) {
|
||||
params.json_schema = json::parse(inputs.json_schema);
|
||||
}
|
||||
@@ -1927,6 +1944,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
||||
}
|
||||
}
|
||||
auto msg = builder.result();
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
if (!is_partial) {
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
}
|
||||
return msg;
|
||||
}
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
struct common_chat_templates;
|
||||
|
||||
@@ -125,6 +126,7 @@ struct common_chat_templates_inputs {
|
||||
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
|
||||
bool enable_thinking = true;
|
||||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||||
std::map<std::string, std::string> chat_template_kwargs;
|
||||
};
|
||||
|
||||
struct common_chat_params {
|
||||
|
||||
@@ -448,6 +448,15 @@ void string_replace_all(std::string & s, const std::string & search, const std::
|
||||
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
|
||||
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
|
||||
}
|
||||
|
||||
bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
|
||||
bool has_suffix = string_ends_with(str, suffix);
|
||||
if (has_suffix) {
|
||||
str = str.substr(0, str.size() - suffix.size());
|
||||
}
|
||||
return has_suffix;
|
||||
}
|
||||
|
||||
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
|
||||
if (!str.empty() && !stop.empty()) {
|
||||
const char text_last_char = str.back();
|
||||
@@ -1005,15 +1014,21 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
params.sampling.ignore_eos = false;
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos) {
|
||||
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
|
||||
if (llama_vocab_is_eog(vocab, i)) {
|
||||
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
|
||||
params.sampling.logit_bias.push_back({i, -INFINITY});
|
||||
}
|
||||
// initialize once
|
||||
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
|
||||
if (llama_vocab_is_eog(vocab, i)) {
|
||||
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
|
||||
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
|
||||
}
|
||||
}
|
||||
|
||||
if (params.sampling.ignore_eos) {
|
||||
// add EOG biases to the active set of logit biases
|
||||
params.sampling.logit_bias.insert(
|
||||
params.sampling.logit_bias.end(),
|
||||
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
|
||||
}
|
||||
|
||||
if (params.sampling.penalty_last_n == -1) {
|
||||
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
|
||||
params.sampling.penalty_last_n = llama_n_ctx(lctx);
|
||||
@@ -1157,6 +1172,7 @@ struct llama_context_params common_context_params_to_llama(const common_params &
|
||||
cparams.no_perf = params.no_perf;
|
||||
cparams.op_offload = !params.no_op_offload;
|
||||
cparams.swa_full = params.swa_full;
|
||||
cparams.kv_unified = params.kv_unified;
|
||||
|
||||
cparams.type_k = params.cache_type_k;
|
||||
cparams.type_v = params.cache_type_v;
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
|
||||
#ifdef _WIN32
|
||||
@@ -80,6 +81,7 @@ enum llama_example {
|
||||
LLAMA_EXAMPLE_LOOKUP,
|
||||
LLAMA_EXAMPLE_PARALLEL,
|
||||
LLAMA_EXAMPLE_TTS,
|
||||
LLAMA_EXAMPLE_DIFFUSION,
|
||||
|
||||
LLAMA_EXAMPLE_COUNT,
|
||||
};
|
||||
@@ -176,7 +178,8 @@ struct common_params_sampling {
|
||||
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
|
||||
std::set<llama_token> preserved_tokens;
|
||||
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
|
||||
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
|
||||
|
||||
// print the parameters into a string
|
||||
std::string print() const;
|
||||
@@ -216,6 +219,14 @@ struct common_params_vocoder {
|
||||
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_diffusion {
|
||||
int32_t steps = 64; // number of diffusion steps
|
||||
float eps = 1e-3f; // epsilon for timesteps
|
||||
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
|
||||
float alg_temp = 0.0f; // algorithm temperature
|
||||
bool visual_mode = false; // show progressive diffusion on screen
|
||||
};
|
||||
|
||||
enum common_reasoning_format {
|
||||
COMMON_REASONING_FORMAT_NONE,
|
||||
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
|
||||
@@ -267,6 +278,7 @@ struct common_params {
|
||||
struct common_params_sampling sampling;
|
||||
struct common_params_speculative speculative;
|
||||
struct common_params_vocoder vocoder;
|
||||
struct common_params_diffusion diffusion;
|
||||
|
||||
struct common_params_model model;
|
||||
|
||||
@@ -329,6 +341,7 @@ struct common_params {
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool ctx_shift = true; // context shift on inifinite text generation
|
||||
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
|
||||
bool kv_unified = false; // enable unified KV cache
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
@@ -369,6 +382,7 @@ struct common_params {
|
||||
|
||||
std::string hostname = "127.0.0.1";
|
||||
std::string public_path = ""; // NOLINT
|
||||
std::string api_prefix = ""; // NOLINT
|
||||
std::string chat_template = ""; // NOLINT
|
||||
bool use_jinja = false; // NOLINT
|
||||
bool enable_chat_template = true;
|
||||
@@ -381,6 +395,8 @@ struct common_params {
|
||||
std::string ssl_file_key = ""; // NOLINT
|
||||
std::string ssl_file_cert = ""; // NOLINT
|
||||
|
||||
std::map<std::string, std::string> default_template_kwargs;
|
||||
|
||||
// "advanced" endpoints are disabled by default for better security
|
||||
bool webui = true;
|
||||
bool endpoint_slots = false;
|
||||
@@ -416,9 +432,10 @@ struct common_params {
|
||||
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
|
||||
int32_t i_chunk = 0; // start processing from this chunk
|
||||
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
|
||||
bool process_output = false; // collect data for the output tensor
|
||||
bool compute_ppl = true; // whether to compute perplexity
|
||||
bool show_statistics = false; // show imatrix statistics per tensor
|
||||
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
|
||||
|
||||
// cvector-generator params
|
||||
int n_pca_batch = 100;
|
||||
@@ -518,6 +535,7 @@ static bool string_starts_with(const std::string & str,
|
||||
|
||||
// While we wait for C++20's std::string::ends_with...
|
||||
bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
|
||||
bool string_remove_suffix(std::string & str, const std::string_view & suffix);
|
||||
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
|
||||
|
||||
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -7,7 +7,6 @@ import pathlib
|
||||
import re
|
||||
|
||||
import requests
|
||||
import sys
|
||||
import json
|
||||
import shutil
|
||||
import argparse
|
||||
@@ -69,8 +68,7 @@ args = parser.parse_args()
|
||||
hf_token = args.hf_token if args.hf_token is not None else hf_token
|
||||
|
||||
if hf_token is None:
|
||||
logger.error("HF token is required. Please provide it as an argument or set it in ~/.cache/huggingface/token")
|
||||
sys.exit(1)
|
||||
logger.warning("HF token not found. You can provide it as an argument or set it in ~/.cache/huggingface/token")
|
||||
|
||||
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
|
||||
# will be updated with time - contributions welcome
|
||||
@@ -128,6 +126,10 @@ models = [
|
||||
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
|
||||
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
|
||||
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
|
||||
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
|
||||
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
|
||||
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
|
||||
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
@@ -137,11 +139,18 @@ pre_computed_hashes = [
|
||||
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
|
||||
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
|
||||
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
|
||||
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
|
||||
# falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"},
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-7B-Base", "chkhsh": "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896"},
|
||||
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
|
||||
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
|
||||
]
|
||||
|
||||
|
||||
def download_file_with_auth(url, token, save_path):
|
||||
headers = {"Authorization": f"Bearer {token}"}
|
||||
headers = {"Authorization": f"Bearer {token}"} if token else None
|
||||
response = sess.get(url, headers=headers)
|
||||
response.raise_for_status()
|
||||
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||
@@ -222,7 +231,7 @@ for model in models:
|
||||
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
|
||||
|
||||
src_ifs = ""
|
||||
for model in [*all_models, *pre_computed_hashes]:
|
||||
for model in [*pre_computed_hashes, *all_models]:
|
||||
name = model["name"]
|
||||
tokt = model["tokt"]
|
||||
chkhsh = model.get("chkhsh")
|
||||
@@ -230,11 +239,6 @@ for model in [*all_models, *pre_computed_hashes]:
|
||||
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
|
||||
continue
|
||||
|
||||
# Skip if the tokenizer folder does not exist or there are other download issues previously
|
||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
||||
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
|
||||
continue
|
||||
|
||||
# create the tokenizer
|
||||
if chkhsh is not None:
|
||||
# if the model has a pre-computed hash, use it
|
||||
@@ -244,15 +248,19 @@ for model in [*all_models, *pre_computed_hashes]:
|
||||
chkhsh = existing_models[name]
|
||||
else:
|
||||
# otherwise, compute the hash of the tokenizer
|
||||
|
||||
# Fail if the tokenizer folder with config does not exist or there are other download issues previously
|
||||
if not os.path.isfile(f"models/tokenizers/{name}/tokenizer_config.json"):
|
||||
raise OSError(f"Config for tokenizer {name} not found. The model may not exist or is not accessible with the provided token.")
|
||||
|
||||
try:
|
||||
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
|
||||
if name == "t5":
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
|
||||
continue # Skip to the next model if the tokenizer can't be loaded
|
||||
except Exception as e:
|
||||
raise OSError(f"Error loading tokenizer for model {name}.") from e
|
||||
|
||||
chktok = tokenizer.encode(CHK_TXT)
|
||||
chkhsh = sha256(str(chktok).encode()).hexdigest()
|
||||
|
||||
@@ -757,7 +757,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
|
||||
@@ -16,7 +16,7 @@ cd llama.cpp
|
||||
|
||||
## CPU Build with BLAS
|
||||
|
||||
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements.
|
||||
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements. Make sure to have OpenBLAS installed in your environment.
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
@@ -28,8 +28,9 @@ cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
**Notes**:
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/)
|
||||
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
|
||||
|
||||
- For faster repeated compilation, install [ccache](https://ccache.dev/)
|
||||
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
@@ -41,18 +42,29 @@ cmake --build build --config Release -j $(nproc)
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- For debug builds:
|
||||
- By default, NNPA is disabled by default. To enable it:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS \
|
||||
-DGGML_NNPA=ON
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
- For debug builds:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=Debug \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS
|
||||
|
||||
cmake --build build --config Debug -j $(nproc)
|
||||
```
|
||||
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
|
||||
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build \
|
||||
@@ -70,12 +82,26 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
|
||||
|
||||
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**
|
||||
|
||||
You can find popular models pre-converted and verified at [s390x Ready Models](hf.co/collections/taronaeo/s390x-ready-models-672765393af438d0ccb72a08).
|
||||

|
||||
|
||||
These models and their respective tokenizers are verified to run correctly on IBM Z & LinuxONE.
|
||||
You can find popular models pre-converted and verified at [s390x Verified Models](https://huggingface.co/collections/taronaeo/s390x-verified-models-672765393af438d0ccb72a08) or [s390x Runnable Models](https://huggingface.co/collections/taronaeo/s390x-runnable-models-686e951824198df12416017e).
|
||||
|
||||
These models have already been converted from `safetensors` to `GGUF` Big-Endian and their respective tokenizers verified to run correctly on IBM z15 and later system.
|
||||
|
||||
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**
|
||||
|
||||

|
||||
|
||||
The model you are trying to convert must be in `safetensors` file format (for example [IBM Granite 3.3 2B](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct)). Make sure you have downloaded the model repository for this case.
|
||||
|
||||
Ensure that you have installed the required packages in advance
|
||||
|
||||
```bash
|
||||
pip3 install -r requirements.txt
|
||||
```
|
||||
|
||||
Convert the `safetensors` model to `GGUF`
|
||||
|
||||
```bash
|
||||
python3 convert_hf_to_gguf.py \
|
||||
--outfile model-name-be.f16.gguf \
|
||||
@@ -96,32 +122,42 @@ All models need to be converted to Big-Endian. You can achieve this in three cas
|
||||
|
||||
3. **Convert existing GGUF Little-Endian model to Big-Endian**
|
||||
|
||||

|
||||
|
||||
The model you are trying to convert must be in `gguf` file format (for example [IBM Granite 3.3 2B GGUF](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct-GGUF)). Make sure you have downloaded the model file for this case.
|
||||
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
|
||||
```
|
||||
|
||||
For example,
|
||||
|
||||
```bash
|
||||
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
|
||||
mv granite-3.3-2b-instruct-le.f16.gguf granite-3.3-2b-instruct-be.f16.gguf
|
||||
```
|
||||
|
||||
**Notes:**
|
||||
|
||||
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
|
||||
|
||||
## IBM Accelerators
|
||||
|
||||
### 1. SIMD Acceleration
|
||||
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14 or EC13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
Only available in IBM z15 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 2. zDNN Accelerator
|
||||
### 2. NNPA Vector Intrinsics Acceleration
|
||||
|
||||
*Only available in IBM z16 or later system. No direction at the moment.*
|
||||
Only available in IBM z16 or later system with the `-DGGML_NNPA=ON` (turned off by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs can still run but will use a scalar implementation.
|
||||
|
||||
### 3. Spyre Accelerator
|
||||
### 3. zDNN Accelerator
|
||||
|
||||
*No direction at the moment.*
|
||||
_Only available in IBM z16 / LinuxONE 4 or later system. No support currently available._
|
||||
|
||||
### 4. Spyre Accelerator
|
||||
|
||||
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
|
||||
|
||||
## Performance Tuning
|
||||
|
||||
@@ -145,6 +181,42 @@ It is strongly recommended to disable SMT via the kernel boot parameters as it n
|
||||
|
||||
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
|
||||
|
||||
## Frequently Asked Questions (FAQ)
|
||||
|
||||
1. I'm getting the following error message while trying to load a model: `gguf_init_from_file_impl: failed to load model: this GGUF file version 50331648 is extremely large, is there a mismatch between the host and model endianness?`
|
||||
|
||||
Answer: Please ensure that the model you have downloaded/converted is GGUFv3 Big-Endian. These models are usually denoted with the `-be` suffix, i.e., `granite-3.3-2b-instruct-be.F16.gguf`.
|
||||
|
||||
You may refer to the [Getting GGUF Models](#getting-gguf-models) section to manually convert a `safetensors` model to `GGUF` Big Endian.
|
||||
|
||||
2. I'm getting extremely poor performance when running inference on a model
|
||||
|
||||
Answer: Please refer to the [Appendix B: SIMD Support Matrix](#appendix-b-simd-support-matrix) to check if your model quantization is supported by SIMD acceleration.
|
||||
|
||||
3. I'm building on IBM z17 and getting the following error messages: `invalid switch -march=z17`
|
||||
|
||||
Answer: Please ensure that your GCC compiler is of minimum GCC 15.1.0 version, and have `binutils` updated to the latest version. If this does not fix the problem, kindly open an issue.
|
||||
|
||||
4. Failing to install the `sentencepiece` package using GCC 15+
|
||||
|
||||
Answer: The `sentencepiece` team are aware of this as seen in [this issue](https://github.com/google/sentencepiece/issues/1108).
|
||||
|
||||
As a temporary workaround, please run the installation command with the following environment variables.
|
||||
|
||||
```bash
|
||||
export CXXFLAGS="-include cstdint"
|
||||
```
|
||||
|
||||
For example,
|
||||
|
||||
```bash
|
||||
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
|
||||
```
|
||||
|
||||
5. `-DGGML_NNPA=ON` generates gibberish output
|
||||
|
||||
Answer: We are aware of this as detailed in [this issue](https://github.com/ggml-org/llama.cpp/issues/14877). Please either try reducing the number of threads, or disable the compile option using `-DGGML_NNPA=OFF`.
|
||||
|
||||
## Getting Help on IBM Z & LinuxONE
|
||||
|
||||
1. **Bugs, Feature Requests**
|
||||
@@ -155,3 +227,50 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|
||||
|
||||
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).
|
||||
|
||||
## Appendix A: Hardware Support Matrix
|
||||
|
||||
| | Support | Minimum Compiler Version |
|
||||
| ------- | ------- | ------------------------ |
|
||||
| IBM z15 | ✅ | |
|
||||
| IBM z16 | ✅ | |
|
||||
| IBM z17 | ✅ | GCC 15.1.0 |
|
||||
|
||||
- ✅ - supported and verified to run as intended
|
||||
- 🚫 - unsupported, we are unlikely able to provide support
|
||||
|
||||
## Appendix B: SIMD Support Matrix
|
||||
|
||||
| | VX/VXE/VXE2 | NNPA | zDNN | Spyre |
|
||||
| ---------- | ----------- | ---- | ---- | ----- |
|
||||
| FP32 | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP16 | ✅ | ✅ | ❓ | ❓ |
|
||||
| BF16 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q4_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_1 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q5_1 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q8_0 | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q2_K | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| Q3_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q4_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q5_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| Q6_K | ✅ | ✅ | ❓ | ❓ |
|
||||
| TQ1_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| TQ2_0 | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_XS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ2_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_XXS | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ3_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_S | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ1_M | 🚫 | 🚫 | ❓ | ❓ |
|
||||
| IQ4_NL | ✅ | ✅ | ❓ | ❓ |
|
||||
| IQ4_XS | ✅ | ✅ | ❓ | ❓ |
|
||||
| FP32->FP16 | 🚫 | ✅ | ❓ | ❓ |
|
||||
| FP16->FP32 | 🚫 | ✅ | ❓ | ❓ |
|
||||
|
||||
- ✅ - acceleration available
|
||||
- 🚫 - acceleration unavailable, will still run using scalar implementation
|
||||
- ❓ - acceleration unknown, please contribute if you can test it yourself
|
||||
|
||||
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on July 25, 2025.
|
||||
|
||||
@@ -68,6 +68,9 @@ cmake --build build --config Release
|
||||
cmake --build build-x64-windows-llvm-release
|
||||
```
|
||||
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
|
||||
- **Debian / Ubuntu:** `sudo apt-get install libcurl4-openssl-dev` # (or `libcurl4-gnutls-dev` if you prefer GnuTLS)
|
||||
- **Fedora / RHEL / Rocky / Alma:** `sudo dnf install libcurl-devel`
|
||||
- **Arch / Manjaro:** `sudo pacman -S curl` # includes libcurl headers
|
||||
|
||||
## BLAS Build
|
||||
|
||||
@@ -305,9 +308,8 @@ On Linux it is possible to use unified memory architecture (UMA) to share main m
|
||||
|
||||
## Vulkan
|
||||
|
||||
**Windows**
|
||||
|
||||
### w64devkit
|
||||
### For Windows Users:
|
||||
**w64devkit**
|
||||
|
||||
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
|
||||
|
||||
@@ -334,7 +336,7 @@ cmake -B build -DGGML_VULKAN=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Git Bash MINGW64
|
||||
**Git Bash MINGW64**
|
||||
|
||||
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
|
||||
|
||||
@@ -357,7 +359,8 @@ Now you can load the model in conversation mode using `Vulkan`
|
||||
build/bin/Release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
|
||||
```
|
||||
|
||||
### MSYS2
|
||||
**MSYS2**
|
||||
|
||||
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
|
||||
```sh
|
||||
pacman -S git \
|
||||
@@ -373,9 +376,9 @@ cmake -B build -DGGML_VULKAN=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
**With docker**:
|
||||
### For Docker users:
|
||||
|
||||
You don't need to install Vulkan SDK. It will be installed inside the container.
|
||||
You don't need to install the Vulkan SDK. It will be installed inside the container.
|
||||
|
||||
```sh
|
||||
# Build the image
|
||||
@@ -385,32 +388,29 @@ docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
|
||||
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
|
||||
```
|
||||
|
||||
**Without docker**:
|
||||
### For Linux users:
|
||||
|
||||
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
|
||||
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
|
||||
|
||||
For example, on Ubuntu 22.04 (jammy), use the command below:
|
||||
> [!IMPORTANT]
|
||||
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
|
||||
|
||||
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
|
||||
```bash
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
|
||||
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
|
||||
apt update -y
|
||||
apt-get install -y vulkan-sdk
|
||||
# To verify the installation, use the command below:
|
||||
vulkaninfo
|
||||
```
|
||||
|
||||
Alternatively your package manager might be able to provide the appropriate libraries.
|
||||
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
|
||||
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
|
||||
|
||||
Then, build llama.cpp using the cmake command below:
|
||||
|
||||
Then, assuming you have `cd` into your llama.cpp folder and there are no errors with running `vulkaninfo`, you can proceed to build llama.cpp using the CMake commands below:
|
||||
```bash
|
||||
cmake -B build -DGGML_VULKAN=1
|
||||
cmake --build build --config Release
|
||||
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
|
||||
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
|
||||
```
|
||||
|
||||
Finally, after finishing your build, you should be able to do something like this:
|
||||
```bash
|
||||
# Test the output binary
|
||||
# "-ngl 99" should offload all of the layers to GPU for most (if not all) models.
|
||||
./build/bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -ngl 99
|
||||
|
||||
# You should see in the output, ggml_vulkan detected your GPU. For example:
|
||||
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
||||
@@ -557,6 +557,27 @@ ninja
|
||||
|
||||
To read documentation for how to build on Android, [click here](./android.md)
|
||||
|
||||
## WebGPU [In Progress]
|
||||
|
||||
The WebGPU backend relies on [Dawn](https://dawn.googlesource.com/dawn). Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/docs/quickstart-cmake.md) to install Dawn locally so that llama.cpp can find it using CMake. The currrent implementation is up-to-date with Dawn commit `bed1a61`.
|
||||
|
||||
In the llama.cpp directory, build with CMake:
|
||||
|
||||
```
|
||||
cmake -B build -DGGML_WEBGPU=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Browser Support
|
||||
|
||||
WebGPU allows cross-platform access to the GPU from supported browsers. We utilize [Emscripten](https://emscripten.org/) to compile ggml's WebGPU backend to WebAssembly. Emscripten does not officially support WebGPU bindings yet, but Dawn currently maintains its own WebGPU bindings called emdawnwebgpu.
|
||||
|
||||
Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/src/emdawnwebgpu/) to download or build the emdawnwebgpu package (Note that it might be safer to build the emdawbwebgpu package locally, so that it stays in sync with the version of Dawn you have installed above). When building using CMake, the path to the emdawnwebgpu port file needs to be set with the flag `EMDAWNWEBGPU_DIR`.
|
||||
|
||||
## IBM Z & LinuxONE
|
||||
|
||||
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)
|
||||
|
||||
## Notes about GPU-accelerated backends
|
||||
|
||||
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.
|
||||
|
||||
@@ -23,11 +23,19 @@ The convert script reads the model configuration, tokenizer, tensor names+data a
|
||||
|
||||
The required steps to implement for an HF model are:
|
||||
|
||||
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
|
||||
1. Define the model `ModelBase.register` annotation in a new `TextModel` or `MmprojModel` subclass, example:
|
||||
|
||||
```python
|
||||
@Model.register("MyModelForCausalLM")
|
||||
class MyModel(Model):
|
||||
@ModelBase.register("MyModelForCausalLM")
|
||||
class MyModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.MYMODEL
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```python
|
||||
@ModelBase.register("MyModelForConditionalGeneration")
|
||||
class MyModel(MmprojModel):
|
||||
model_arch = gguf.MODEL_ARCH.MYMODEL
|
||||
```
|
||||
|
||||
@@ -75,28 +83,31 @@ block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
|
||||
|
||||
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
|
||||
- `Model#set_gguf_parameters`
|
||||
- `Model#set_vocab`
|
||||
- `Model#write_tensors`
|
||||
- `TextModel#set_gguf_parameters`
|
||||
- `MmprojModel#set_gguf_parameters`
|
||||
- `ModelBase#set_vocab`
|
||||
- `ModelBase#modify_tensors`
|
||||
|
||||
NOTE: Tensor names must end with `.weight` or `.bias` suffixes, that is the convention and several tools like `quantize` expect this to proceed the weights.
|
||||
|
||||
### 2. Define the model architecture in `llama.cpp`
|
||||
|
||||
The model params and tensors layout must be defined in `llama.cpp`:
|
||||
1. Define a new `llm_arch`
|
||||
2. Define the tensors layout in `LLM_TENSOR_NAMES`
|
||||
3. Add any non-standard metadata in `llm_load_hparams`
|
||||
4. Create the tensors for inference in `llm_load_tensors`
|
||||
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
|
||||
The model params and tensors layout must be defined in `llama.cpp` source files:
|
||||
1. Define a new `llm_arch` enum value in `src/llama-arch.h`.
|
||||
2. In `src/llama-arch.cpp`:
|
||||
- Add the architecture name to the `LLM_ARCH_NAMES` map.
|
||||
- Add the tensor mappings to the `LLM_TENSOR_NAMES` map.
|
||||
3. Add any non-standard metadata loading in the `llama_model_loader` constructor in `src/llama-model-loader.cpp`.
|
||||
4. If the model has a RoPE operation, add a case for the architecture in `llama_model_rope_type` function in `src/llama-model.cpp`.
|
||||
|
||||
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
|
||||
|
||||
### 3. Build the GGML graph implementation
|
||||
|
||||
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
|
||||
|
||||
Have a look at existing implementations like `build_llama`, `build_dbrx` or `build_bert`.
|
||||
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `src/llama-model.cpp`.
|
||||
Create a new struct that inherits from `llm_graph_context` and implement the graph-building logic in its constructor.
|
||||
Have a look at existing implementations like `llm_build_llama`, `llm_build_dbrx` or `llm_build_bert`.
|
||||
Then, in the `llama_model::build_graph` method, add a case for your architecture to instantiate your new graph-building struct.
|
||||
|
||||
Some `ggml` backends do not support all operations. Backend implementations can be added in a separate PR.
|
||||
|
||||
|
||||
@@ -25,6 +25,9 @@ Additionally, there the following images, similar to the above:
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:full-vulkan`: Same as `full` but compiled with Vulkan support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:light-vulkan`: Same as `light` but compiled with Vulkan support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggml-org/llama.cpp:server-vulkan`: Same as `server` but compiled with Vulkan support. (platforms: `linux/amd64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
|
||||
|
||||
@@ -107,7 +110,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `MUSA_VERSION` set to `rc4.0.1`
|
||||
- `MUSA_VERSION` set to `rc4.2.0`
|
||||
|
||||
The resulting images, are essentially the same as the non-MUSA images:
|
||||
|
||||
|
||||
@@ -97,6 +97,9 @@ NOTE: some models may require large context window, for example: `-c 8192`
|
||||
# Qwen2-Audio and SeaLLM-Audio
|
||||
# note: no pre-quantized GGUF this model, as they have very poor result
|
||||
# ref: https://github.com/ggml-org/llama.cpp/pull/13760
|
||||
|
||||
# Mistral's Voxtral
|
||||
(tool_name) -hf ggml-org/Voxtral-Mini-3B-2507-GGUF
|
||||
```
|
||||
|
||||
**Mixed modalities**:
|
||||
|
||||
102
docs/ops.md
Normal file
102
docs/ops.md
Normal file
@@ -0,0 +1,102 @@
|
||||
# GGML Operations
|
||||
|
||||
List of GGML operations and backend support status.
|
||||
|
||||
## How to add a backend to this table:
|
||||
|
||||
1. Run `test-backend-ops support --output csv` with your backend name and redirect output to a csv file in `docs/ops/` (e.g., `docs/ops/CUDA.csv`)
|
||||
2. Regenerate `/docs/ops.md` via `./scripts/create_ops_docs.py`
|
||||
|
||||
Legend:
|
||||
- ✅ Fully supported by this backend
|
||||
- 🟡 Partially supported by this backend
|
||||
- ❌ Not supported by this backend
|
||||
|
||||
| Operation | BLAS | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|
||||
|-----------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ADD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| CONCAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| CONT | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| CONV_2D | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
|
||||
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DIV | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| DUP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
|
||||
| ELU | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| EXP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
|
||||
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| GELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
|
||||
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| HARDSIGMOID | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| LOG | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
|
||||
| NEG | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| REGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| RELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| REPEAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
|
||||
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
|
||||
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROLL | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
|
||||
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
|
||||
| SCALE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SET | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SGN | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| SILU_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
|
||||
| SIN | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
|
||||
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
|
||||
| SQR | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
|
||||
| SQRT | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
|
||||
| SSM_CONV | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
|
||||
| SUM | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
|
||||
| TANH | ❌ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
||||
| UPSCALE | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
|
||||
8133
docs/ops/BLAS.csv
Normal file
8133
docs/ops/BLAS.csv
Normal file
File diff suppressed because it is too large
Load Diff
7349
docs/ops/CPU.csv
Normal file
7349
docs/ops/CPU.csv
Normal file
File diff suppressed because it is too large
Load Diff
7349
docs/ops/CUDA.csv
Normal file
7349
docs/ops/CUDA.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/Metal.csv
Normal file
8133
docs/ops/Metal.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/OpenCL.csv
Normal file
8133
docs/ops/OpenCL.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/SYCL.csv
Normal file
8133
docs/ops/SYCL.csv
Normal file
File diff suppressed because it is too large
Load Diff
8133
docs/ops/Vulkan.csv
Normal file
8133
docs/ops/Vulkan.csv
Normal file
File diff suppressed because it is too large
Load Diff
@@ -33,6 +33,7 @@ else()
|
||||
add_subdirectory(speculative-simple)
|
||||
add_subdirectory(gen-docs)
|
||||
add_subdirectory(training)
|
||||
add_subdirectory(diffusion)
|
||||
if (NOT GGML_BACKEND_DL)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
# these examples use the backends directly and cannot be built with dynamic loading
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
AI_NAME="${AI_NAME:-Miku}"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
#
|
||||
# Temporary script - will be removed in the future
|
||||
|
||||
5
examples/diffusion/CMakeLists.txt
Normal file
5
examples/diffusion/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET llama-diffusion-cli)
|
||||
add_executable(${TARGET} diffusion-cli.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_17)
|
||||
507
examples/diffusion/diffusion-cli.cpp
Normal file
507
examples/diffusion/diffusion-cli.cpp
Normal file
@@ -0,0 +1,507 @@
|
||||
#include "arg.h"
|
||||
#include "chat.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <limits.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
typedef bool (*diffusion_step_callback_t)(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data);
|
||||
|
||||
enum diffusion_alg {
|
||||
DIFFUSION_ALG_ORIGIN = 0,
|
||||
DIFFUSION_ALG_MASKGIT_PLUS = 1,
|
||||
DIFFUSION_ALG_TOPK_MARGIN = 2,
|
||||
DIFFUSION_ALG_ENTROPY = 3,
|
||||
};
|
||||
|
||||
struct diffusion_params {
|
||||
int32_t steps;
|
||||
float eps;
|
||||
float temperature;
|
||||
float top_p;
|
||||
int32_t top_k;
|
||||
llama_token mask_token_id;
|
||||
enum diffusion_alg algorithm;
|
||||
float alg_temp;
|
||||
diffusion_step_callback_t step_callback;
|
||||
void * step_callback_user_data;
|
||||
int32_t seed;
|
||||
};
|
||||
|
||||
|
||||
static diffusion_params diffusion_default_params() {
|
||||
diffusion_params params = {};
|
||||
params.steps = 64;
|
||||
params.eps = 1e-3f;
|
||||
params.temperature = 0.2f;
|
||||
params.top_p = 0.95f;
|
||||
params.top_k = 0;
|
||||
params.mask_token_id = LLAMA_TOKEN_NULL;
|
||||
params.algorithm = DIFFUSION_ALG_ORIGIN;
|
||||
params.alg_temp = 0.0f;
|
||||
params.step_callback = nullptr;
|
||||
params.step_callback_user_data = nullptr;
|
||||
params.seed = 0;
|
||||
return params;
|
||||
}
|
||||
|
||||
static void diffusion_generate(llama_context * ctx,
|
||||
const llama_token * input_tokens,
|
||||
llama_token * output_tokens,
|
||||
int32_t n_input,
|
||||
int32_t max_length,
|
||||
struct diffusion_params params,
|
||||
int32_t & n_generated) {
|
||||
|
||||
n_generated = 0;
|
||||
if (!ctx || !input_tokens || !output_tokens || n_input <= 0 || max_length <= n_input) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_model * model = llama_get_model(ctx);
|
||||
|
||||
// Initialize with input and pad with mask tokens
|
||||
std::copy(input_tokens, input_tokens + n_input, output_tokens);
|
||||
std::fill(output_tokens + n_input, output_tokens + max_length, params.mask_token_id);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
|
||||
std::vector<float> timesteps(params.steps + 1);
|
||||
for (int32_t i = 0; i <= params.steps; i++) {
|
||||
timesteps[i] = 1.0f - (float) i / params.steps * (1.0f - params.eps);
|
||||
}
|
||||
|
||||
llama_set_causal_attn(ctx, false);
|
||||
|
||||
int32_t n_vocab = llama_vocab_n_tokens(llama_model_get_vocab(model));
|
||||
|
||||
std::vector<llama_token_data> candidates(n_vocab);
|
||||
|
||||
std::vector<llama_token_data> conf_candidates;
|
||||
conf_candidates.reserve(max_length);
|
||||
|
||||
std::vector<int32_t> mask_positions;
|
||||
mask_positions.reserve(max_length);
|
||||
|
||||
struct llama_sampler * sampler = llama_sampler_chain_init(llama_sampler_chain_default_params());
|
||||
if (params.top_k > 0) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_k(params.top_k));
|
||||
}
|
||||
if (params.top_p < 1.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_top_p(params.top_p, 1));
|
||||
}
|
||||
if (params.temperature > 0.0f) {
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_temp(params.temperature));
|
||||
}
|
||||
llama_sampler_chain_add(sampler, llama_sampler_init_dist(params.seed));
|
||||
|
||||
struct llama_sampler * dist_sampler = llama_sampler_init_dist(params.seed);
|
||||
|
||||
llama_batch batch = llama_batch_init(max_length, 0, 1);
|
||||
batch.n_tokens = max_length;
|
||||
|
||||
int64_t total_sampling_time = 0;
|
||||
int64_t total_time = 0;
|
||||
|
||||
int64_t time_start = ggml_time_us();
|
||||
for (int32_t step = 0; step < params.steps; step++) {
|
||||
if (params.step_callback) {
|
||||
if (!params.step_callback(step, params.steps, output_tokens, max_length, params.step_callback_user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
batch.token[i] = output_tokens[i];
|
||||
batch.pos[i] = i;
|
||||
batch.n_seq_id[i] = 1;
|
||||
batch.seq_id[i][0] = 0;
|
||||
batch.logits[i] = 1;
|
||||
}
|
||||
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: failed to decode at step %d, ret = %d\n", __func__, step, ret);
|
||||
break;
|
||||
}
|
||||
|
||||
float * raw_logits = llama_get_logits(ctx);
|
||||
if (!raw_logits) {
|
||||
LOG_ERR("%s: failed to get logits at step %d\n", __func__, step);
|
||||
break;
|
||||
}
|
||||
|
||||
auto get_logits_for_pos = [&](int32_t pos) -> const float * {
|
||||
return pos == 0 ? raw_logits : raw_logits + (pos - 1) * n_vocab;
|
||||
};
|
||||
|
||||
int64_t time_start_sampling = ggml_time_us();
|
||||
|
||||
mask_positions.clear();
|
||||
for (int32_t i = 0; i < max_length; i++) {
|
||||
if (output_tokens[i] == params.mask_token_id) {
|
||||
mask_positions.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
if (mask_positions.empty()) {
|
||||
break;
|
||||
}
|
||||
|
||||
float t = timesteps[step];
|
||||
float s = timesteps[step + 1];
|
||||
|
||||
if (params.algorithm == DIFFUSION_ALG_ORIGIN) {
|
||||
float p_transfer = (step < params.steps - 1) ? (1.0f - s / t) : 1.0f;
|
||||
|
||||
for (int32_t pos : mask_positions) {
|
||||
if (std::uniform_real_distribution<float>(0.0f, 1.0f)(rng) < p_transfer) {
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].id = token_id;
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ (size_t) n_vocab, // Reset size to full vocab
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
output_tokens[pos] = cur_p.data[cur_p.selected].id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
std::vector<std::pair<float, int32_t>> confidences;
|
||||
std::vector<llama_token> sampled_tokens(mask_positions.size());
|
||||
|
||||
for (size_t i = 0; i < mask_positions.size(); i++) {
|
||||
int32_t pos = mask_positions[i];
|
||||
const float * pos_logits = get_logits_for_pos(pos);
|
||||
|
||||
for (int32_t token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates[token_id].logit = pos_logits[token_id];
|
||||
candidates[token_id].p = 0.0f;
|
||||
candidates[token_id].id = token_id;
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = {
|
||||
/* .data = */ candidates.data(),
|
||||
/* .size = */ candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
llama_sampler_apply(sampler, &cur_p);
|
||||
|
||||
llama_token sampled_token = cur_p.data[cur_p.selected].id;
|
||||
|
||||
float confidence = 0.0f;
|
||||
if (params.algorithm == DIFFUSION_ALG_ENTROPY) {
|
||||
const float epsilon = 1e-10f;
|
||||
for (size_t j = 0; j < cur_p.size; j++) {
|
||||
float prob = cur_p.data[j].p;
|
||||
confidence += prob * logf(prob + epsilon);
|
||||
}
|
||||
} else if (params.algorithm == DIFFUSION_ALG_TOPK_MARGIN) {
|
||||
confidence = cur_p.data[0].p - cur_p.data[1].p;
|
||||
} else {
|
||||
confidence = cur_p.data[cur_p.selected].p;
|
||||
}
|
||||
|
||||
sampled_tokens[i] = sampled_token;
|
||||
confidences.emplace_back(confidence, i);
|
||||
}
|
||||
|
||||
int32_t num_transfer =
|
||||
(step < params.steps - 1) ? (int32_t) (mask_positions.size() * (1.0f - s / t)) : mask_positions.size();
|
||||
|
||||
if (num_transfer > 0) {
|
||||
if (params.alg_temp == 0.0f) {
|
||||
std::partial_sort(confidences.begin(), confidences.begin() + num_transfer, confidences.end(),
|
||||
[](const std::pair<float, int32_t> & a, const std::pair<float, int32_t> & b) {
|
||||
if (a.first != b.first) {
|
||||
return a.first > b.first;
|
||||
}
|
||||
return a.second < b.second;
|
||||
});
|
||||
} else {
|
||||
conf_candidates.clear();
|
||||
|
||||
for (int32_t pos = 0; pos < max_length; pos++) {
|
||||
float conf_logit = -std::numeric_limits<float>::infinity();
|
||||
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
size_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
conf_logit = confidences[mask_idx].first / params.alg_temp; // Apply temperature scaling
|
||||
}
|
||||
|
||||
conf_candidates.emplace_back(llama_token_data{ pos, conf_logit, 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array conf_array = {
|
||||
/* .data = */ conf_candidates.data(),
|
||||
/* .size = */ conf_candidates.size(),
|
||||
/* .selected = */ -1,
|
||||
/* .sorted = */ false,
|
||||
};
|
||||
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
// Apply distribution sampler to get selected index
|
||||
llama_sampler_apply(dist_sampler, &conf_array);
|
||||
int selected_idx = conf_array.selected;
|
||||
confidences[i].second = conf_candidates[selected_idx].id;
|
||||
|
||||
conf_candidates[selected_idx].p = 0.0f;
|
||||
conf_array.selected = -1;
|
||||
}
|
||||
}
|
||||
|
||||
if (params.alg_temp == 0.0f) {
|
||||
// Deterministic - use confidence order
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t mask_idx = confidences[i].second;
|
||||
int32_t pos = mask_positions[mask_idx];
|
||||
llama_token token = sampled_tokens[mask_idx];
|
||||
output_tokens[pos] = token;
|
||||
}
|
||||
} else {
|
||||
for (int32_t i = 0; i < num_transfer; i++) {
|
||||
int32_t pos = confidences[i].second;
|
||||
auto it = std::find(mask_positions.begin(), mask_positions.end(), pos);
|
||||
if (it != mask_positions.end()) {
|
||||
int32_t mask_idx = std::distance(mask_positions.begin(), it);
|
||||
output_tokens[pos] = sampled_tokens[mask_idx];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
int64_t time_end_sampling = ggml_time_us();
|
||||
total_sampling_time += time_end_sampling - time_start_sampling;
|
||||
}
|
||||
int64_t time_end = ggml_time_us();
|
||||
total_time += time_end - time_start;
|
||||
|
||||
LOG_INF("\ntotal time: %0.2fms, time per step: %0.2fms, sampling time per step: %0.2fms\n",
|
||||
total_time / 1000.0, total_time / 1000.0 / params.steps, total_sampling_time / 1000.0 / params.steps);
|
||||
|
||||
|
||||
llama_batch_free(batch);
|
||||
llama_sampler_free(sampler);
|
||||
llama_sampler_free(dist_sampler);
|
||||
|
||||
n_generated = max_length;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
static std::string format_input_text(const std::string & prompt, bool use_chat_template, llama_model * model) {
|
||||
if (!use_chat_template) {
|
||||
return prompt;
|
||||
}
|
||||
|
||||
auto chat_templates = common_chat_templates_init(model, "");
|
||||
|
||||
common_chat_templates_inputs inputs;
|
||||
common_chat_msg user_msg;
|
||||
user_msg.role = "user";
|
||||
user_msg.content = prompt;
|
||||
inputs.add_generation_prompt = true;
|
||||
inputs.messages.push_back(user_msg);
|
||||
|
||||
auto result = common_chat_templates_apply(chat_templates.get(), inputs);
|
||||
|
||||
return result.prompt;
|
||||
}
|
||||
|
||||
struct callback_data {
|
||||
const common_params_diffusion * diff_params;
|
||||
const llama_vocab * vocab;
|
||||
int32_t n_input;
|
||||
};
|
||||
|
||||
static bool diffusion_step_callback(int32_t step,
|
||||
int32_t total_steps,
|
||||
const llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
void * user_data) {
|
||||
(void)user_data;
|
||||
|
||||
callback_data * data = static_cast<callback_data *>(user_data);
|
||||
|
||||
auto print_progress_bar = [](int32_t step, int32_t total_steps) {
|
||||
int progress_percent = (step * 100) / total_steps;
|
||||
int progress_bars = (step * 50) / total_steps;
|
||||
LOG_INF("\rdiffusion step: %d/%d [%s%s] %d%%",
|
||||
step,
|
||||
total_steps,
|
||||
std::string(progress_bars, '=').c_str(),
|
||||
std::string(50 - progress_bars, ' ').c_str(),
|
||||
progress_percent);
|
||||
};
|
||||
|
||||
if (data->diff_params->visual_mode) {
|
||||
// Visual mode: clear
|
||||
LOG_INF("\033[2J\033[H"); // Clear screen and move cursor to top-left
|
||||
|
||||
print_progress_bar(step, total_steps);
|
||||
|
||||
LOG_INF("\n");
|
||||
|
||||
std::string current_text = " ";
|
||||
|
||||
for (int32_t i = data->n_input; i < n_tokens; i++) {
|
||||
std::string token_str;
|
||||
if (tokens[i] != llama_vocab_mask(data->vocab)) {
|
||||
char piece[256];
|
||||
int n_chars = llama_token_to_piece(data->vocab, tokens[i], piece, sizeof(piece), 0, false);
|
||||
if (n_chars > 0) {
|
||||
piece[n_chars] = '\0';
|
||||
token_str = piece;
|
||||
}
|
||||
} else {
|
||||
token_str = " ";
|
||||
}
|
||||
|
||||
current_text += token_str;
|
||||
}
|
||||
|
||||
LOG_INF("%s\n", current_text.c_str());
|
||||
} else {
|
||||
print_progress_bar(step, total_steps);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DIFFUSION)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * alg_names[] = { "ORIGIN", "MASKGIT_PLUS", "TOPK_MARGIN", "ENTROPY" };
|
||||
const char * alg_name = (params.diffusion.algorithm >= 0 && params.diffusion.algorithm <= 3) ?
|
||||
alg_names[params.diffusion.algorithm] :
|
||||
"UNKNOWN";
|
||||
|
||||
common_init();
|
||||
llama_backend_init();
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = params.n_gpu_layers;
|
||||
model_params.devices = params.devices.data();
|
||||
model_params.use_mmap = params.use_mmap;
|
||||
model_params.use_mlock = params.use_mlock;
|
||||
model_params.check_tensors = params.check_tensors;
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
if (!model) {
|
||||
LOG_ERR("error: failed to load model '%s'\n", params.model.path.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = params.n_ctx;
|
||||
ctx_params.n_batch = params.n_batch;
|
||||
ctx_params.n_ubatch = params.n_ubatch;
|
||||
ctx_params.flash_attn = params.flash_attn;
|
||||
ctx_params.no_perf = params.no_perf;
|
||||
ctx_params.type_k = params.cache_type_k;
|
||||
ctx_params.type_v = params.cache_type_v;
|
||||
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (!ctx) {
|
||||
LOG_ERR("error: failed to create context\n");
|
||||
llama_model_free(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_set_n_threads(ctx, params.cpuparams.n_threads, params.cpuparams_batch.n_threads);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
std::string formatted_prompt = format_input_text(params.prompt, params.enable_chat_template, model);
|
||||
|
||||
std::vector<llama_token> input_tokens = common_tokenize(vocab, formatted_prompt,
|
||||
/*add special tokens*/ true,
|
||||
/*parse special*/ true);
|
||||
int n_input = input_tokens.size();
|
||||
|
||||
if (n_input >= params.n_ctx) {
|
||||
LOG_ERR("error: input too long (%d tokens), max context is %d\n", n_input, params.n_ctx);
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
struct diffusion_params ldiff_params = diffusion_default_params();
|
||||
ldiff_params.steps = params.diffusion.steps;
|
||||
ldiff_params.eps = params.diffusion.eps;
|
||||
ldiff_params.temperature = params.sampling.temp;
|
||||
ldiff_params.top_p = params.sampling.top_p;
|
||||
ldiff_params.top_k = params.sampling.top_k;
|
||||
ldiff_params.algorithm = static_cast<enum diffusion_alg>(params.diffusion.algorithm);
|
||||
ldiff_params.alg_temp = params.diffusion.alg_temp;
|
||||
ldiff_params.seed = params.sampling.seed;
|
||||
|
||||
llama_token mask_token_id = llama_vocab_mask(vocab);
|
||||
GGML_ASSERT(mask_token_id != LLAMA_TOKEN_NULL);
|
||||
|
||||
LOG_INF("diffusion_params: - %-25s llama_token = %d\n", "mask_token_id", mask_token_id);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d\n", "steps", params.diffusion.steps);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.6f\n", "eps", params.diffusion.eps);
|
||||
LOG_INF("diffusion_params: - %-25s u32 = %d (%s)\n", "algorithm", params.diffusion.algorithm,
|
||||
alg_name);
|
||||
LOG_INF("diffusion_params: - %-25s f32 = %.3f\n", "alg_temp", params.diffusion.alg_temp);
|
||||
|
||||
ldiff_params.mask_token_id = mask_token_id;
|
||||
|
||||
callback_data cb_data = { ¶ms.diffusion, vocab, n_input };
|
||||
|
||||
ldiff_params.step_callback = diffusion_step_callback;
|
||||
ldiff_params.step_callback_user_data = &cb_data;
|
||||
|
||||
int32_t n_generated = 0;
|
||||
|
||||
std::vector<llama_token> output_tokens(params.n_ubatch);
|
||||
diffusion_generate(ctx, input_tokens.data(), output_tokens.data(), n_input, params.n_ubatch,
|
||||
ldiff_params, n_generated);
|
||||
|
||||
if (n_generated > 0) {
|
||||
if (params.diffusion.visual_mode) {
|
||||
//clear screen and move cursor to top-left
|
||||
LOG_INF("\033[2J\033[H");
|
||||
}
|
||||
output_tokens.erase(output_tokens.begin(), output_tokens.begin() + n_input);
|
||||
std::string output_data = common_detokenize(vocab, output_tokens, false);
|
||||
LOG_INF("\n%s\n", output_data.c_str());
|
||||
} else {
|
||||
LOG_INF("Error: diffusion generation failed\n");
|
||||
}
|
||||
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
const int n_ctx_train = llama_model_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
|
||||
|
||||
|
||||
@@ -55,6 +55,8 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
@@ -134,6 +136,11 @@ static bool run(llama_context * ctx, const common_params & params) {
|
||||
|
||||
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (tokens.empty()) {
|
||||
LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
|
||||
LOG_ERR("%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
set -e
|
||||
|
||||
MODEL=./models/ggml-vicuna-13b-1.1-q4_0.bin
|
||||
|
||||
@@ -184,6 +184,9 @@ int main(int argc, char ** argv) {
|
||||
// extra text to insert in each client's prompt in order to make it larger
|
||||
const int32_t n_junk = std::max(1, params.n_junk);
|
||||
|
||||
// signed seed, use negative values to indicate different seeds for the different clients
|
||||
const int32_t & sseed = params.sampling.seed;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -219,11 +222,21 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (sseed >= 0) {
|
||||
LOG_INF("%s: initializing all samplers with the same RNG seed: %d (use a negative seed to have different seeds)\n", __func__, sseed);
|
||||
} else {
|
||||
LOG_INF("%s: initializing samplers with different RNG seeds, starting from %d\n", __func__, sseed);
|
||||
}
|
||||
|
||||
std::vector<client> clients(n_clients);
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
auto & client = clients[i];
|
||||
client.id = i;
|
||||
client.smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
if (sseed < 0) {
|
||||
params.sampling.seed--;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<llama_token> tokens_system;
|
||||
@@ -345,7 +358,7 @@ int main(int argc, char ** argv) {
|
||||
client.n_decoded = 0;
|
||||
client.i_batch = batch.n_tokens - 1;
|
||||
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur);
|
||||
LOG_INF("\033[31mClient %3d, seq %4d, junk = %4d, prompt = %d, started decoding ...\033[0m\n", client.id, client.seq_id, n_junk_cur, client.n_prompt);
|
||||
|
||||
g_seq_id += 1;
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -e
|
||||
|
||||
|
||||
@@ -113,15 +113,16 @@ int main(int argc, char ** argv) {
|
||||
while (true) {
|
||||
// check if we have enough space in the context to evaluate this batch
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0);
|
||||
int n_ctx_used = llama_memory_seq_pos_max(llama_get_memory(ctx), 0) + 1;
|
||||
if (n_ctx_used + batch.n_tokens > n_ctx) {
|
||||
printf("\033[0m\n");
|
||||
fprintf(stderr, "context size exceeded\n");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch)) {
|
||||
GGML_ABORT("failed to decode\n");
|
||||
int ret = llama_decode(ctx, batch);
|
||||
if (ret != 0) {
|
||||
GGML_ABORT("failed to decode, ret = %d\n", ret);
|
||||
}
|
||||
|
||||
// sample the next token
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
|
||||
#!/usr/bin/env bash
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#!/bin/bash
|
||||
#!/usr/bin/env bash
|
||||
#
|
||||
# ./examples/ts-type-to-grammar.sh "{a:string,b:string,c?:string}"
|
||||
# python examples/json_schema_to_grammar.py https://json.schemastore.org/tsconfig.json
|
||||
|
||||
@@ -131,6 +131,7 @@ option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
option(GGML_NNPA "ggml: enable nnpa" OFF) # temp disabled by default, see: https://github.com/ggml-org/llama.cpp/issues/14877
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
@@ -173,6 +174,8 @@ option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental,
|
||||
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
|
||||
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
|
||||
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
|
||||
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
|
||||
option(GGML_MUSA_MUDNN_COPY "ggml: enable muDNN for accelerated copy" OFF)
|
||||
option(GGML_VULKAN "ggml: use Vulkan" OFF)
|
||||
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
|
||||
option(GGML_VULKAN_DEBUG "ggml: enable Vulkan debug output" OFF)
|
||||
@@ -180,7 +183,8 @@ option(GGML_VULKAN_MEMORY_DEBUG "ggml: enable Vulkan memory debug ou
|
||||
option(GGML_VULKAN_SHADER_DEBUG_INFO "ggml: enable Vulkan shader debug info" OFF)
|
||||
option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation" OFF)
|
||||
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
|
||||
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
|
||||
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
|
||||
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
@@ -265,12 +269,12 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-cann.h
|
||||
include/ggml-cpp.h
|
||||
include/ggml-cuda.h
|
||||
include/ggml-kompute.h
|
||||
include/ggml-opt.h
|
||||
include/ggml-metal.h
|
||||
include/ggml-rpc.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h
|
||||
include/ggml-webgpu.h
|
||||
include/gguf.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
@@ -359,6 +363,13 @@ write_basic_package_version_file(
|
||||
VERSION ${GGML_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
target_compile_definitions(ggml-base PRIVATE
|
||||
GGML_VERSION="${GGML_INSTALL_VERSION}"
|
||||
GGML_COMMIT="${GGML_BUILD_COMMIT}"
|
||||
)
|
||||
message(STATUS "ggml version: ${GGML_INSTALL_VERSION}")
|
||||
message(STATUS "ggml commit: ${GGML_BUILD_COMMIT}")
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/ggml-config.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/ggml-version.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/ggml)
|
||||
|
||||
@@ -1,152 +1,189 @@
|
||||
@PACKAGE_INIT@
|
||||
|
||||
@GGML_VARIABLES_EXPANDED@
|
||||
|
||||
@PACKAGE_INIT@
|
||||
|
||||
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
# Find all dependencies before creating any target.
|
||||
include(CMakeFindDependencyMacro)
|
||||
find_dependency(Threads)
|
||||
if (NOT GGML_SHARED_LIB)
|
||||
set(GGML_CPU_INTERFACE_LINK_LIBRARIES "")
|
||||
set(GGML_CPU_INTERFACE_LINK_OPTIONS "")
|
||||
|
||||
if (APPLE AND GGML_ACCELERATE)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
|
||||
find_library(ACCELERATE_FRAMEWORK Accelerate)
|
||||
if(NOT ACCELERATE_FRAMEWORK)
|
||||
set(${CMAKE_FIND_PACKAGE_NAME}_FOUND 0)
|
||||
return()
|
||||
endif()
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${ACCELERATE_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP REQUIRED)
|
||||
if (GGML_OPENMP_ENABLED)
|
||||
find_dependency(OpenMP)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
endif()
|
||||
|
||||
if (GGML_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
find_library(memkind memkind)
|
||||
if(NOT memkind)
|
||||
set(${CMAKE_FIND_PACKAGE_NAME}_FOUND 0)
|
||||
return()
|
||||
endif()
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES memkind)
|
||||
endif()
|
||||
|
||||
if (GGML_BLAS)
|
||||
find_package(BLAS REQUIRED)
|
||||
find_dependency(BLAS)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES ${BLAS_LIBRARIES})
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_OPTIONS ${BLAS_LINKER_FLAGS})
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA)
|
||||
find_package(CUDAToolkit REQUIRED)
|
||||
set(GGML_CUDA_INTERFACE_LINK_LIBRARIES "")
|
||||
find_dependency(CUDAToolkit)
|
||||
if (GGML_STATIC)
|
||||
list(APPEND GGML_CUDA_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:CUDA::cudart_static>)
|
||||
if (WIN32)
|
||||
list(APPEND GGML_CUDA_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:CUDA::cublas> $<LINK_ONLY:CUDA::cublasLt>)
|
||||
else()
|
||||
list(APPEND GGML_CUDA_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:CUDA::cublas_static> $<LINK_ONLY:CUDA::cublasLt_static>)
|
||||
endif()
|
||||
endif()
|
||||
if (NOT GGML_CUDA_NO_VMM)
|
||||
list(APPEND GGML_CUDA_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:CUDA::cuda_driver>)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
find_library(FOUNDATION_LIBRARY Foundation)
|
||||
find_library(METAL_FRAMEWORK Metal)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit)
|
||||
if(NOT FOUNDATION_LIBRARY OR NOT METAL_FRAMEWORK OR NOT METALKIT_FRAMEWORK)
|
||||
set(${CMAKE_FIND_PACKAGE_NAME}_FOUND 0)
|
||||
return()
|
||||
endif()
|
||||
set(GGML_METAL_INTERFACE_LINK_LIBRARIES
|
||||
${FOUNDATION_LIBRARY} ${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
endif()
|
||||
|
||||
list(APPEND GGML_METAL_INTERFACE_LINK_LIBRARIES
|
||||
${FOUNDATION_LIBRARY} ${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
|
||||
if (GGML_OPENCL)
|
||||
find_dependency(OpenCL)
|
||||
set(GGML_OPENCL_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:OpenCL::OpenCL>)
|
||||
endif()
|
||||
|
||||
if (GGML_VULKAN)
|
||||
find_package(Vulkan REQUIRED)
|
||||
list(APPEND GGML_VULKAN_INTERFACE_LINK_LIBRARIES Vulkan::Vulkan)
|
||||
find_dependency(Vulkan)
|
||||
set(GGML_VULKAN_INTERFACE_LINK_LIBRARIES $<LINK_ONLY:Vulkan::Vulkan>)
|
||||
endif()
|
||||
|
||||
if (GGML_HIP)
|
||||
find_package(hip REQUIRED)
|
||||
find_package(hipblas REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
list(APPEND GGML_HIP_INTERFACE_LINK_LIBRARIES hip::host roc::rocblas roc::hipblas)
|
||||
find_dependency(hip)
|
||||
find_dependency(hipblas)
|
||||
find_dependency(rocblas)
|
||||
set(GGML_HIP_INTERFACE_LINK_LIBRARIES hip::host roc::rocblas roc::hipblas)
|
||||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
set(GGML_SYCL_INTERFACE_LINK_LIBRARIES "")
|
||||
find_package(DNNL)
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES DNNL::dnnl)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
find_dependency(IntelSYCL)
|
||||
find_dependency(MKL)
|
||||
list(APPEND GGML_SYCL_INTERFACE_LINK_LIBRARIES IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
|
||||
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
|
||||
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
if(NOT TARGET ggml::ggml)
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
find_library(GGML_LIBRARY ggml
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
add_library(ggml::ggml UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
IMPORTED_LOCATION "${GGML_LIBRARY}")
|
||||
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
find_library(GGML_BASE_LIBRARY ggml-base
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
add_library(ggml::ggml-base UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::ggml-base
|
||||
PROPERTIES
|
||||
IMPORTED_LOCATION "${GGML_BASE_LIBRARY}")
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set(_ggml_all_targets "")
|
||||
foreach(_ggml_backend ${GGML_AVAILABLE_BACKENDS})
|
||||
string(REPLACE "-" "_" _ggml_backend_pfx "${_ggml_backend}")
|
||||
string(TOUPPER "${_ggml_backend_pfx}" _ggml_backend_pfx)
|
||||
|
||||
find_library(${_ggml_backend_pfx}_LIBRARY ${_ggml_backend}
|
||||
REQUIRED
|
||||
HINTS ${GGML_LIB_DIR}
|
||||
NO_CMAKE_FIND_ROOT_PATH)
|
||||
|
||||
message(STATUS "Found ${${_ggml_backend_pfx}_LIBRARY}")
|
||||
|
||||
add_library(ggml::${_ggml_backend} UNKNOWN IMPORTED)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
INTERFACE_INCLUDE_DIRECTORIES "${GGML_INCLUDE_DIR}"
|
||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||
IMPORTED_LOCATION "${${_ggml_backend_pfx}_LIBRARY}"
|
||||
INTERFACE_COMPILE_FEATURES c_std_90
|
||||
POSITION_INDEPENDENT_CODE ON)
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
string(REGEX MATCH "^ggml-cpu" is_cpu_variant "${_ggml_backend}")
|
||||
if(is_cpu_variant)
|
||||
list(APPEND GGML_CPU_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_CPU_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(GGML_CPU_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${GGML_CPU_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
|
||||
else()
|
||||
list(APPEND ${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES "ggml::ggml-base")
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
INTERFACE_LINK_LIBRARIES "${${_ggml_backend_pfx}_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
if(${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS)
|
||||
set_target_properties(ggml::${_ggml_backend}
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_OPTIONS "${${_ggml_backend_pfx}_INTERFACE_LINK_OPTIONS}")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
list(APPEND _ggml_all_targets ggml::${_ggml_backend})
|
||||
endforeach()
|
||||
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
list(APPEND GGML_INTERFACE_LINK_LIBRARIES ggml::ggml-base "${_ggml_all_targets}")
|
||||
set_target_properties(ggml::ggml
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${GGML_INTERFACE_LINK_LIBRARIES}")
|
||||
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
add_library(ggml::all INTERFACE IMPORTED)
|
||||
set_target_properties(ggml::all
|
||||
PROPERTIES
|
||||
INTERFACE_LINK_LIBRARIES "${_ggml_all_targets}")
|
||||
|
||||
endif()
|
||||
|
||||
check_required_components(ggml)
|
||||
|
||||
@@ -339,7 +339,7 @@ extern "C" {
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
|
||||
@@ -101,6 +101,7 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
@@ -133,6 +134,7 @@ extern "C" {
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
|
||||
@@ -1,50 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_KOMPUTE_MAX_DEVICES 16
|
||||
|
||||
struct ggml_vk_device {
|
||||
int index;
|
||||
int type; // same as VkPhysicalDeviceType
|
||||
size_t heapSize;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
int subgroupSize;
|
||||
uint64_t bufferAlignment;
|
||||
uint64_t maxAlloc;
|
||||
};
|
||||
|
||||
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
||||
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
||||
bool ggml_vk_has_vulkan(void);
|
||||
bool ggml_vk_has_device(void);
|
||||
struct ggml_vk_device ggml_vk_current_device(void);
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
19
ggml/include/ggml-webgpu.h
Normal file
19
ggml/include/ggml-webgpu.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_WEBGPU_NAME "WebGPU"
|
||||
|
||||
// Needed for examples in ggml
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_webgpu_init(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_webgpu_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -314,6 +314,13 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// Function type used in fatal error callbacks
|
||||
typedef void (*ggml_abort_callback_t)(const char * error_message);
|
||||
|
||||
// Set the abort callback (passing null will restore original abort functionality: printing a message to stdout)
|
||||
// Returns the old callback for chaining
|
||||
GGML_API ggml_abort_callback_t ggml_set_abort_callback(ggml_abort_callback_t callback);
|
||||
|
||||
GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
|
||||
GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
|
||||
|
||||
@@ -470,6 +477,7 @@ extern "C" {
|
||||
GGML_OP_TRANSPOSE,
|
||||
GGML_OP_GET_ROWS,
|
||||
GGML_OP_GET_ROWS_BACK,
|
||||
GGML_OP_SET_ROWS,
|
||||
GGML_OP_DIAG,
|
||||
GGML_OP_DIAG_MASK_INF,
|
||||
GGML_OP_DIAG_MASK_ZERO,
|
||||
@@ -481,12 +489,13 @@ extern "C" {
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
GGML_OP_POOL_2D,
|
||||
GGML_OP_POOL_2D_BACK,
|
||||
GGML_OP_UPSCALE, // nearest interpolate
|
||||
GGML_OP_UPSCALE,
|
||||
GGML_OP_PAD,
|
||||
GGML_OP_PAD_REFLECT_1D,
|
||||
GGML_OP_ROLL,
|
||||
@@ -519,6 +528,8 @@ extern "C" {
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
|
||||
GGML_OP_GLU,
|
||||
|
||||
GGML_OP_COUNT,
|
||||
};
|
||||
|
||||
@@ -542,6 +553,16 @@ extern "C" {
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_glu_op {
|
||||
GGML_GLU_OP_REGLU,
|
||||
GGML_GLU_OP_GEGLU,
|
||||
GGML_GLU_OP_SWIGLU,
|
||||
GGML_GLU_OP_GEGLU_ERF,
|
||||
GGML_GLU_OP_GEGLU_QUICK,
|
||||
|
||||
GGML_GLU_OP_COUNT,
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
GGML_OBJECT_TYPE_TENSOR,
|
||||
GGML_OBJECT_TYPE_GRAPH,
|
||||
@@ -627,6 +648,9 @@ extern "C" {
|
||||
|
||||
// misc
|
||||
|
||||
GGML_API const char * ggml_version(void);
|
||||
GGML_API const char * ggml_commit(void);
|
||||
|
||||
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
||||
GGML_API int64_t ggml_time_ms(void);
|
||||
GGML_API int64_t ggml_time_us(void);
|
||||
@@ -657,6 +681,7 @@ extern "C" {
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
|
||||
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||
GGML_API const char * ggml_glu_op_name(enum ggml_glu_op op);
|
||||
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||
|
||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
@@ -687,6 +712,9 @@ extern "C" {
|
||||
// true for tensor that is stored in memory as CxWxHxN and has been permuted to WxHxCxN
|
||||
GGML_API bool ggml_is_contiguous_channels(const struct ggml_tensor * tensor);
|
||||
|
||||
// true if the elements in dimension 0 are contiguous, or there is just 1 block of elements
|
||||
GGML_API bool ggml_is_contiguous_rows(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
||||
@@ -758,6 +786,7 @@ extern "C" {
|
||||
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
||||
|
||||
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_glu_op ggml_get_glu_op(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
@@ -1086,6 +1115,89 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// gated linear unit ops
|
||||
// A: n columns, r rows,
|
||||
// result is n / 2 columns, r rows,
|
||||
// expects gate in second half of row, unless swapped is true
|
||||
GGML_API struct ggml_tensor * ggml_glu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_glu_op op,
|
||||
bool swapped);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_erf(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_erf_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_quick(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_quick_swapped(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// A: n columns, r rows,
|
||||
// B: n columns, r rows,
|
||||
GGML_API struct ggml_tensor * ggml_glu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
enum ggml_glu_op op);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_reglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_swiglu_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_erf_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_geglu_quick_split(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// normalize along rows
|
||||
GGML_API struct ggml_tensor * ggml_norm(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1185,6 +1297,19 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
float s);
|
||||
|
||||
// x = s * a + b
|
||||
GGML_API struct ggml_tensor * ggml_scale_bias(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float s,
|
||||
float b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_scale_bias_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float s,
|
||||
float b);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return modified a
|
||||
GGML_API struct ggml_tensor * ggml_set(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1375,6 +1500,23 @@ extern "C" {
|
||||
struct ggml_tensor * b, // row indices
|
||||
struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
|
||||
|
||||
// a TD [n_embd, ne1, ne2, ne3]
|
||||
// b TS [n_embd, n_rows, ne02, ne03] | ne02 == ne2, ne03 == ne3
|
||||
// c I64 [n_rows, ne11, ne12, 1] | c[i] in [0, ne1)
|
||||
//
|
||||
// undefined behavior if destination rows overlap
|
||||
//
|
||||
// broadcast:
|
||||
// ne2 % ne11 == 0
|
||||
// ne3 % ne12 == 0
|
||||
//
|
||||
// return view(a)
|
||||
GGML_API struct ggml_tensor * ggml_set_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // destination
|
||||
struct ggml_tensor * b, // source
|
||||
struct ggml_tensor * c); // row indices
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_diag(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@@ -1412,8 +1554,14 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// a [ne0, ne01, ne02, ne03]
|
||||
// mask [ne0, ne11, ne12, ne13] | ne11 >= ne01, F16 or F32, optional
|
||||
//
|
||||
// broadcast:
|
||||
// ne02 % ne12 == 0
|
||||
// ne03 % ne13 == 0
|
||||
//
|
||||
// fused soft_max(a*scale + mask*(ALiBi slope))
|
||||
// mask is optional
|
||||
// max_bias = 0.0f for no ALiBi
|
||||
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
||||
struct ggml_context * ctx,
|
||||
@@ -1723,6 +1871,17 @@ extern "C" {
|
||||
struct ggml_tensor * b,
|
||||
int stride);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_2d_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // convolution kernel [KW, KH, IC, OC]
|
||||
struct ggml_tensor * b, // input data [W, H, C, N]
|
||||
int s0, // stride dimension 0
|
||||
int s1, // stride dimension 1
|
||||
int p0, // padding dimension 0
|
||||
int p1, // padding dimension 1
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
enum ggml_op_pool {
|
||||
GGML_OP_POOL_MAX,
|
||||
GGML_OP_POOL_AVG,
|
||||
@@ -1765,6 +1924,12 @@ extern "C" {
|
||||
enum ggml_scale_mode {
|
||||
GGML_SCALE_MODE_NEAREST = 0,
|
||||
GGML_SCALE_MODE_BILINEAR = 1,
|
||||
|
||||
GGML_SCALE_MODE_COUNT
|
||||
};
|
||||
|
||||
enum ggml_scale_flag {
|
||||
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
|
||||
};
|
||||
|
||||
// interpolate
|
||||
@@ -1777,14 +1942,26 @@ extern "C" {
|
||||
|
||||
// interpolate
|
||||
// interpolate scale to specified dimensions
|
||||
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_upscale_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int ne0,
|
||||
int ne1,
|
||||
int ne2,
|
||||
int ne3,
|
||||
enum ggml_scale_mode mode);
|
||||
enum ggml_scale_mode mode),
|
||||
"use ggml_interpolate instead");
|
||||
|
||||
// Up- or downsamples the input to the specified size.
|
||||
// 2D scale modes (eg. bilinear) are applied to the first two dimensions.
|
||||
GGML_API struct ggml_tensor * ggml_interpolate(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3,
|
||||
uint32_t mode); // ggml_scale_mode [ | ggml_scale_flag...]
|
||||
|
||||
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
||||
GGML_API struct ggml_tensor * ggml_pad(
|
||||
@@ -1847,11 +2024,17 @@ extern "C" {
|
||||
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
|
||||
// q: [n_embd_k, n_batch, n_head, 1]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, 1]
|
||||
// v: [n_embd_v, n_kv, n_head_kv, 1] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd_v, n_head, n_batch, 1] !! permuted !!
|
||||
// q: [n_embd_k, n_batch, n_head, ne3 ]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, ne3 ]
|
||||
// v: [n_embd_v, n_kv, n_head_kv, ne3 ] !! not transposed !!
|
||||
// mask: [n_kv, n_batch_pad, ne32, ne33] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
||||
// res: [n_embd_v, n_head, n_batch, ne3 ] !! permuted !!
|
||||
//
|
||||
// broadcast:
|
||||
// n_head % n_head_kv == 0
|
||||
// n_head % ne32 == 0
|
||||
// ne3 % ne33 == 0
|
||||
//
|
||||
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * q,
|
||||
@@ -1890,7 +2073,8 @@ extern "C" {
|
||||
struct ggml_tensor * dt,
|
||||
struct ggml_tensor * A,
|
||||
struct ggml_tensor * B,
|
||||
struct ggml_tensor * C);
|
||||
struct ggml_tensor * C,
|
||||
struct ggml_tensor * ids);
|
||||
|
||||
// partition into non-overlapping windows with padding if needed
|
||||
// example:
|
||||
|
||||
@@ -365,12 +365,12 @@ ggml_add_backend(BLAS)
|
||||
ggml_add_backend(CANN)
|
||||
ggml_add_backend(CUDA)
|
||||
ggml_add_backend(HIP)
|
||||
ggml_add_backend(Kompute)
|
||||
ggml_add_backend(METAL)
|
||||
ggml_add_backend(MUSA)
|
||||
ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
|
||||
@@ -22,21 +22,6 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (a->ne[i] != b->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (a->nb[i] != b->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// ops that return true for this function must not use restrict pointers for their backend implementations
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
|
||||
@@ -45,6 +45,10 @@
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
#include "ggml-webgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
@@ -61,10 +65,6 @@
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
@@ -177,6 +177,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_VULKAN
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
@@ -189,9 +192,6 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_RPC
|
||||
register_backend(ggml_backend_rpc_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
register_backend(ggml_backend_kompute_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CPU
|
||||
register_backend(ggml_backend_cpu_reg());
|
||||
#endif
|
||||
@@ -575,7 +575,6 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
ggml_backend_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_load_best("hip", silent, dir_path);
|
||||
ggml_backend_load_best("kompute", silent, dir_path);
|
||||
ggml_backend_load_best("metal", silent, dir_path);
|
||||
ggml_backend_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
|
||||
@@ -352,21 +352,6 @@ ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
|
||||
|
||||
// backend copy
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (a->ne[i] != b->ne[i]) {
|
||||
return false;
|
||||
}
|
||||
if (a->nb[i] != b->nb[i]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||
|
||||
@@ -662,6 +647,7 @@ struct ggml_backend_sched {
|
||||
// pipeline parallelism support
|
||||
int n_copies;
|
||||
int cur_copy;
|
||||
int next_copy;
|
||||
ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
|
||||
struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
|
||||
int n_graph_inputs;
|
||||
@@ -817,8 +803,9 @@ static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, str
|
||||
}
|
||||
if (sched->debug > 1) {
|
||||
ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
|
||||
GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s] use=%d:", i, ggml_op_name(node->op), node->name,
|
||||
fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node),
|
||||
graph->use_counts[ggml_hash_find(&graph->visited_hash_set, node)]);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
@@ -1447,8 +1434,6 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
}
|
||||
}
|
||||
|
||||
sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
|
||||
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
@@ -1549,10 +1534,10 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
|
||||
if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
|
||||
return false;
|
||||
}
|
||||
@@ -1564,6 +1549,10 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
|
||||
GGML_ASSERT(!sched->is_alloc);
|
||||
|
||||
sched->cur_copy = sched->next_copy;
|
||||
sched->next_copy = (sched->next_copy + 1) % sched->n_copies;
|
||||
|
||||
ggml_backend_sched_split_graph(sched, graph);
|
||||
|
||||
@@ -1604,7 +1593,7 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
// if the graph is not already allocated, always use copy 0 after a synchronization
|
||||
// this ensures that during generation the same copy is used every time,
|
||||
// which avoids changes in the graph that could cause CUDA or other graphs to be disabled
|
||||
sched->cur_copy = 0;
|
||||
sched->next_copy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1826,7 +1815,7 @@ void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
|
||||
ggml_free(copy.ctx_unallocated);
|
||||
}
|
||||
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
|
||||
bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data, struct ggml_tensor * test_node) {
|
||||
struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
|
||||
if (copy.buffer == NULL) {
|
||||
return false;
|
||||
@@ -1837,28 +1826,45 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
if (test_node != nullptr) {
|
||||
// Compute the whole graph and only test the output for a specific tensor
|
||||
ggml_backend_graph_compute(backend1, g1);
|
||||
ggml_backend_graph_compute(backend2, g2);
|
||||
|
||||
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
||||
|
||||
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
||||
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
||||
|
||||
ggml_backend_graph_compute(backend1, &g1v);
|
||||
ggml_backend_graph_compute(backend2, &g2v);
|
||||
|
||||
if (ggml_is_view_op(t1->op)) {
|
||||
continue;
|
||||
int test_node_idx = -1;
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
if (t1 == test_node) {
|
||||
test_node_idx = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(test_node_idx != -1);
|
||||
|
||||
// compare results, calculate rms etc
|
||||
if (!callback(i, t1, t2, user_data)) {
|
||||
break;
|
||||
callback(test_node_idx, g1->nodes[test_node_idx], g2->nodes[test_node_idx], user_data);
|
||||
} else {
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
|
||||
assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
|
||||
|
||||
struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
|
||||
struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
|
||||
|
||||
ggml_backend_graph_compute(backend1, &g1v);
|
||||
ggml_backend_graph_compute(backend2, &g2v);
|
||||
|
||||
if (ggml_is_view_op(t1->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// compare results, calculate rms etc
|
||||
if (!callback(i, t1, t2, user_data)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_graph_copy_free(copy);
|
||||
|
||||
return true;
|
||||
|
||||
@@ -77,6 +77,8 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
for (int i = 0; i < final_dims; i++) {
|
||||
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
|
||||
}
|
||||
size_t elem_offset = offset / ggml_element_size(tensor);
|
||||
acl_storage_len += elem_offset;
|
||||
|
||||
// Reverse ne and stride.
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
@@ -84,7 +86,7 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
|
||||
aclTensor* acl_tensor = aclCreateTensor(
|
||||
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
|
||||
elem_offset, format, &acl_storage_len, 1,
|
||||
tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
|
||||
@@ -65,8 +65,11 @@
|
||||
#include <aclnnop/aclnn_eq_tensor.h>
|
||||
#include <aclnnop/aclnn_gt_scalar.h>
|
||||
#include <aclnnop/aclnn_pow.h>
|
||||
#include <aclnnop/aclnn_grouped_matmul_v2.h>
|
||||
#include <aclnnop/aclnn_grouped_matmul_v3.h>
|
||||
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
|
||||
#include <aclnnop/aclnn_zero.h>
|
||||
#include <aclnnop/aclnn_index_copy.h>
|
||||
#include <aclnnop/aclnn_index_select.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <cmath>
|
||||
@@ -98,7 +101,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclT
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_unary_op(
|
||||
void ggml_cann_op_unary(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
@@ -110,6 +113,42 @@ void ggml_cann_unary_op(
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
}
|
||||
|
||||
void ggml_cann_op_unary_gated(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous_1(dst));
|
||||
const int32_t swapped = ggml_get_op_params_i32(dst, 1);
|
||||
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
aclTensor *acl_src0 = nullptr, *acl_src1 = nullptr;
|
||||
if(src1) {
|
||||
GGML_ASSERT(ggml_is_contiguous_1(src1));
|
||||
GGML_ASSERT(src0->type == src1->type);
|
||||
|
||||
acl_src0 = ggml_cann_create_tensor(src0);
|
||||
acl_src1 = ggml_cann_create_tensor(src1);
|
||||
} else {
|
||||
int64_t ne[] = {src0->ne[0] / 2, src0->ne[1], src0->ne[2], src0->ne[3]};
|
||||
size_t nb[] = {src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]};
|
||||
acl_src0 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, 0);
|
||||
acl_src1 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, ne[0] * ggml_element_size(src0));
|
||||
if (swapped) {
|
||||
std::swap(acl_src0, acl_src1);
|
||||
}
|
||||
}
|
||||
|
||||
unary_op(ctx, acl_src0, acl_dst);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_dst, acl_src1);
|
||||
|
||||
ggml_cann_release_resources(ctx, acl_src0, acl_dst);
|
||||
if(src1)
|
||||
ggml_cann_release_resources(ctx, acl_src1);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Repeats elements of a tensor along each dimension according to the
|
||||
* specified repeat array.
|
||||
@@ -804,10 +843,11 @@ static aclTensor* aclnn_zero(ggml_backend_cann_context& ctx, void* buffer,
|
||||
nb[i] = nb[i - 1] * ne[i - 1];
|
||||
}
|
||||
|
||||
ggml_cann_async_memset(ctx, buffer, n_bytes, 0);
|
||||
aclTensor* zero =
|
||||
ggml_cann_create_tensor(buffer, type, type_size, ne, nb, dims);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, zero);
|
||||
return zero;
|
||||
GGML_UNUSED(n_bytes);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1576,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
|
||||
* @brief Performs index select operation on a 4D tensor using the CANN backend.
|
||||
*
|
||||
* This function extracts slices from the source tensor (`src_buffer`),
|
||||
* index tensor (`index`), and destination tensor (`dst`), and performs an
|
||||
* embedding operation on them. The embedding operation is applied by iterating
|
||||
* over the last two dimensions of the source tensor, creating the necessary
|
||||
* tensors for the source, index, and output, and executing the embedding operation.
|
||||
* This function applies the `IndexSelect` operation along a specific dimension
|
||||
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
|
||||
* It iterates over the last two dimensions of the source tensor, creates the corresponding
|
||||
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
|
||||
* operation for each slice.
|
||||
*
|
||||
* @param ctx The context for CANN backend operations.
|
||||
* @param src_buffer The source buffer holding the data for the source tensor.
|
||||
* @param src_buffer The source buffer containing the 4D input tensor data.
|
||||
* @param src_ne The dimensions of the source tensor.
|
||||
* @param src_nb The strides (byte offsets) of the source tensor.
|
||||
* @param index The index tensor used in the embedding operation.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* @param dst_buffer The destination buffer where the output tensor data will be written.
|
||||
* @param dst_ne The dimensions of the destination tensor.
|
||||
* @param dst_nb The strides (byte offsets) of the destination tensor.
|
||||
* @param index The index tensor specifying the indices to select from the source tensor.
|
||||
* @param type The data type of the source and destination tensors.
|
||||
*/
|
||||
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
|
||||
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
|
||||
ggml_tensor* dst) {
|
||||
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
|
||||
void* src_buffer,int64_t* src_ne, size_t* src_nb,
|
||||
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
|
||||
ggml_tensor* index, ggml_type type) {
|
||||
for (int64_t i = 0; i < src_ne[3]; i++) {
|
||||
for (int64_t j = 0; j < src_ne[2]; j++) {
|
||||
// src
|
||||
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
|
||||
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
|
||||
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
|
||||
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
|
||||
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
|
||||
acl_src_ne, acl_src_nb, 2);
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
src_ne, src_nb, 2);
|
||||
|
||||
// index
|
||||
int64_t acl_index_ne[1] = {index->ne[0]};
|
||||
size_t acl_index_nb[1] = {index->nb[0]};
|
||||
aclTensor* acl_index = ggml_cann_create_tensor(
|
||||
(char*)index->data + i * index->nb[2] + j * index->nb[1],
|
||||
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
|
||||
ggml_cann_type_mapping(index->type), ggml_element_size(index),
|
||||
acl_index_ne, acl_index_nb, 1);
|
||||
index->ne, index->nb, 1);
|
||||
|
||||
// out
|
||||
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
|
||||
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
|
||||
aclTensor* acl_out = ggml_cann_create_tensor(
|
||||
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
|
||||
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
|
||||
acl_out_ne, acl_out_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
|
||||
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
dst_ne, dst_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
|
||||
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
|
||||
*
|
||||
* This function applies the `IndexCopy` operation along a specific dimension of the
|
||||
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
|
||||
* to positions specified by the index tensor (`index`).
|
||||
* It iterates over the last two dimensions of the tensors, creates the corresponding
|
||||
* CANN tensors for source, index, and destination slices, and performs the index copy
|
||||
* operation for each slice.
|
||||
*
|
||||
* @param ctx The context for CANN backend operations.
|
||||
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
|
||||
* @param src_ne The dimensions of the source tensor.
|
||||
* @param src_nb The strides (byte offsets) of the source tensor.
|
||||
* @param dst_buffer The destination buffer where values will be copied to.
|
||||
* @param dst_ne The dimensions of the destination tensor.
|
||||
* @param dst_nb The strides (byte offsets) of the destination tensor.
|
||||
* @param index The index tensor specifying target positions in the destination tensor.
|
||||
* @param type The data type of the source and destination tensors.
|
||||
*/
|
||||
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
|
||||
void* src_buffer,int64_t* src_ne, size_t* src_nb,
|
||||
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
|
||||
ggml_tensor* index, ggml_type type) {
|
||||
for (int64_t i = 0; i < src_ne[3]; i++) {
|
||||
for (int64_t j = 0; j < src_ne[2]; j++) {
|
||||
// src
|
||||
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
|
||||
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
src_ne, src_nb, 2);
|
||||
|
||||
// index
|
||||
aclTensor* acl_index = ggml_cann_create_tensor(
|
||||
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
|
||||
ggml_cann_type_mapping(index->type), ggml_element_size(index),
|
||||
index->ne, index->nb, 1);
|
||||
|
||||
// out
|
||||
aclTensor* acl_out = ggml_cann_create_tensor(
|
||||
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
|
||||
ggml_cann_type_mapping(type), ggml_type_size(type),
|
||||
dst_ne, dst_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
|
||||
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
|
||||
}
|
||||
}
|
||||
@@ -1631,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
|
||||
dst);
|
||||
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
@@ -1649,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
|
||||
src0->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
||||
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
|
||||
src_trans_nb, src1, dst);
|
||||
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
|
||||
break;
|
||||
}
|
||||
@@ -1710,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
|
||||
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
|
||||
dequant_ne, dequant_nb, src1, dst);
|
||||
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
|
||||
dequant_ne, dequant_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
|
||||
ggml_cann_release_resources(ctx, dequant_tensor);
|
||||
break;
|
||||
@@ -1722,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0]; // src
|
||||
ggml_tensor* src1 = dst->src[1]; // index
|
||||
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
break;
|
||||
}
|
||||
case GGML_TYPE_F16: {
|
||||
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
|
||||
ggml_cann_pool_alloc src_buffer_allocator(
|
||||
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
|
||||
void* src_trans_buffer = src_buffer_allocator.get();
|
||||
size_t src_trans_nb[GGML_MAX_DIMS];
|
||||
src_trans_nb[0] = sizeof(uint16_t);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
|
||||
}
|
||||
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
|
||||
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
|
||||
src0->ne, src_trans_nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
|
||||
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
|
||||
dst->data, dst->ne, dst->nb,
|
||||
src1, dst->type);
|
||||
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Repeats elements of a tensor along a specified dimension.
|
||||
*
|
||||
@@ -1783,8 +1911,27 @@ static void ggml_cann_mat_mul_fp(ggml_backend_cann_context& ctx,
|
||||
size_t transpose_nb[] = {bcast_weight_nb[1], bcast_weight_nb[0],
|
||||
bcast_weight_nb[2], bcast_weight_nb[3],
|
||||
bcast_weight_nb[4], bcast_weight_nb[5]};
|
||||
aclTensor* acl_weight_tensor =
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims);
|
||||
aclTensor* acl_weight_tensor;
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (weightToNZ && is_matmul_weight(weight)) {
|
||||
int64_t acl_stride[2] = {1, transpose_ne[1]};
|
||||
|
||||
// Reverse ne.
|
||||
std::reverse(transpose_ne, transpose_ne + n_dims);
|
||||
|
||||
std::vector<int64_t> storageDims = {transpose_ne[0], transpose_ne[1]};
|
||||
|
||||
acl_weight_tensor = aclCreateTensor(
|
||||
transpose_ne, n_dims, ggml_cann_type_mapping(weight->type), acl_stride,
|
||||
0, ACL_FORMAT_FRACTAL_NZ, storageDims.data(), 2, weight->data);
|
||||
} else {
|
||||
acl_weight_tensor =
|
||||
ggml_cann_create_tensor(weight, transpose_ne, transpose_nb, n_dims, ACL_FORMAT_ND);
|
||||
}
|
||||
aclTensor* acl_dst =
|
||||
ggml_cann_create_tensor(dst, bcast_dst_ne, bcast_dst_nb, n_dims);
|
||||
|
||||
@@ -2654,6 +2801,67 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
|
||||
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
|
||||
}
|
||||
|
||||
#ifdef ASCEND_310P
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
|
||||
if (src0->type == GGML_TYPE_F16) {
|
||||
src0_row.type = GGML_TYPE_F32;
|
||||
}
|
||||
|
||||
// src0_row [D, M, 1, 1] weight without permute
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[0] = ori_src0_nb[0];
|
||||
src0_row.nb[1] = ori_src0_nb[1];
|
||||
src0_row.nb[2] = ori_src0_nb[1];
|
||||
src0_row.nb[3] = ori_src0_nb[1];
|
||||
|
||||
// src1_row [D, 1, 1, 1] -> input
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
|
||||
// dst_row [M, 1, 1, 1] -> out
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
|
||||
//create weight for one row
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
|
||||
void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
|
||||
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
|
||||
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
|
||||
|
||||
src0_row.data = src0_tmp_ptr;
|
||||
src1_row.data = src1_tmp_ptr;
|
||||
dst_row.data = dst_tmp_ptr;
|
||||
dst_row.src[0] = &src0_row;
|
||||
dst_row.src[1] = &src1_row;
|
||||
|
||||
ggml_cann_mul_mat(ctx, &dst_row);
|
||||
}
|
||||
}
|
||||
return;
|
||||
#endif
|
||||
|
||||
std::vector<aclTensor*> src0_tensor_vec;
|
||||
std::vector<aclTensor*> src1_tensor_vec;
|
||||
std::vector<aclTensor*> dst_tensor_vec;
|
||||
@@ -2701,9 +2909,9 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
|
||||
}
|
||||
|
||||
size_t GROUP_SIZE = 128;
|
||||
// GroupedMatmulV2 required tensor_list.size < 128
|
||||
// GroupedMatmulV3 required tensor_list.size < 128
|
||||
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
|
||||
// split and call GroupedMatmulV2
|
||||
// split and call GroupedMatmulV3
|
||||
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
|
||||
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
|
||||
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
|
||||
@@ -2713,7 +2921,7 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor*
|
||||
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
|
||||
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV2, src1_tensor_list, src0_tensor_list,
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
|
||||
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
|
||||
|
||||
ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
|
||||
|
||||
@@ -23,6 +23,7 @@
|
||||
#ifndef CANN_ACLNN_OPS
|
||||
#define CANN_ACLNN_OPS
|
||||
|
||||
#include <unordered_set>
|
||||
#include <functional>
|
||||
#include <aclnnop/aclnn_abs.h>
|
||||
#include <aclnnop/aclnn_neg.h>
|
||||
@@ -423,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @details This function retrieves rows from a source tensor src0 according to
|
||||
* the indices provided in another tensor src1 and stores the result in
|
||||
* a destination tensor (\p dst). It supports different data types
|
||||
* including F32, F16, Q4_0, and Q8_0.
|
||||
* a destination tensor (\p dst).
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
* dst->op is `GGML_OP_GET_ROWS`.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Writes specific rows into a tensor at positions specified by indices.
|
||||
*
|
||||
* @details This function copies rows from a source tensor into a destination
|
||||
* tensor (\p dst) at the positions indicated by the indices in another
|
||||
* tensor.
|
||||
*
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the specified rows will be updated.
|
||||
*/
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
*
|
||||
@@ -1020,6 +1031,37 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
|
||||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
|
||||
*
|
||||
* @details Checks whether the given tensor serves as weight parameters in matrix multiplication operations,
|
||||
* typically within neural network layers. The function maintains a static set of canonical weight
|
||||
* naming suffixes from Transformer-based architectures. Uses substring matching to identify weight
|
||||
* tensors even with hierarchical naming patterns.
|
||||
*
|
||||
* @param tensor Pointer to the target ggml_tensor object (const-qualified).
|
||||
*/
|
||||
static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{
|
||||
"output.weight",
|
||||
"attn_q.weight",
|
||||
"attn_k.weight",
|
||||
"attn_v.weight",
|
||||
"attn_output.weight",
|
||||
"ffn_gate.weight",
|
||||
"ffn_up.weight",
|
||||
"ffn_down.weight"
|
||||
};
|
||||
|
||||
for (const auto& suffix : weight_suffixes) {
|
||||
if (name.find(suffix) != std::string::npos) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Applies a element-wise operation to two input tensors using the CANN
|
||||
* backend.
|
||||
@@ -1066,7 +1108,7 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
*/
|
||||
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
@@ -1077,49 +1119,125 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
|
||||
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
|
||||
*
|
||||
* @details This function performs a unary operation on the input tensor using
|
||||
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
|
||||
* context and two ACL tensors (source and destination). Internally, this function
|
||||
* creates ACL representations of the ggml tensors and invokes the unary operation.
|
||||
* The result is stored in the destination tensor `dst`. This utility abstracts the
|
||||
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
|
||||
* @details This function applies a unary operation to the input tensor using
|
||||
* a user-provided lambda or callable `unary_op`. The lambda receives the
|
||||
* CANN backend context and two ACL tensors: the source and the destination.
|
||||
*
|
||||
* @param unary_op A callable that performs the unary operation using CANN APIs.
|
||||
* @param ctx The CANN context used for operations.
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* The source tensor is retrieved from `dst->src[0]`.
|
||||
* Internally, this function handles the conversion from GGML tensors to ACL tensors,
|
||||
* calls the provided unary op, and manages resource cleanup. The input is assumed
|
||||
* to be `dst->src[0]`, and the result is written to `dst`.
|
||||
*
|
||||
* This utility simplifies writing unary op wrappers by abstracting tensor preparation.
|
||||
*
|
||||
* @param unary_op A callable that performs the unary operation using CANN ACL APIs.
|
||||
* @param ctx The CANN context for operation execution.
|
||||
* @param dst The destination ggml_tensor where the result will be stored.
|
||||
* The input tensor is assumed to be `dst->src[0]`.
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY
|
||||
*/
|
||||
void ggml_cann_unary_op(
|
||||
void ggml_cann_op_unary(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
|
||||
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
|
||||
*
|
||||
* This macro defines an inline lambda wrapping a specific ACL operation name,
|
||||
* and passes it to the templated ggml_cann_unary_op function. It simplifies
|
||||
* calling unary ops by hiding the lambda boilerplate.
|
||||
* @details This function performs a gated activation such as GEGLU or ReGLU.
|
||||
* It supports two input modes:
|
||||
*
|
||||
* 1. **Dual input mode**: `dst->src[0]` and `dst->src[1]` are both valid tensors.
|
||||
* These are used directly as the value and gate tensors.
|
||||
*
|
||||
* 2. **Packed input mode**: Only `dst->src[0]` is valid, and it is assumed to
|
||||
* contain a concatenation of value and gate along the first dimension. This tensor
|
||||
* will be split into two equal halves to form the value and gate inputs.
|
||||
*
|
||||
* The function applies a user-provided unary operation (e.g., GELU) to the value tensor,
|
||||
* then multiplies the result in-place with the gate tensor:
|
||||
*
|
||||
* Internally, the lambda will call:
|
||||
* @code
|
||||
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
|
||||
* dst = unary_op(value) * gate;
|
||||
* @endcode
|
||||
*
|
||||
* The `swapped` parameter (from `dst->op_params[1]`) allows flipping the
|
||||
* order of value/gate in the packed input case.
|
||||
*
|
||||
* @param unary_op A callable that performs the unary operation using CANN ACL APIs.
|
||||
* It receives (ctx, acl_value_tensor, acl_output_tensor).
|
||||
* @param ctx The CANN context used for execution.
|
||||
* @param dst The destination ggml_tensor. Source tensors are in `dst->src[0]` and optionally `src[1]`.
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY_GATED
|
||||
*/
|
||||
void ggml_cann_op_unary_gated(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
|
||||
*
|
||||
* This macro wraps the specified ACLNN unary operator name into a lambda expression,
|
||||
* and passes it to `ggml_cann_op_unary`, which handles the common logic for executing
|
||||
* unary ops in the CANN backend.
|
||||
*
|
||||
* Internally, this macro expands to a lambda like:
|
||||
* @code
|
||||
* [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
|
||||
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
|
||||
* };
|
||||
* @endcode
|
||||
*
|
||||
* This lambda is then passed to `ggml_cann_op_unary`, which applies the operation.
|
||||
*
|
||||
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
|
||||
*
|
||||
* @see ggml_cann_unary_op
|
||||
* @see ggml_cann_op_unary
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
|
||||
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_unary_op(lambda, ctx, dst); \
|
||||
ggml_cann_op_unary(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
|
||||
*
|
||||
* This macro wraps the specified ACLNN unary operator name into a lambda expression,
|
||||
* and passes it to `ggml_cann_op_unary_gated`, which handles the common logic for
|
||||
* executing gated unary ops in the CANN backend.
|
||||
*
|
||||
* Internally, this macro expands to a lambda like:
|
||||
* @code
|
||||
* [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
|
||||
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
|
||||
* };
|
||||
* @endcode
|
||||
*
|
||||
* This lambda is then passed to `ggml_cann_op_unary_gated`, which applies the operation.
|
||||
*
|
||||
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
|
||||
*
|
||||
* @see ggml_cann_op_unary_gated
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
@@ -359,7 +359,7 @@ struct ggml_backend_cann_context {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
|
||||
bool async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
}
|
||||
|
||||
@@ -24,6 +24,7 @@
|
||||
|
||||
#include <acl/acl.h>
|
||||
#include <stdarg.h>
|
||||
#include <aclnnop/aclnn_trans_matmul_weight.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
@@ -1115,6 +1116,63 @@ static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static int CreateAclTensorWeight(const void *hostData, const std::vector<int64_t> &shape, void **deviceAddr,
|
||||
aclDataType dataType, aclTensor **tensor)
|
||||
{
|
||||
uint64_t size = 1;
|
||||
for (auto i : shape) {
|
||||
size *= i;
|
||||
}
|
||||
|
||||
const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
|
||||
ACL_CHECK(aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size));
|
||||
|
||||
size *= sizeof(int16_t);
|
||||
|
||||
ACL_CHECK(aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
aclrtMemcpy(*deviceAddr, size, hostData, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
|
||||
std::vector<int64_t> strides(shape.size(), 1);
|
||||
for (int64_t i = shape.size() - 2; i >= 0; i--) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
|
||||
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
|
||||
shape.data(), shape.size(), *deviceAddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void weight_format_to_nz(ggml_tensor *tensor, const void *data, size_t offset) {
|
||||
aclrtStream stream;
|
||||
ACL_CHECK(aclrtCreateStream(&stream));
|
||||
|
||||
std::vector<int64_t> weightTransposedShape = {tensor->ne[1], tensor->ne[0]};
|
||||
void *weightTransposedDeviceAddr = nullptr;
|
||||
aclTensor *weightTransposed = nullptr;
|
||||
CreateAclTensorWeight(data, weightTransposedShape, &weightTransposedDeviceAddr,
|
||||
ggml_cann_type_mapping(tensor->type), &weightTransposed);
|
||||
|
||||
uint64_t workspaceSize = 0;
|
||||
aclOpExecutor *executor;
|
||||
void *workspaceAddr = nullptr;
|
||||
|
||||
// TransMatmulWeight
|
||||
ACL_CHECK(aclnnTransMatmulWeightGetWorkspaceSize(weightTransposed, &workspaceSize, &executor));
|
||||
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
|
||||
if (workspaceSize > 0) {
|
||||
ACL_CHECK(aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
workspaceAddrPtrTrans.reset(workspaceAddr);
|
||||
}
|
||||
ACL_CHECK(aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream));
|
||||
|
||||
size_t size = ggml_nelements(tensor) * ggml_element_size(tensor);
|
||||
|
||||
aclrtMemcpy((char *)tensor->data + offset, size,
|
||||
weightTransposedDeviceAddr, size, ACL_MEMCPY_HOST_TO_DEVICE);
|
||||
ACL_CHECK(aclDestroyTensor(weightTransposed));
|
||||
aclrtFree(weightTransposedDeviceAddr);
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
/**
|
||||
* @brief Set tensor data in a CANN buffer.
|
||||
@@ -1139,9 +1197,16 @@ static void ggml_backend_cann_buffer_set_tensor(
|
||||
// For acl, synchronous functions use this default stream.
|
||||
// Why aclrtSynchronizeDevice?
|
||||
|
||||
bool weightToNZ = false;
|
||||
#ifdef ASCEND_310P
|
||||
weightToNZ = (getenv("GGML_CANN_WEIGHT_NZ") != nullptr);
|
||||
#endif
|
||||
if (!need_transform(tensor->type)) {
|
||||
ACL_CHECK(aclrtMemcpy((char *)tensor->data + offset, size, data, size,
|
||||
ACL_MEMCPY_HOST_TO_DEVICE));
|
||||
if (weightToNZ && is_matmul_weight((const ggml_tensor*)tensor)) {
|
||||
weight_format_to_nz(tensor, data, offset);
|
||||
}
|
||||
} else {
|
||||
void *transform_buffer = malloc(size);
|
||||
ggml_backend_cann_transform(tensor, data, transform_buffer);
|
||||
@@ -1594,6 +1659,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_GET_ROWS:
|
||||
ggml_cann_get_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
ggml_cann_set_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DUP:
|
||||
ggml_cann_dup(ctx, dst);
|
||||
break;
|
||||
@@ -1616,16 +1684,18 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(dst)) {
|
||||
case GGML_UNARY_OP_ABS:
|
||||
GGML_CANN_CALL_UNARY_OP(Abs);
|
||||
GGML_CANN_CALL_OP_UNARY(Abs);
|
||||
break;
|
||||
case GGML_UNARY_OP_NEG:
|
||||
GGML_CANN_CALL_UNARY_OP(Neg);
|
||||
GGML_CANN_CALL_OP_UNARY(Neg);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU:
|
||||
GGML_CANN_CALL_UNARY_OP(Gelu);
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
// aclnnGelu internally uses the erf-based approximation.
|
||||
GGML_CANN_CALL_OP_UNARY(Gelu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SILU:
|
||||
GGML_CANN_CALL_UNARY_OP(Silu);
|
||||
GGML_CANN_CALL_OP_UNARY(Silu);
|
||||
break;
|
||||
case GGML_UNARY_OP_GELU_QUICK: {
|
||||
auto lambda = [](ggml_backend_cann_context& ctx,
|
||||
@@ -1633,31 +1703,31 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_dst) {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
|
||||
};
|
||||
ggml_cann_unary_op(lambda, ctx, dst);
|
||||
ggml_cann_op_unary(lambda, ctx, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_TANH:
|
||||
GGML_CANN_CALL_UNARY_OP(Tanh);
|
||||
GGML_CANN_CALL_OP_UNARY(Tanh);
|
||||
break;
|
||||
case GGML_UNARY_OP_RELU:
|
||||
GGML_CANN_CALL_UNARY_OP(Relu);
|
||||
GGML_CANN_CALL_OP_UNARY(Relu);
|
||||
break;
|
||||
case GGML_UNARY_OP_SIGMOID:
|
||||
GGML_CANN_CALL_UNARY_OP(Sigmoid);
|
||||
GGML_CANN_CALL_OP_UNARY(Sigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
|
||||
GGML_CANN_CALL_OP_UNARY(Hardsigmoid);
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
GGML_CANN_CALL_UNARY_OP(Hardswish);
|
||||
GGML_CANN_CALL_OP_UNARY(Hardswish);
|
||||
break;
|
||||
case GGML_UNARY_OP_EXP:
|
||||
GGML_CANN_CALL_UNARY_OP(Exp);
|
||||
GGML_CANN_CALL_OP_UNARY(Exp);
|
||||
break;
|
||||
case GGML_UNARY_OP_ELU:
|
||||
ggml_cann_elu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_SGN:
|
||||
GGML_CANN_CALL_UNARY_OP(Sign);
|
||||
GGML_CANN_CALL_OP_UNARY(Sign);
|
||||
break;
|
||||
case GGML_UNARY_OP_STEP:
|
||||
ggml_cann_step(ctx, dst);
|
||||
@@ -1666,6 +1736,31 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
case GGML_OP_GLU:
|
||||
switch (ggml_get_glu_op(dst)) {
|
||||
case GGML_GLU_OP_REGLU:
|
||||
GGML_CANN_CALL_OP_UNARY_GATED(Relu);
|
||||
break;
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
case GGML_GLU_OP_GEGLU_ERF:
|
||||
// aclnnGelu internally uses the erf-based approximation.
|
||||
GGML_CANN_CALL_OP_UNARY_GATED(Gelu);
|
||||
break;
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
GGML_CANN_CALL_OP_UNARY_GATED(Silu);
|
||||
break;
|
||||
case GGML_GLU_OP_GEGLU_QUICK: {
|
||||
auto lambda = [](ggml_backend_cann_context& ctx,
|
||||
aclTensor* acl_src,
|
||||
aclTensor* acl_dst) {
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
|
||||
};
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst);
|
||||
} break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
case GGML_OP_NORM:
|
||||
ggml_cann_norm(ctx, dst);
|
||||
break;
|
||||
@@ -1708,7 +1803,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SQRT:
|
||||
GGML_CANN_CALL_UNARY_OP(Sqrt);
|
||||
GGML_CANN_CALL_OP_UNARY(Sqrt);
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
ggml_cann_clamp(ctx, dst);
|
||||
@@ -1753,16 +1848,16 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
||||
ggml_cann_argmax(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_COS:
|
||||
ggml_cann_unary_op<aclnn_cos>(ctx, dst);
|
||||
ggml_cann_op_unary<aclnn_cos>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SIN:
|
||||
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
|
||||
ggml_cann_op_unary<aclnn_sin>(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
ggml_cann_conv_transpose_1d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_LOG:
|
||||
GGML_CANN_CALL_UNARY_OP(Log);
|
||||
GGML_CANN_CALL_OP_UNARY(Log);
|
||||
break;
|
||||
case GGML_OP_MEAN:
|
||||
ggml_cann_mean(ctx, dst);
|
||||
@@ -2036,10 +2131,23 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_SGN:
|
||||
case GGML_UNARY_OP_STEP:
|
||||
case GGML_UNARY_OP_GELU_ERF:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
case GGML_OP_GLU:
|
||||
switch (ggml_get_glu_op(op)) {
|
||||
case GGML_GLU_OP_REGLU:
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
case GGML_GLU_OP_GEGLU_ERF:
|
||||
case GGML_GLU_OP_GEGLU_QUICK:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MUL_MAT: {
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F16:
|
||||
@@ -2086,6 +2194,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS: {
|
||||
switch (op->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY: {
|
||||
ggml_tensor *src = op->src[0];
|
||||
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||
|
||||
@@ -2182,12 +2299,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_SQR:
|
||||
case GGML_OP_SQRT:
|
||||
case GGML_OP_CLAMP:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
case GGML_OP_SOFT_MAX:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
@@ -2205,6 +2320,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_SCALE:
|
||||
float bias;
|
||||
memcpy(&bias, (float*)op->op_params + 1, sizeof(float));
|
||||
return bias == 0.0f; // TODO: support bias != 0.0f
|
||||
case GGML_OP_SOFT_MAX:
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
return !op->src[1] || (op->src[1]->ne[2] == 1 && op->src[1]->ne[3] == 1);
|
||||
case GGML_OP_FLASH_ATTN_EXT:{
|
||||
// derived from [ggml-cuda.cu]
|
||||
if(op->src[1]->type != GGML_TYPE_F16 || op->src[2]->type != GGML_TYPE_F16){
|
||||
@@ -2227,6 +2350,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
|
||||
// DeepSeek MLA
|
||||
return false;
|
||||
}
|
||||
// TODO: support broadcast
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14435
|
||||
if (op->src[0]->ne[3] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ function(ggml_add_cpu_backend_features cpu_name arch)
|
||||
# build, using set_source_files_properties() to set the arch flags is not possible
|
||||
set(GGML_CPU_FEATS_NAME ${cpu_name}-feats)
|
||||
add_library(${GGML_CPU_FEATS_NAME} OBJECT ggml-cpu/arch/${arch}/cpu-feats.cpp)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . .. ../include)
|
||||
target_include_directories(${GGML_CPU_FEATS_NAME} PRIVATE . ../include)
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
|
||||
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
|
||||
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
@@ -70,10 +70,12 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (GGML_OPENMP)
|
||||
find_package(OpenMP)
|
||||
if (OpenMP_FOUND)
|
||||
set(GGML_OPENMP_ENABLED "ON" CACHE INTERNAL "")
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_OPENMP)
|
||||
|
||||
target_link_libraries(${GGML_CPU_NAME} PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
|
||||
else()
|
||||
set(GGML_OPENMP_ENABLED "OFF" CACHE INTERNAL "")
|
||||
message(WARNING "OpenMP not found")
|
||||
endif()
|
||||
endif()
|
||||
@@ -448,6 +450,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
set(GGML_NNPA OFF)
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
@@ -455,6 +458,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -march=z16)
|
||||
elseif (${S390X_M} MATCHES "9175|9176")
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=z17)
|
||||
else()
|
||||
@@ -464,7 +468,14 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
endif()
|
||||
|
||||
if (GGML_VXE)
|
||||
message(STATUS "VX/VXE/VXE2 enabled")
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_VXE)
|
||||
endif()
|
||||
|
||||
if (GGML_NNPA)
|
||||
message(STATUS "NNPA enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
@@ -486,9 +497,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.9.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "2a8e1bb55d201557553545536489a017")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -581,4 +592,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
if (EMSCRIPTEN)
|
||||
set_target_properties(${GGML_CPU_NAME} PROPERTIES COMPILE_FLAGS "-msimd128")
|
||||
endif()
|
||||
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "IntelLLVM")
|
||||
# The compiler automatically enables "-ffast-math" which can cause NaNs in tests due to "-fassociative-math"
|
||||
target_compile_options(${GGML_CPU_NAME} PRIVATE "-fno-associative-math")
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include "mmq.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-quants.h"
|
||||
#include <algorithm>
|
||||
@@ -453,7 +454,7 @@ void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_
|
||||
|
||||
// Quantize these floats
|
||||
const float iscale = 127.f / amax;
|
||||
y[i].d = GGML_FP32_TO_FP16(1 / iscale);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(1 / iscale);
|
||||
const float id = ( amax != 0.0f ) ? iscale : 0.f;
|
||||
const __m512 vscale = _mm512_set1_ps(id);
|
||||
|
||||
@@ -1090,7 +1091,7 @@ struct acc_C<block_q8_0, block_q4_0, is_acc> {
|
||||
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1113,8 +1114,8 @@ struct acc_C<block_q8_1, block_q4_1, is_acc> {
|
||||
const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half))));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vs1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].s));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1137,7 +1138,7 @@ struct acc_C<block_q8_0, block_q8_0, is_acc> {
|
||||
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset)));
|
||||
|
||||
for (int m = 0; m < nr; ++m) {
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[m * lda].d));
|
||||
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N));
|
||||
|
||||
__m512 vsum;
|
||||
@@ -1437,7 +1438,7 @@ struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLO
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
}
|
||||
|
||||
// load b
|
||||
@@ -1498,8 +1499,8 @@ struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K>
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vs1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].s));
|
||||
}
|
||||
|
||||
// load b
|
||||
@@ -1571,7 +1572,7 @@ struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLO
|
||||
va[k] = _mm512_set1_epi32(a_ptr[k]);
|
||||
va[k] = _mm512_add_epi8(va[k], off);
|
||||
}
|
||||
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
vd1 = _mm512_set1_ps(GGML_CPU_FP16_TO_FP32(A[0 * KB + i].d));
|
||||
}
|
||||
|
||||
// load b
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -6,6 +6,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
@@ -51,7 +52,7 @@ void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
@@ -85,35 +86,9 @@ void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
const int blck_size_interleave = 4;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
|
||||
amax = MAX(amax, fabsf(srcv[row_iter][j]));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_0_4x4_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -145,7 +120,7 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++) {
|
||||
@@ -204,35 +179,9 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
|
||||
#else
|
||||
// scalar
|
||||
const int blck_size_interleave = 8;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
|
||||
amax = MAX(amax, fabsf(srcv[row_iter][j]));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_0_4x8_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -294,29 +243,7 @@ void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
ggml_gemv_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -382,29 +309,7 @@ void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
ggml_gemv_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -496,31 +401,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
#endif // #if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -590,31 +471,7 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -1095,40 +952,7 @@ void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
);
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -1549,38 +1373,7 @@ void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
);
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x4 * b_ptr = (const block_q4_0x4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_4x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -2018,38 +1811,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
#endif // #if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -2125,38 +1887,5 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
}
|
||||
return;
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
{
|
||||
float sumf[4][4];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include "../../quants.h"
|
||||
#include "../../ggml-cpu-impl.h"
|
||||
@@ -474,7 +475,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
|
||||
// Quantize these floats
|
||||
const float d = max_scalar / 127.f;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
|
||||
const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
|
||||
|
||||
@@ -543,12 +544,12 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
__m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
|
||||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
|
||||
__m128 tmp = max4;
|
||||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
|
||||
max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x1 ));
|
||||
const float max_scalar = ((v4f32)max4)[0];
|
||||
|
||||
// Quantize these floats
|
||||
const float d = max_scalar / 127.f;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
|
||||
const __m256 mul = __lasx_xvreplfr2vr_s( id );
|
||||
|
||||
@@ -576,7 +577,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
// Compute the sum of the quants and set y[i].s
|
||||
const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
|
||||
const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
|
||||
y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
|
||||
y[i].s = GGML_CPU_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
|
||||
|
||||
// Convert int32 to int16
|
||||
ni0 = lsx_packs_w( ni0, ni1 );
|
||||
@@ -667,7 +668,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
/* Compute combined scale for the block */
|
||||
const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
|
||||
const __m256 d = __lasx_xvreplfr2vr_s( GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d) );
|
||||
|
||||
__m256i qx = bytes_from_nibbles_32(x[ib].qs);
|
||||
|
||||
@@ -699,7 +700,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
|
||||
// Compute combined scale for the block 0 and 1
|
||||
const __m128 d_0_1 = (__m128)__lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
|
||||
const __m128 d_0_1 = (__m128)__lsx_vreplgr2vr_w( GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d) );
|
||||
|
||||
const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
|
||||
|
||||
@@ -717,7 +718,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
//_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 2 and 3
|
||||
const __m128 d_2_3 = (__m128)__lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
|
||||
const __m128 d_2_3 = (__m128)__lsx_vreplgr2vr_w( GGML_CPU_FP16_TO_FP32(x[ib + 1].d) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) );
|
||||
|
||||
const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
|
||||
|
||||
@@ -766,7 +767,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -797,10 +798,10 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d0 = GGML_FP16_TO_FP32(x[ib].d);
|
||||
const float d1 = GGML_FP16_TO_FP32(y[ib].d);
|
||||
const float d0 = GGML_CPU_FP16_TO_FP32(x[ib].d);
|
||||
const float d1 = GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
|
||||
summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
|
||||
summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
|
||||
const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
|
||||
const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
|
||||
@@ -820,24 +821,15 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -865,7 +857,7 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
/* Compute combined scale for the block */
|
||||
const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
|
||||
const __m256 d = __lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)); //FIXME
|
||||
|
||||
__m256i qx = bytes_from_nibbles_32(x[ib].qs);
|
||||
__m256i bxhi = bytes_from_bits_32(x[ib].qh);
|
||||
@@ -882,30 +874,15 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -934,16 +911,16 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
|
||||
const __m256 dx = __lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(x[ib].d));
|
||||
|
||||
summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
|
||||
summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
|
||||
__m256i qx = bytes_from_nibbles_32(x[ib].qs);
|
||||
__m256i bxhi = bytes_from_bits_32(x[ib].qh);
|
||||
bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
|
||||
qx = __lasx_xvor_v(qx, bxhi);
|
||||
|
||||
const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
|
||||
const __m256 dy = __lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
|
||||
|
||||
const __m256 q = mul_sum_us8_pairs_float(qx, qy);
|
||||
@@ -953,30 +930,15 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1003,7 +965,7 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
// Main loop
|
||||
for (; ib < nb; ++ib) {
|
||||
// Compute combined scale for the block
|
||||
const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
|
||||
const __m256 d = __lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
__m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
|
||||
__m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
|
||||
|
||||
@@ -1015,18 +977,15 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
sumf = hsum_float_8(acc);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1047,8 +1006,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
const uint8_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
@@ -1102,45 +1061,10 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1170,7 +1094,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
// Set up scales
|
||||
@@ -1238,70 +1162,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1330,8 +1197,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
@@ -1390,61 +1257,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1477,8 +1297,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const uint8_t * GGML_RESTRICT q5 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
@@ -1540,66 +1360,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc) + ((v4f32)acc_m)[0];
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1624,7 +1392,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
@@ -1677,47 +1445,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = hsum_float_8(acc);
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1780,7 +1511,7 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
|
||||
__m256 accumf = (__m256)__lasx_xvldi(0);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
__m256i sumi1 = __lasx_xvldi(0);
|
||||
@@ -1814,34 +1545,10 @@ void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32[2];
|
||||
const uint8_t * aux8 = (const uint8_t *)aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(aux32, q2, 2*sizeof(uint32_t));
|
||||
q2 += 4;
|
||||
const uint32_t ls = 2*(aux32[1] >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1895,7 +1602,7 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
|
||||
__m256 accumf = (__m256)__lasx_xvldi(0);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
|
||||
@@ -1977,42 +1684,10 @@ void ggml_vec_dot_iq2_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT sc = x[i].scales;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
|
||||
const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += sumi * ls2;
|
||||
q2 += 4;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.125f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2049,7 +1724,7 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
|
||||
__m256 accumf = (__m256)__lasx_xvldi(0);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint16_t * GGML_RESTRICT signs = (const uint16_t *)(x[i].qs + QK_K/8);
|
||||
@@ -2104,47 +1779,11 @@ void ggml_vec_dot_iq2_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = 0.125f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * qh = x[i].qh;
|
||||
const uint8_t * signs = qs + QK_K/8;
|
||||
|
||||
int bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
|
||||
int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
bsum += ls1 * sumi1 + ls2 * sumi2;
|
||||
qs += 4;
|
||||
signs += 4;
|
||||
}
|
||||
|
||||
sumf += d * bsum;
|
||||
}
|
||||
|
||||
*s = 0.125f * sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq2_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -2168,7 +1807,7 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
|
||||
__m256 accumf = (__m256)__lasx_xvldi(0);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
@@ -2208,36 +1847,10 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
*s = 0.25f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT gas = x[i].qs + QK_K/4;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_xxs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2279,7 +1892,7 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
|
||||
__m256 accumf = (__m256)__lasx_xvldi(0);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint16_t * GGML_RESTRICT signs = (const uint16_t *)x[i].signs;
|
||||
@@ -2337,48 +1950,10 @@ void ggml_vec_dot_iq3_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * GGML_RESTRICT qs = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const uint8_t * GGML_RESTRICT signs = x[i].signs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
|
||||
const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls1;
|
||||
sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
qs += 8;
|
||||
signs += 4;
|
||||
bsum += sumi * ls2;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq3_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2451,7 +2026,7 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
+ (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
|
||||
}
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
|
||||
accum1 += d * sumi1;
|
||||
}
|
||||
@@ -2459,36 +2034,10 @@ void ggml_vec_dot_iq1_s_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
*s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint16_t * qh = x[i].qh;
|
||||
|
||||
int sumi = 0, sumi1 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const int ls = 2*((qh[ib] >> 12) & 7) + 1;
|
||||
const int delta = qh[ib] & 0x8000 ? -1 : 1;
|
||||
int lsum = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
lsum += q8[j] * grid[j];
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
sumi += ls * lsum;
|
||||
sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
|
||||
qs += 4;
|
||||
}
|
||||
|
||||
sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq1_s_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2530,9 +2079,9 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
|
||||
const __m256i p_1 = lasx_madd_h(p16_1, mone);
|
||||
const __m256i p_2 = lasx_madd_h(p16_2, mone);
|
||||
accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
|
||||
accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_FP16_TO_FP32(x[ib + 0].d)),
|
||||
__lasx_xvffint_s_w(p_1), accum1);
|
||||
accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
|
||||
accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_FP16_TO_FP32(x[ib + 1].d)),
|
||||
__lasx_xvffint_s_w(p_2), accum2);
|
||||
}
|
||||
|
||||
@@ -2540,7 +2089,7 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_FP16_TO_FP32(x[ib].d);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
|
||||
@@ -2595,44 +2144,17 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
sumi1 = __lasx_xvadd_w(p_1, sumi1);
|
||||
sumi2 = __lasx_xvadd_w(p_2, sumi2);
|
||||
}
|
||||
accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
|
||||
accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_CPU_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
|
||||
__lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
|
||||
}
|
||||
|
||||
*s = hsum_float_8(accum);
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -3,6 +3,7 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include "../../quants.h"
|
||||
#include "../../ggml-cpu-impl.h"
|
||||
@@ -45,7 +46,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
vfloat32m8_t x0 = __riscv_vfmul_vf_f32m8(v_x, id, vl);
|
||||
|
||||
@@ -85,7 +86,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
vfloat32m8_t x0 = __riscv_vfmul_vf_f32m8(v_x, id, vl);
|
||||
|
||||
@@ -102,7 +103,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
|
||||
// set y[i].s
|
||||
int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
|
||||
y[i].s = GGML_FP32_TO_FP16(sum*d);
|
||||
y[i].s = GGML_CPU_FP32_TO_FP16(sum*d);
|
||||
}
|
||||
|
||||
#else
|
||||
@@ -115,6 +116,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
//===================================== Dot products =================================
|
||||
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -131,7 +133,6 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -160,30 +161,17 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
||||
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_1;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -200,7 +188,6 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int ib = 0;
|
||||
float sumf = 0;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl = qk / 2;
|
||||
|
||||
for (; ib < nb; ++ib) {
|
||||
@@ -225,30 +212,17 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -266,7 +240,6 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q5_0 * GGML_RESTRICT x = vx;
|
||||
const block_q8_0 * GGML_RESTRICT y = vy;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -293,36 +266,17 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
vint32m1_t sum = __riscv_vwredsum_vs_i16m4_i32m1(mul, zero, vl);
|
||||
int32_t sumi = __riscv_vmv_x_s_i32m1_i32(sum);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
#if defined(__riscv_v)
|
||||
const int qk = QK8_1;
|
||||
const int nb = n / qk;
|
||||
|
||||
@@ -340,7 +294,6 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q5_1 * GGML_RESTRICT x = vx;
|
||||
const block_q8_1 * GGML_RESTRICT y = vy;
|
||||
|
||||
#if defined(__riscv_v)
|
||||
size_t vl;
|
||||
size_t vlenb = __riscv_vlenb();
|
||||
|
||||
@@ -366,33 +319,13 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
vint32m1_t sum = __riscv_vwredsum_vs_i16m4_i32m1(mul, zero, vl);
|
||||
int32_t sumi = __riscv_vmv_x_s_i32m1_i32(sum);
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
sumf += (GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d))*sumi + GGML_CPU_FP16_TO_FP32(x[ib].m)*GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -427,21 +360,20 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
||||
sumf += sumi*(GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -465,8 +397,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
uint8_t *patmp = atmp;
|
||||
int vsums;
|
||||
int tmp;
|
||||
@@ -569,8 +501,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
size_t vl = 16;
|
||||
|
||||
@@ -644,8 +576,8 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float dall = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
uint8_t *patmp = atmp;
|
||||
int vsums;
|
||||
int tmp;
|
||||
@@ -737,44 +669,11 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -916,7 +815,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
q3 += 32; q8 += 128; scale += 8;
|
||||
}
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
sumf += d * isum;
|
||||
}
|
||||
|
||||
@@ -1017,7 +916,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
}
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
sumf += d*sum_t;
|
||||
|
||||
@@ -1134,7 +1033,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
q3 += 32; q8 += 128; scale += 8;
|
||||
}
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
sumf += d * isum;
|
||||
}
|
||||
break;
|
||||
@@ -1146,68 +1045,14 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -1239,8 +1084,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int tmp, tmp2, sumi;
|
||||
__asm__ __volatile__(
|
||||
@@ -1361,8 +1206,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
size_t vl = 8;
|
||||
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
|
||||
vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
|
||||
@@ -1422,8 +1267,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
break;
|
||||
case 128:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int tmp, tmp2, sumi;
|
||||
__asm__ __volatile__(
|
||||
@@ -1533,60 +1378,15 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(nb);
|
||||
UNUSED(utmp);
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1627,8 +1427,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
|
||||
vint16m1_t q8sums_0 = __riscv_vlse16_v_i16m1(y[i].bsums, 4, vl);
|
||||
vint16m1_t q8sums_1 = __riscv_vlse16_v_i16m1(y[i].bsums+1, 4, vl);
|
||||
@@ -1697,65 +1497,15 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(nb);
|
||||
UNUSED(utmp);
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1778,7 +1528,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
const uint8_t * restrict q6 = x[i].ql;
|
||||
const uint8_t * restrict qh = x[i].qh;
|
||||
@@ -1862,7 +1612,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
case 256:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
const uint8_t * GGML_RESTRICT q6 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
@@ -1943,7 +1693,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
case 128:
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
|
||||
const uint8_t * restrict q6 = x[i].ql;
|
||||
const uint8_t * restrict qh = x[i].qh;
|
||||
@@ -2023,46 +1773,11 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
@@ -90,16 +91,16 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
const vfloat32m1_t facc = __riscv_vfcvt_f_x_v_f32m1(sumi_h8, vl / 4);
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scale = GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
const float a_scale = GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
const vfloat32m1_t tmp1 = __riscv_vfmul_vf_f32m1(facc, a_scale, vl / 4);
|
||||
@@ -111,31 +112,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -181,20 +158,20 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
|
||||
// vector version needs Zvfhmin extension
|
||||
const float a_scales[4] = {
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(a_ptr[l].d[3])
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(a_ptr[l].d[3])
|
||||
};
|
||||
const float b_scales[8] = {
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[0]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[1]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[2]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[3]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[4]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[5]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[6]),
|
||||
GGML_CPU_FP16_TO_FP32(b_ptr[l].d[7])
|
||||
};
|
||||
const vfloat32m1_t b_scales_vec = __riscv_vle32_v_f32m1(b_scales, vl / 4);
|
||||
|
||||
@@ -360,37 +337,6 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include "../../quants.h"
|
||||
#include "../../ggml-cpu-impl.h"
|
||||
@@ -49,7 +50,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
const __vector float v = vec_mul(srcv[j], vec_splats(id));
|
||||
@@ -94,7 +95,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
__vector int32_t acc = vec_splats(0);
|
||||
|
||||
@@ -110,7 +111,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
acc = vec_add(acc, vi);
|
||||
}
|
||||
|
||||
y[i].s = GGML_FP32_TO_FP16(d * (acc[0] + acc[1] + acc[2] + acc[3]));
|
||||
y[i].s = GGML_CPU_FP32_TO_FP16(d * (acc[0] + acc[1] + acc[2] + acc[3]));
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(nb);
|
||||
@@ -164,31 +165,22 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
__vector int16_t v_xy_ = v_xylso + v_xylse + v_xyhso + v_xyhse; v_xy_ += vec_reve(v_xy_);
|
||||
|
||||
const __vector float v_xy = vec_float(vec_unpackh(v_xy_));
|
||||
const __vector float v_d = vec_splats(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
|
||||
const __vector float v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F) - 8;
|
||||
const int v1 = (x[ib].qs[j] >> 4) - 8;
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -219,7 +211,7 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
__builtin_prefetch(x[ib].qs, 0, 1);
|
||||
__builtin_prefetch(y[ib].qs, 0, 1);
|
||||
|
||||
summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
|
||||
summs += GGML_CPU_FP16_TO_FP32(x[ib].m) * GGML_CPU_FP16_TO_FP32(y[ib].s);
|
||||
|
||||
const uint8x16_t v_x = vec_xl(0, x[ib].qs);
|
||||
const int8x16_t v_xl = (const int8x16_t)(v_x & v_m);
|
||||
@@ -231,31 +223,22 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int32x4_t v_xy_ = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
|
||||
const float32x4_t v_xy = vec_float(v_xy_);
|
||||
|
||||
const float32x4_t v_d = vec_splats(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3] + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int v0 = (x[ib].qs[j] & 0x0F);
|
||||
const int v1 = (x[ib].qs[j] >> 4);
|
||||
|
||||
sumi0 += (v0 * y[ib].qs[j]);
|
||||
sumi1 += (v1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q4_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -290,25 +273,22 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
const int32x4_t v_xy_ = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
|
||||
const float32x4_t v_xy = vec_float(v_xy_);
|
||||
const float32x4_t v_d = vec_splats(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
|
||||
const float32x4_t v_d = vec_splats(GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d));
|
||||
|
||||
acc = vec_madd(v_xy, v_d, acc);
|
||||
}
|
||||
|
||||
sumf = acc[0] + acc[1] + acc[2] + acc[3];
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -348,7 +328,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sum = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * restrict x0l = x[i].qs;
|
||||
const uint8_t * restrict x0h = x[i].hmask;
|
||||
@@ -441,70 +421,13 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -537,8 +460,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
const int16x8_t v_ysumsl = vec_xl(0 , y[i].bsums);
|
||||
const int16x8_t v_ysumsh = vec_xl(16, y[i].bsums);
|
||||
@@ -599,61 +522,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -698,8 +574,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
const int16x8_t v_ysumsl = vec_xl(0 , y[i].bsums);
|
||||
const int16x8_t v_ysumsh = vec_xl(16, y[i].bsums);
|
||||
@@ -766,66 +642,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -859,7 +683,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int8x16_t v_y[4];
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d_all = GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d_all = GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
|
||||
const uint8_t * GGML_RESTRICT x0l = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT x0h = x[i].qh;
|
||||
@@ -968,47 +792,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sum;
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1071,7 +858,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
// float sumf = 0;
|
||||
|
||||
// for (int i = 0; i < nb; ++i) {
|
||||
// const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
// const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
// const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
// const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
|
||||
@@ -1121,7 +908,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
// float sumf = 0.f;
|
||||
// for (int i = 0; i < nb; ++i) {
|
||||
// const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
// const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
// const uint16_t * GGML_RESTRICT q2 = x[i].qs;
|
||||
// const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
// int32_t bsum = 0;
|
||||
@@ -1182,20 +969,18 @@ void ggml_vec_dot_iq4_nl_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
|
||||
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
|
||||
|
||||
sumf += GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d) * (v_xy[0] + v_xy[1] + v_xy[2] + v_xy[3]);
|
||||
}
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < QK4_NL/2; ++j) {
|
||||
sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
|
||||
sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
|
||||
}
|
||||
sumf += d * (sumi1 + sumi2);
|
||||
}
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_iq4_nl_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -1257,43 +1042,16 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
sumi2 += (vsumi1[0] + vsumi1[1] + vsumi1[2] + vsumi1[3]) * ls2;
|
||||
}
|
||||
|
||||
sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
|
||||
sumf += GGML_CPU_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
float sumf = 0;
|
||||
for (int ibl = 0; ibl < nb; ++ibl) {
|
||||
const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
|
||||
uint16_t h = x[ibl].scales_h;
|
||||
const uint8_t * qs = x[ibl].qs;
|
||||
const int8_t * q8 = y[ibl].qs;
|
||||
for (int ib = 0; ib < QK_K/32; ib += 2) {
|
||||
const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
|
||||
const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
|
||||
h >>= 4;
|
||||
const float d1 = d4d8*(ls1 - 32);
|
||||
const float d2 = d4d8*(ls2 - 32);
|
||||
int sumi1 = 0, sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d1 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
sumi1 = sumi2 = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
|
||||
sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
|
||||
}
|
||||
sumf += d2 * (sumi1 + sumi2);
|
||||
qs += 16;
|
||||
q8 += 32;
|
||||
}
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "ggml-quants.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include "../../quants.h"
|
||||
#include "../../ggml-cpu-impl.h"
|
||||
@@ -65,7 +66,7 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
|
||||
@@ -110,7 +111,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].d = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
v128_t accv = wasm_i32x4_splat(0);
|
||||
|
||||
@@ -126,7 +127,7 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
|
||||
accv = wasm_i32x4_add(accv, vi);
|
||||
}
|
||||
|
||||
y[i].s = GGML_FP32_TO_FP16(
|
||||
y[i].s = GGML_CPU_FP32_TO_FP16(
|
||||
d * (wasm_i32x4_extract_lane(accv, 0) +
|
||||
wasm_i32x4_extract_lane(accv, 1) +
|
||||
wasm_i32x4_extract_lane(accv, 2) +
|
||||
@@ -324,8 +325,8 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
);
|
||||
|
||||
// Accumulate results with scaling
|
||||
float scale0 = GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d);
|
||||
float scale1 = GGML_FP16_TO_FP32(x1->d) * GGML_FP16_TO_FP32(y1->d);
|
||||
float scale0 = GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d);
|
||||
float scale1 = GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d);
|
||||
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp0), wasm_f32x4_splat(scale0)));
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp1), wasm_f32x4_splat(scale1)));
|
||||
@@ -348,7 +349,7 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
|
||||
sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -428,36 +429,21 @@ void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
||||
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
|
||||
wasm_f32x4_splat(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d))));
|
||||
}
|
||||
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
|
||||
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
|
||||
|
||||
const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
|
||||
const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -491,7 +477,7 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const block_q5_1 * GGML_RESTRICT x0 = &x[ib];
|
||||
const block_q8_1 * GGML_RESTRICT y0 = &y[ib];
|
||||
|
||||
summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
|
||||
summs += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);
|
||||
|
||||
const v128_t m4b = wasm_i8x16_splat(0x0F);
|
||||
|
||||
@@ -538,36 +524,21 @@ void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
||||
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
|
||||
wasm_f32x4_splat(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d))));
|
||||
}
|
||||
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
|
||||
int sumi0 = 0;
|
||||
int sumi1 = 0;
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
|
||||
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
|
||||
|
||||
const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
|
||||
const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
|
||||
|
||||
sumi0 += (x0 * y[ib].qs[j]);
|
||||
sumi1 += (x1 * y[ib].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
int sumi = sumi0 + sumi1;
|
||||
sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -620,25 +591,22 @@ void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const v128_t sum_dots = wasm_i32x4_add(wasm_i32x4_add(dx0_0, dx0_1), wasm_i32x4_add(dx1_0, dx1_1));
|
||||
|
||||
// Convert to float and accumulate
|
||||
const float scale = GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d);
|
||||
const float scale = GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d);
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(sum_dots), wasm_f32x4_splat(scale)));
|
||||
}
|
||||
|
||||
sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
int sumi = 0;
|
||||
|
||||
for (int j = 0; j < qk; j++) {
|
||||
sumi += x[ib].qs[j]*y[ib].qs[j];
|
||||
}
|
||||
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
#else
|
||||
UNUSED(nb);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(ib);
|
||||
UNUSED(sumf);
|
||||
ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
@@ -746,53 +714,18 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
isum += wasm_i32x4_extract_lane(isum_vec, 0);
|
||||
}
|
||||
|
||||
const float dall = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
const float dall = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
|
||||
const uint8_t * q2 = x[i].qs;
|
||||
const int8_t * q8 = y[i].qs;
|
||||
const uint8_t * sc = x[i].scales;
|
||||
|
||||
int summs = 0;
|
||||
for (int j = 0; j < 16; ++j) {
|
||||
summs += y[i].bsums[j] * (sc[j] >> 4);
|
||||
}
|
||||
|
||||
const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||
|
||||
int isum = 0;
|
||||
int is = 0;
|
||||
int d;
|
||||
for (int k = 0; k < QK_K/128; ++k) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
d = sc[is++] & 0xF;
|
||||
int isuml = 0;
|
||||
for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
d = sc[is++] & 0xF;
|
||||
isuml = 0;
|
||||
for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
|
||||
isum += d * isuml;
|
||||
shift += 2;
|
||||
q8 += 32;
|
||||
}
|
||||
q2 += 32;
|
||||
}
|
||||
sumf += dall * isum - dmin * summs;
|
||||
}
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -880,7 +813,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
}
|
||||
|
||||
// Accumulate results
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const v128_t v_d = wasm_f32x4_splat(d);
|
||||
v128_t v_sum = wasm_f32x4_add(
|
||||
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(v_acc0), v_d),
|
||||
@@ -901,68 +834,12 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
// scalar version
|
||||
// This function is written like this so the compiler can manage to vectorize most of it
|
||||
// Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
|
||||
// manually vectorized version above. Every other version I tried would run at least 4 times slower.
|
||||
// The ideal situation would be if we could just write the code once, and the compiler would
|
||||
// automatically produce the best possible set of machine instructions, instead of us having to manually
|
||||
// write vectorized versions for AVX, ARM_NEON, etc.
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
uint32_t auxs[4];
|
||||
const int8_t * scales = (const int8_t*)auxs;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q3 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].hmask;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
|
||||
for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
|
||||
a += 32; m <<= 1;
|
||||
q3 += 32;
|
||||
}
|
||||
a = aux8;
|
||||
|
||||
memcpy(auxs, x[i].scales, 12);
|
||||
uint32_t tmp = auxs[2];
|
||||
auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
|
||||
auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
|
||||
auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
|
||||
auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
|
||||
}
|
||||
@@ -991,8 +868,8 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); // Corrected sign
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); // Corrected sign
|
||||
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
@@ -1088,61 +965,14 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
a += 32;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
a += 32; q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1170,8 +1000,8 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
float sumf = 0;
|
||||
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); // Fixed sign
|
||||
const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
|
||||
const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); // Fixed sign
|
||||
|
||||
const uint8_t * GGML_RESTRICT q5 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
@@ -1278,66 +1108,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
const uint8_t * scales = (const uint8_t*)&utmp[0];
|
||||
const uint8_t * mins = (const uint8_t*)&utmp[2];
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const uint8_t * GGML_RESTRICT hm = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
uint8_t m = 1;
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
|
||||
for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
|
||||
a += 32; m <<= 1;
|
||||
q4 += 32;
|
||||
}
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux = utmp[1] & kmask1;
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[2] = uaux;
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
int sumi = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/32; ++j) {
|
||||
int32_t scale = scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
|
||||
sumf -= dmin * sumi;
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
UNUSED(utmp);
|
||||
ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1420,7 +1198,7 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
wasm_v128_store(&aux32[0], acc0);
|
||||
wasm_v128_store(&aux32[4], acc1);
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) {
|
||||
sums[l] += d * aux32[l];
|
||||
}
|
||||
@@ -1434,47 +1212,10 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
*s = sumf;
|
||||
|
||||
#else
|
||||
|
||||
int8_t aux8[QK_K];
|
||||
int16_t aux16[8];
|
||||
float sums [8];
|
||||
int32_t aux32[8];
|
||||
memset(sums, 0, 8*sizeof(float));
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh = x[i].qh;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
memset(aux32, 0, 8*sizeof(int32_t));
|
||||
int8_t * GGML_RESTRICT a = aux8;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
}
|
||||
a += 128;
|
||||
q4 += 64;
|
||||
qh += 32;
|
||||
}
|
||||
a = aux8;
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K/16; ++j) {
|
||||
int scale = x[i].scales[is++];
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
|
||||
for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
|
||||
q8 += 8; a += 8;
|
||||
}
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
|
||||
}
|
||||
for (int l = 0; l < 8; ++l) sumf += sums[l];
|
||||
*s = sumf;
|
||||
UNUSED(x);
|
||||
UNUSED(y);
|
||||
UNUSED(nb);
|
||||
ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -6,6 +6,7 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
#include "traits.h"
|
||||
|
||||
#include <cmath>
|
||||
@@ -39,11 +40,11 @@ static inline __m512 __avx512_f32cx8x2_load(ggml_fp16_t *x, ggml_fp16_t *y) {
|
||||
float tmp[16];
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i + 8] = GGML_FP16_TO_FP32(y[i]);
|
||||
tmp[i + 8] = GGML_CPU_FP16_TO_FP32(y[i]);
|
||||
}
|
||||
|
||||
return _mm512_loadu_ps(tmp);
|
||||
@@ -54,10 +55,10 @@ static inline __m512 __avx512_repeat_f32cx16_load(__m128i x) {
|
||||
_mm_storeu_si128((__m128i*)tmphalf, x);
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 4] = GGML_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 8] = GGML_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 12] = GGML_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 4] = GGML_CPU_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 8] = GGML_CPU_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i + 12] = GGML_CPU_FP16_TO_FP32(tmphalf[i]);
|
||||
}
|
||||
|
||||
return _mm512_loadu_ps(tmp);
|
||||
@@ -67,7 +68,7 @@ static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return _mm256_loadu_ps(tmp);
|
||||
@@ -76,8 +77,8 @@ static inline __m256 __avx_repeat_f32cx8_load(ggml_fp16_t *x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
tmp[i + 4] = GGML_FP16_TO_FP32(x[i]);
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
tmp[i + 4] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return _mm256_loadu_ps(tmp);
|
||||
@@ -88,7 +89,7 @@ static inline __m256 __avx_rearranged_f32cx8_load(ggml_fp16_t *x, __m128i arrang
|
||||
|
||||
_mm_storeu_si128((__m128i*)tmphalf, _mm_shuffle_epi8(_mm_loadu_si128((const __m128i *) x), arrangeMask));
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(tmphalf[i]);
|
||||
tmp[i] = GGML_CPU_FP16_TO_FP32(tmphalf[i]);
|
||||
}
|
||||
|
||||
return _mm256_loadu_ps(tmp);
|
||||
@@ -211,7 +212,7 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
id[row_iter] = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; //d ? 1.0f / d : 0.0f;
|
||||
|
||||
// Store the scale for the individual block
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
y[i].d[row_iter] = GGML_CPU_FP32_TO_FP16(d);
|
||||
|
||||
// Store the values in blocks of eight values - Aim is to use these later for block interleaving
|
||||
srcv[row_iter][0] = v0;
|
||||
@@ -280,35 +281,9 @@ void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
|
||||
#else
|
||||
// scalar
|
||||
const int blck_size_interleave = 8;
|
||||
float srcv[4][QK8_0];
|
||||
float id[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
|
||||
for (int j = 0; j < QK8_0; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK8_0 + j];
|
||||
amax = MAX(amax, fabsf(srcv[row_iter][j]));
|
||||
}
|
||||
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
id[row_iter] = d ? 1.0f / d : 0.0f;
|
||||
|
||||
y[i].d[row_iter] = GGML_FP32_TO_FP16(d);
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK8_0 * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * id[src_id];
|
||||
y[i].qs[j] = roundf(x0);
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_0_4x8_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -530,49 +505,9 @@ void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTR
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// scalar
|
||||
const int blck_size_interleave = 8;
|
||||
float srcv[4][QK_K];
|
||||
float iscale[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0;
|
||||
|
||||
for (int j = 0; j < QK_K; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
|
||||
// Update the maximum value of the corresponding super block
|
||||
if(amax < fabsf(srcv[row_iter][j])) {
|
||||
amax = fabsf(srcv[row_iter][j]);
|
||||
max = srcv[row_iter][j];
|
||||
}
|
||||
}
|
||||
|
||||
iscale[row_iter] = amax ? -127.f/max : 0;
|
||||
|
||||
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK_K / 4; j++) {
|
||||
y[i].bsums[j] = 0;
|
||||
}
|
||||
|
||||
// Quants values are interleaved in sequence of eight bytes from corresponding super blocks
|
||||
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
|
||||
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
|
||||
for (int j = 0; j < QK_K * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * iscale[src_id];
|
||||
y[i].qs[j] = nearest_int(x0);
|
||||
y[i].bsums[index] += y[i].qs[j];
|
||||
}
|
||||
}
|
||||
UNUSED(nb);
|
||||
UNUSED(y);
|
||||
ggml_quantize_mat_q8_K_4x8_generic(x, vy, k);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -647,7 +582,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
const __m256 col_scale_f32 = GGML_F32Cx8_REARRANGE_LOAD(b_ptr[b].d, changemask);
|
||||
|
||||
// Load and convert to FP32 scale from block_q8_0
|
||||
const __m256 row_scale_f32 = _mm256_set1_ps(GGML_FP16_TO_FP32(a_ptr[b].d));
|
||||
const __m256 row_scale_f32 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(a_ptr[b].d));
|
||||
|
||||
// Load the block values in block_q8_0 in batches of 16 bytes and replicate the same across 256 bit vector
|
||||
__m256i lhs_vec_0 = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)a_ptr[b].qs));
|
||||
@@ -688,31 +623,7 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
return;
|
||||
|
||||
#endif
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
ggml_gemv_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -931,61 +842,10 @@ void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
float sumf[8];
|
||||
float sum_minf[8];
|
||||
uint32_t utmp[32];
|
||||
int sumi1;
|
||||
int sumi2;
|
||||
int sumi;
|
||||
|
||||
const block_q8_K * a_ptr = (const block_q8_K *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[j] = 0.0;
|
||||
sum_minf[j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
|
||||
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
|
||||
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
|
||||
utmp[sb * 4 + 2] = uaux_0;
|
||||
utmp[sb * 4 + 0] &= kmask1;
|
||||
}
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
|
||||
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 64 + (k % 4) * blocklen + i + 32]);
|
||||
sumi1 = sumi1 * scales_0[j];
|
||||
sumi2 = sumi2 * scales_1[j];
|
||||
sumi += sumi1 + sumi2;
|
||||
}
|
||||
sumf[j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
|
||||
}
|
||||
}
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -1734,38 +1594,7 @@ void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__)
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4])) >> 4;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_gemm_q4_0_8x8_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
@@ -3215,70 +3044,9 @@ void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
float sumf[4][8];
|
||||
float sum_minf[4][8];
|
||||
uint32_t utmp[32];
|
||||
int sumi1;
|
||||
int sumi2;
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[m][j] = 0.0;
|
||||
sum_minf[m][j] = 0.0;
|
||||
}
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
|
||||
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
|
||||
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
|
||||
utmp[sb * 4 + 2] = uaux_0;
|
||||
utmp[sb * 4 + 0] &= kmask1;
|
||||
}
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
uint8_t *scales_0 = (uint8_t*) utmp + (k / 4) * 32;
|
||||
uint8_t *scales_1 = (uint8_t*) utmp + (k / 4) * 32 + 16;
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k >> 2) * 256 + (k % 4) * 4 * blocklen + m * blocklen + i + 128]);
|
||||
sumi1 = sumi1 * scales_0[j];
|
||||
sumi2 = sumi2 * scales_1[j];
|
||||
sumi += sumi1 + sumi2;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
uint8_t *mins = (uint8_t*) utmp + 8 + sb * 16;
|
||||
for(int m = 0; m < 4; m++) {
|
||||
const int16_t *bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
|
||||
for(int j = 0; j < ncols_interleaved; j++) {
|
||||
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
UNUSED(kmask1);
|
||||
UNUSED(kmask2);
|
||||
UNUSED(kmask3);
|
||||
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
@@ -12,11 +13,11 @@
|
||||
// convenience functions/macros for use in template calls
|
||||
// note: these won't be required after the 'traits' lookup table is used.
|
||||
static inline ggml_fp16_t f32_to_f16(float x) {
|
||||
return GGML_FP32_TO_FP16(x);
|
||||
return GGML_CPU_FP32_TO_FP16(x);
|
||||
}
|
||||
|
||||
static inline float f16_to_f32(ggml_fp16_t x) {
|
||||
return GGML_FP16_TO_FP32(x);
|
||||
return GGML_CPU_FP16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline ggml_bf16_t f32_to_bf16(float x) {
|
||||
|
||||
@@ -62,11 +62,17 @@ struct ggml_compute_params {
|
||||
#if defined(__s390x__) && defined(__VEC__)
|
||||
#ifndef __VXE__
|
||||
#define __VXE__
|
||||
#endif
|
||||
#endif // __VXE__
|
||||
#ifndef __VXE2__
|
||||
#define __VXE2__
|
||||
#endif
|
||||
#endif
|
||||
#endif // __VXE2__
|
||||
#endif // __s390x__ && __VEC__
|
||||
|
||||
#if defined(__s390x__) && defined(GGML_NNPA)
|
||||
#ifndef __NNPA__
|
||||
#define __NNPA__
|
||||
#endif // __NNPA__
|
||||
#endif // __s390x__ && GGML_NNPA
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <sys/prctl.h>
|
||||
|
||||
@@ -72,6 +72,9 @@
|
||||
#define UNUSED GGML_UNUSED
|
||||
#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
|
||||
|
||||
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int sve_cnt;
|
||||
@@ -192,6 +195,7 @@ typedef pthread_t ggml_thread_t;
|
||||
|
||||
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
[GGML_TYPE_F32] = {
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_fp32,
|
||||
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
|
||||
.vec_dot_type = GGML_TYPE_F32,
|
||||
.nrows = 1,
|
||||
@@ -736,7 +740,7 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
|
||||
{
|
||||
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
for (int i = 0; i < n; i++) {
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
@@ -795,7 +799,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
|
||||
{
|
||||
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
for (int i = 0; i < n; i++) {
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
|
||||
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
@@ -846,7 +850,7 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
}
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -891,7 +895,7 @@ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -920,7 +924,7 @@ int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i
|
||||
case GGML_TYPE_I32:
|
||||
return ((int32_t *) data)[0];
|
||||
case GGML_TYPE_F16:
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
case GGML_TYPE_BF16:
|
||||
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||||
case GGML_TYPE_F32:
|
||||
@@ -947,7 +951,7 @@ void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -985,7 +989,7 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
|
||||
}
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
|
||||
}
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1024,7 +1028,7 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1051,7 +1055,7 @@ float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
case GGML_TYPE_I32:
|
||||
return ((int32_t *) data)[0];
|
||||
case GGML_TYPE_F16:
|
||||
return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
|
||||
case GGML_TYPE_BF16:
|
||||
return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
|
||||
case GGML_TYPE_F32:
|
||||
@@ -1078,7 +1082,7 @@ void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2,
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
|
||||
((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
|
||||
} break;
|
||||
case GGML_TYPE_BF16:
|
||||
{
|
||||
@@ -1189,7 +1193,7 @@ static void ggml_compute_forward_mul_mat_one_chunk(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_mul_mat(
|
||||
void ggml_compute_forward_mul_mat(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
@@ -1814,6 +1818,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_get_rows_back(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
ggml_compute_forward_set_rows(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_DIAG:
|
||||
{
|
||||
ggml_compute_forward_diag(params, tensor);
|
||||
@@ -1858,6 +1866,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_2d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
ggml_compute_forward_conv_2d_dw(params, tensor);
|
||||
@@ -1941,6 +1953,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_unary(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_GLU:
|
||||
{
|
||||
ggml_compute_forward_glu(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_GET_REL_POS:
|
||||
{
|
||||
ggml_compute_forward_get_rel_pos(params, tensor);
|
||||
@@ -2151,6 +2167,20 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
break;
|
||||
case GGML_OP_GLU:
|
||||
switch (ggml_get_glu_op(node)) {
|
||||
case GGML_GLU_OP_REGLU:
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
case GGML_GLU_OP_GEGLU_ERF:
|
||||
case GGML_GLU_OP_GEGLU_QUICK:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
break;
|
||||
case GGML_OP_SILU_BACK:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
@@ -2167,6 +2197,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_SET_ROWS:
|
||||
{
|
||||
// FIXME: get_rows can use additional threads, but the cost of launching additional threads
|
||||
// decreases performance with GPU offloading
|
||||
@@ -2203,6 +2234,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
@@ -2721,6 +2753,10 @@ struct ggml_cplan ggml_graph_plan(
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
cur = GGML_IM2COL_WORK_SIZE;
|
||||
} break;
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
{
|
||||
const int64_t ne00 = node->src[0]->ne[0]; // W
|
||||
@@ -3121,6 +3157,10 @@ enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct g
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) {
|
||||
memcpy(y, x, n * sizeof(float));
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__F16C__)
|
||||
@@ -3141,9 +3181,24 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
|
||||
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP32_TO_FP16(x[i]);
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3167,9 +3222,25 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
|
||||
__m128 y_vec = _mm_cvtph_ps(x_vec);
|
||||
_mm_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i + 0));
|
||||
vec_xst(v_yl, 0, (float *)(y + i + 4));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i));
|
||||
}
|
||||
#endif
|
||||
|
||||
for (; i < n; ++i) {
|
||||
y[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
y[i] = GGML_CPU_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3369,6 +3440,14 @@ int ggml_cpu_has_vxe(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_nnpa(void) {
|
||||
#if defined(GGML_NNPA)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return 1;
|
||||
@@ -3418,7 +3497,7 @@ int ggml_cpu_has_sme(void) {
|
||||
}
|
||||
|
||||
void ggml_cpu_init(void) {
|
||||
// needed to initialize f16 tables
|
||||
// needed to initialize ggml_time
|
||||
{
|
||||
struct ggml_init_params params = { 0, NULL, false };
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
@@ -3439,9 +3518,10 @@ void ggml_cpu_init(void) {
|
||||
uint16_t u16;
|
||||
ggml_fp16_t fp16;
|
||||
} u = {i};
|
||||
float f = GGML_FP16_TO_FP32(u.fp16);
|
||||
ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
|
||||
ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
float f = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
|
||||
ggml_table_f32_f16[i] = f;
|
||||
ggml_table_gelu_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_f32(f));
|
||||
ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
}
|
||||
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
@@ -416,6 +416,7 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_CPY:
|
||||
case GGML_OP_SET_ROWS:
|
||||
return
|
||||
op->type != GGML_TYPE_IQ3_XXS &&
|
||||
op->type != GGML_TYPE_IQ3_S &&
|
||||
@@ -578,6 +579,9 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_nnpa()) {
|
||||
features.push_back({ "NNPA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
|
||||
@@ -22,9 +22,94 @@
|
||||
|
||||
#include "kai_common.h"
|
||||
|
||||
#include "simd-mappings.h"
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#define NELEMS(x) sizeof(x) / sizeof(*x)
|
||||
|
||||
static const size_t INT4_PER_BYTE = 2;
|
||||
static const size_t INT4_BITS = 4;
|
||||
static const int Q4_0_ZERO_POINT = 8;
|
||||
const size_t INT4_PER_UINT16 = 4;
|
||||
|
||||
static void dequantize_row_qsi4c32pscalef16(
|
||||
const void *packed_data,
|
||||
int32_t row_idx,
|
||||
int64_t nc,
|
||||
float *out,
|
||||
size_t nr_pack,
|
||||
size_t packed_row_stride,
|
||||
size_t kr,
|
||||
size_t bl,
|
||||
size_t num_bytes_multiplier
|
||||
) {
|
||||
size_t group_idx = row_idx / nr_pack;
|
||||
size_t row_in_group = row_idx % nr_pack;
|
||||
const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride;
|
||||
size_t num_blocks = nc / bl;
|
||||
const uint8_t *block_ptr = packed_group;
|
||||
|
||||
for (size_t b = 0; b < num_blocks; ++b) {
|
||||
uint16_t scale_f16 = *((const uint16_t *)(block_ptr + row_in_group * num_bytes_multiplier));
|
||||
float scale = GGML_CPU_FP16_TO_FP32(scale_f16);
|
||||
|
||||
const uint8_t *segment_ptr = block_ptr + nr_pack * num_bytes_multiplier;
|
||||
size_t num_segments = bl / kr;
|
||||
size_t num_bytes_per_segment = kr / INT4_PER_BYTE;
|
||||
|
||||
for (size_t s = 0; s < num_segments; ++s) {
|
||||
const uint8_t *seg_base = segment_ptr + s * nr_pack * num_bytes_per_segment;
|
||||
const uint8_t *qbytes = seg_base + row_in_group * num_bytes_per_segment;
|
||||
for (size_t k = 0; k < num_bytes_per_segment; ++k) {
|
||||
uint8_t byte = qbytes[k] ^ 0x88;
|
||||
int x0 = (byte & 0x0F) - Q4_0_ZERO_POINT;
|
||||
int x1 = (byte >> INT4_BITS) - Q4_0_ZERO_POINT;
|
||||
out[b * bl + s * num_bytes_per_segment + k] = x0 * scale;
|
||||
out[b * bl + s * num_bytes_per_segment + k + bl/2] = x1 * scale;
|
||||
}
|
||||
}
|
||||
block_ptr += nr_pack * num_bytes_multiplier + num_segments * nr_pack * num_bytes_per_segment;
|
||||
}
|
||||
}
|
||||
|
||||
static void dequantize_row_qsi4c32ps1s0scalef16(
|
||||
const void *packed_data,
|
||||
int32_t row_idx,
|
||||
int64_t k,
|
||||
float *out,
|
||||
size_t nr,
|
||||
size_t packed_row_stride,
|
||||
size_t kr,
|
||||
size_t bl,
|
||||
size_t num_bytes_multiplier
|
||||
) {
|
||||
const size_t num_blocks = k / bl;
|
||||
const size_t bl4 = bl / INT4_PER_UINT16;
|
||||
|
||||
size_t group_idx = row_idx / nr;
|
||||
size_t row_in_group = row_idx % nr;
|
||||
|
||||
const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride;
|
||||
const uint16_t *qdata = (const uint16_t *)packed_group;
|
||||
const uint16_t *scales = (const uint16_t *)(packed_group + packed_row_stride - (nr * num_blocks * num_bytes_multiplier));
|
||||
|
||||
for (size_t block_idx = 0; block_idx < num_blocks; ++block_idx) {
|
||||
uint16_t scale_f16 = scales[row_in_group + block_idx * nr];
|
||||
float scale = GGML_CPU_FP16_TO_FP32(scale_f16);
|
||||
|
||||
for (size_t bl4_idx = 0; bl4_idx < bl4; ++bl4_idx) {
|
||||
uint16_t q = qdata[(block_idx * bl4 + bl4_idx) * nr + row_in_group];
|
||||
|
||||
for (size_t qidx = 0; qidx < INT4_PER_UINT16; ++qidx) {
|
||||
int v = ((q >> (qidx * 4)) & 0xF) - Q4_0_ZERO_POINT;
|
||||
out[block_idx * bl + bl4_idx * INT4_BITS + qidx] = v * scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_UNUSED(kr);
|
||||
}
|
||||
|
||||
static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
#if defined(__ARM_FEATURE_SME)
|
||||
{
|
||||
@@ -63,8 +148,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
|
||||
/* .to_float = */ dequantize_row_qsi4c32ps1s0scalef16,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
@@ -107,8 +194,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .packed_stride = */ NULL,
|
||||
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
|
||||
/* .to_float = */ NULL,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_SME,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
@@ -154,8 +243,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
@@ -200,8 +291,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
@@ -247,8 +340,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
@@ -293,8 +388,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
|
||||
},
|
||||
/* .rhs_info = */ {
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
|
||||
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
|
||||
},
|
||||
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
|
||||
/* .lhs_type = */ GGML_TYPE_F32,
|
||||
|
||||
@@ -71,12 +71,15 @@ struct rhs_packing_info {
|
||||
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
|
||||
std::function<size_t(size_t n, size_t k)>
|
||||
> packed_size;
|
||||
size_t (*packed_stride)(size_t k, size_t nr, size_t kr, size_t bl);
|
||||
std::variant<
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
|
||||
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
|
||||
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
|
||||
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
|
||||
> pack_func;
|
||||
void (*to_float)(const void *packed_data, int32_t row_idx, int64_t nc, float *out, size_t nr_pack, size_t packed_row_stride,
|
||||
size_t kr, size_t bl, size_t num_bytes_multiplier);
|
||||
};
|
||||
|
||||
struct ggml_kleidiai_kernels {
|
||||
|
||||
@@ -40,6 +40,17 @@ struct ggml_kleidiai_context {
|
||||
ggml_kleidiai_kernels * kernels;
|
||||
} static ctx = { CPU_FEATURE_NONE, NULL };
|
||||
|
||||
static const char* cpu_feature_to_string(cpu_feature f) {
|
||||
switch (f) {
|
||||
case CPU_FEATURE_NONE: return "NONE";
|
||||
case CPU_FEATURE_DOTPROD: return "DOTPROD";
|
||||
case CPU_FEATURE_I8MM: return "I8MM";
|
||||
case CPU_FEATURE_SVE: return "SVE";
|
||||
case CPU_FEATURE_SME: return "SME";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
static void init_kleidiai_context(void) {
|
||||
|
||||
ggml_critical_section_start();
|
||||
@@ -62,6 +73,11 @@ static void init_kleidiai_context(void) {
|
||||
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
|
||||
}
|
||||
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
|
||||
#ifndef NDEBUG
|
||||
if (ctx.kernels) {
|
||||
GGML_LOG_DEBUG("kleidiai: using kernel with CPU feature %s\n", cpu_feature_to_string(ctx.kernels->required_cpu));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
@@ -102,6 +118,9 @@ static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint1
|
||||
|
||||
class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
|
||||
if (op->op != GGML_OP_MUL_MAT) {
|
||||
return false;
|
||||
}
|
||||
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
|
||||
GGML_ASSERT(kernels);
|
||||
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
|
||||
@@ -135,6 +154,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
} else if (dst->src[0]->type == GGML_TYPE_F16) {
|
||||
return compute_forward_kv_cache(params, dst);
|
||||
}
|
||||
} else if (dst->op == GGML_OP_GET_ROWS) {
|
||||
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
|
||||
return compute_forward_get_rows(params, dst);
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@@ -270,6 +293,8 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
}
|
||||
|
||||
bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
@@ -342,8 +367,49 @@ class tensor_traits : public ggml::cpu::tensor_traits {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
rhs_packing_info * rhs_info = &ctx.kernels->rhs_info;
|
||||
kernel_info * kernel = &ctx.kernels->gemm;
|
||||
|
||||
const int64_t nc = ne00;
|
||||
const int64_t nr = ggml_nelements(src1);
|
||||
|
||||
const size_t block_rows = kernel->get_nr();
|
||||
const size_t kr = kernel->get_kr();
|
||||
|
||||
const size_t num_bytes_multiplier = sizeof(uint16_t);
|
||||
const size_t packed_stride = rhs_info->packed_stride(nc, block_rows, kr, QK4_0);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int dr = (nr + nth - 1) / nth;
|
||||
const int ir0 = dr * ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int64_t i = ir0; i < ir1; ++i) {
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
int64_t row_idx = ((const int32_t *)src1->data)[i];
|
||||
GGML_ASSERT(row_idx >= 0 && row_idx < src0->ne[1]);
|
||||
|
||||
float *out = (float *)((char *)dst->data + i * nb1);
|
||||
rhs_info->to_float(src0->data, row_idx, nc, out, block_rows, packed_stride, kr, QK4_0, num_bytes_multiplier);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
public:
|
||||
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
|
||||
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
const size_t n = tensor->ne[1];
|
||||
const size_t k = tensor->ne[0];
|
||||
@@ -351,17 +417,12 @@ public:
|
||||
size_t kr = ctx.kernels->gemm.get_kr();
|
||||
size_t sr = ctx.kernels->gemm.get_sr();
|
||||
|
||||
#ifndef NDEBUG
|
||||
const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
|
||||
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
|
||||
#endif
|
||||
struct kai_rhs_pack_qs4cxs1s0_param params;
|
||||
params.lhs_zero_point = 1;
|
||||
params.rhs_zero_point = 8;
|
||||
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, ¶ms);
|
||||
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
};
|
||||
@@ -375,8 +436,8 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
|
||||
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
@@ -418,18 +479,35 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
|
||||
GGML_ASSERT(ctx.kernels);
|
||||
|
||||
const size_t n = tensor->ne[1];
|
||||
const size_t k = tensor->ne[0];
|
||||
const size_t nr = ctx.kernels->gemm.get_nr();
|
||||
const size_t kr = ctx.kernels->gemm.get_kr();
|
||||
|
||||
return variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::kleidiai {
|
||||
class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT &&
|
||||
if ((op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) &&
|
||||
op->src[0]->type == GGML_TYPE_Q4_0 &&
|
||||
op->src[0]->buffer &&
|
||||
(ggml_n_dims(op->src[0]) == 2) &&
|
||||
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
|
||||
if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->type == GGML_TYPE_F32 &&
|
||||
if ((op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_I32) &&
|
||||
ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) {
|
||||
return true;
|
||||
}
|
||||
@@ -438,7 +516,7 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
|
||||
}
|
||||
|
||||
ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
|
||||
if (op->op == GGML_OP_MUL_MAT) {
|
||||
if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) {
|
||||
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
|
||||
}
|
||||
@@ -469,7 +547,7 @@ ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) {
|
||||
/* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
|
||||
/* .get_alloc_size = */ ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ nullptr,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user