Compare commits

...

7 Commits
b6018 ... b6025

Author SHA1 Message Date
uvos
c7aa1364fd HIP: Ignore unsupported unroll transformation in fattn-vec (#14931)
llvm with the amdgcn target dose not support unrolling loops with conditional break statements, when those statements can not be resolved at compile time. Similar to other places in GGML lets simply ignore this warning.
2025-07-29 17:43:43 +02:00
kallewoof
1a67fcc306 common : avoid logging partial messages (which can contain broken UTF-8 sequences) (#14937)
* bug-fix: don't attempt to log partial parsed messages to avoid crash due to unfinished UTF-8 sequences
2025-07-29 17:05:38 +02:00
hipudding
204f2cf168 CANN: Add ggml_set_rows (#14943) 2025-07-29 22:36:43 +08:00
Sigbjørn Skjæret
138b288b59 cuda : add softcap fusion (#14907) 2025-07-29 14:22:03 +02:00
Johannes Gäßler
bbd0f91779 server-bench: make seed choice configurable (#14929)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* server-bench: make seed choice configurable

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix error formatting

* Update scripts/server-bench.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-07-29 10:40:50 +02:00
Aman Gupta
0a5036bee9 CUDA: add roll (#14919)
* CUDA: add roll

* Make everything const, use __restrict__
2025-07-29 14:45:18 +08:00
lhez
8ad7b3e65b opencl : add ops docs (#14910)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-22-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=macOS) (push) Waiting to run
CI / macOS-latest-swift (generic/platform=tvOS) (push) Waiting to run
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
2025-07-28 18:50:17 +02:00
15 changed files with 8613 additions and 150 deletions

View File

@@ -1944,6 +1944,8 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
}
}
auto msg = builder.result();
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
if (!is_partial) {
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
}
return msg;
}

View File

@@ -12,91 +12,91 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CPU | CUDA | Metal | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | ✅ |
| CONT | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 |
| CONV_2D | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| EXP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| GELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| NEG | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| RELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SCALE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SSM_CONV | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| STEP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 |
| TANH | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| Operation | BLAS | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan |
|-----------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ADD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| ADD1 | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| CLAMP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 |
| CONCAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ |
| CONT | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 |
| CONV_2D | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ |
| CONV_2D_DW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| CONV_TRANSPOSE_2D | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| CROSS_ENTROPY_LOSS | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DIV | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| DUP | ❌ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 |
| ELU | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| EXP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| FLASH_ATTN_EXT | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 |
| GATED_LINEAR_ATTN | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_ERF | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GEGLU_QUICK | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| GELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_ERF | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GELU_QUICK | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| GET_ROWS | ❌ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 |
| GET_ROWS_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| HARDSIGMOID | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| L2_NORM | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| LOG | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ |
| NEG | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| OPT_STEP_ADAMW | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| OUT_PROD | 🟡 | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| PAD_REFLECT_1D | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| REGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| RELU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| REPEAT | ❌ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 |
| REPEAT_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ |
| RMS_NORM_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROLL | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ |
| ROPE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| ROPE_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| RWKV_WKV6 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| RWKV_WKV7 | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ |
| SCALE | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SET | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SGN | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SIGMOID | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU | ❌ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| SILU_BACK | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ |
| SIN | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SOFT_MAX | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ |
| SOFT_MAX_BACK | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ✅ |
| SQR | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 |
| SQRT | ❌ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ |
| SSM_CONV | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SSM_SCAN | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ |
| SUM | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| SWIGLU | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 |
| TANH | ❌ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| UPSCALE | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ |

8133
docs/ops/OpenCL.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -68,6 +68,8 @@
#include <aclnnop/aclnn_grouped_matmul_v3.h>
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
#include <aclnnop/aclnn_zero.h>
#include <aclnnop/aclnn_index_copy.h>
#include <aclnnop/aclnn_index_select.h>
#include <float.h>
#include <cmath>
@@ -1614,50 +1616,97 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
/**
* @brief Performs embedding operation on a 4D tensor using the CANN backend.
* @brief Performs index select operation on a 4D tensor using the CANN backend.
*
* This function extracts slices from the source tensor (`src_buffer`),
* index tensor (`index`), and destination tensor (`dst`), and performs an
* embedding operation on them. The embedding operation is applied by iterating
* over the last two dimensions of the source tensor, creating the necessary
* tensors for the source, index, and output, and executing the embedding operation.
* This function applies the `IndexSelect` operation along a specific dimension
* of the source tensor (`src_buffer`) using the indices from the index tensor (`index`).
* It iterates over the last two dimensions of the source tensor, creates the corresponding
* CANN tensors for the source, index, and output slices, and executes the `IndexSelect`
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer holding the data for the source tensor.
* @param src_buffer The source buffer containing the 4D input tensor data.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param index The index tensor used in the embedding operation.
* @param dst The destination tensor where the result will be stored.
* @param dst_buffer The destination buffer where the output tensor data will be written.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying the indices to select from the source tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_embedding_4d(ggml_backend_cann_context& ctx, void* src_buffer,
int64_t* src_ne, size_t* src_nb, ggml_tensor* index,
ggml_tensor* dst) {
static void aclnn_index_select_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
int64_t acl_src_ne[2] = {src_ne[0], src_ne[1]};
size_t acl_src_nb[2] = {src_nb[0], src_nb[1]};
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_src_ne, acl_src_nb, 2);
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
int64_t acl_index_ne[1] = {index->ne[0]};
size_t acl_index_nb[1] = {index->nb[0]};
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + i * index->nb[2] + j * index->nb[1],
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
acl_index_ne, acl_index_nb, 1);
index->ne, index->nb, 1);
// out
int64_t acl_out_ne[2] = {dst->ne[0], dst->ne[1]};
size_t acl_out_nb[2] = {dst->nb[0], dst->nb[1]};
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst->data + i * dst->nb[3] + j * dst->nb[2],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
acl_out_ne, acl_out_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, Embedding, acl_src_tensor, acl_index, acl_out);
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, acl_src_tensor, 0, acl_index, acl_out);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
}
/**
* @brief Performs inplace index copy operation on a 4D tensor using the CANN backend.
*
* This function applies the `IndexCopy` operation along a specific dimension of the
* destination tensor (`dst_buffer`) by copying elements from the source tensor (`src_buffer`)
* to positions specified by the index tensor (`index`).
* It iterates over the last two dimensions of the tensors, creates the corresponding
* CANN tensors for source, index, and destination slices, and performs the index copy
* operation for each slice.
*
* @param ctx The context for CANN backend operations.
* @param src_buffer The source buffer containing the 4D input tensor data to be copied.
* @param src_ne The dimensions of the source tensor.
* @param src_nb The strides (byte offsets) of the source tensor.
* @param dst_buffer The destination buffer where values will be copied to.
* @param dst_ne The dimensions of the destination tensor.
* @param dst_nb The strides (byte offsets) of the destination tensor.
* @param index The index tensor specifying target positions in the destination tensor.
* @param type The data type of the source and destination tensors.
*/
static void aclnn_index_copy_4d(ggml_backend_cann_context& ctx,
void* src_buffer,int64_t* src_ne, size_t* src_nb,
void* dst_buffer, int64_t* dst_ne, size_t* dst_nb,
ggml_tensor* index, ggml_type type) {
for (int64_t i = 0; i < src_ne[3]; i++) {
for (int64_t j = 0; j < src_ne[2]; j++) {
// src
aclTensor* acl_src_tensor = ggml_cann_create_tensor(
(char*)src_buffer + i * src_nb[3] + j * src_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
src_ne, src_nb, 2);
// index
aclTensor* acl_index = ggml_cann_create_tensor(
(char*)index->data + (i % index->ne[2]) * index->nb[2] + (j % index->ne[1]) * index->nb[1],
ggml_cann_type_mapping(index->type), ggml_element_size(index),
index->ne, index->nb, 1);
// out
aclTensor* acl_out = ggml_cann_create_tensor(
(char*)dst_buffer + i * dst_nb[3] + j * dst_nb[2],
ggml_cann_type_mapping(type), ggml_type_size(type),
dst_ne, dst_nb, 2);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceIndexCopy, acl_out, 0, acl_index, acl_src_tensor);
ggml_cann_release_resources(ctx, acl_src_tensor, acl_index, acl_out);
}
}
@@ -1669,8 +1718,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
switch (src0->type) {
case GGML_TYPE_F32: {
aclnn_embedding_4d(ctx, src0->data, src0->ne, src0->nb, src1,
dst);
aclnn_index_select_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
@@ -1687,8 +1737,9 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
src_trans_buffer, ACL_FLOAT, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_embedding_4d(ctx, src_trans_buffer, src0->ne,
src_trans_nb, src1, dst);
aclnn_index_select_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
@@ -1748,8 +1799,10 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
dequant_nb[i] = dequant_nb[i - 1] * src0->ne[i - 1];
}
aclnn_embedding_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb, src1, dst);
aclnn_index_select_4d(ctx, dequant_buffer_allocator.get(),
dequant_ne, dequant_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, dequant_tensor);
break;
@@ -1760,6 +1813,43 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
}
}
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // src
ggml_tensor* src1 = dst->src[1]; // index
switch (dst->type) {
case GGML_TYPE_F32: {
aclnn_index_copy_4d(ctx, src0->data, src0->ne, src0->nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
break;
}
case GGML_TYPE_F16: {
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
ggml_cann_pool_alloc src_buffer_allocator(
ctx.pool(), ggml_nelements(src0) * sizeof(uint16_t));
void* src_trans_buffer = src_buffer_allocator.get();
size_t src_trans_nb[GGML_MAX_DIMS];
src_trans_nb[0] = sizeof(uint16_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
src_trans_nb[i] = src_trans_nb[i - 1] * src0->ne[i - 1];
}
aclTensor* src_trans_tensor = ggml_cann_create_tensor(
src_trans_buffer, ACL_FLOAT16, ggml_type_size(dst->type),
src0->ne, src_trans_nb, GGML_MAX_DIMS);
aclnn_cast(ctx, acl_src0, src_trans_tensor, ggml_cann_type_mapping(dst->type));
aclnn_index_copy_4d(ctx, src_trans_buffer, src0->ne, src_trans_nb,
dst->data, dst->ne, dst->nb,
src1, dst->type);
ggml_cann_release_resources(ctx, acl_src0, src_trans_tensor);
break;
}
default:
GGML_ABORT("Unsupported tensor type for GGML_OP_SET_ROWS");
break;
}
}
/**
* @brief Repeats elements of a tensor along a specified dimension.
*

View File

@@ -424,15 +424,25 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
*
* @details This function retrieves rows from a source tensor src0 according to
* the indices provided in another tensor src1 and stores the result in
* a destination tensor (\p dst). It supports different data types
* including F32, F16, Q4_0, and Q8_0.
* a destination tensor (\p dst).
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the extracted rows will be stored.
* dst->op is `GGML_OP_GET_ROWS`.
*/
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Writes specific rows into a tensor at positions specified by indices.
*
* @details This function copies rows from a source tensor into a destination
* tensor (\p dst) at the positions indicated by the indices in another
* tensor.
*
* @param ctx The backend CANN context for executing operations.
* @param dst The destination tensor where the specified rows will be updated.
*/
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Executes matrix multiplication for the given tensor.
*

View File

@@ -1659,6 +1659,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_GET_ROWS:
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_SET_ROWS:
ggml_cann_set_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cann_dup(ctx, dst);
break;
@@ -2191,13 +2194,15 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
} break;
case GGML_OP_SET_ROWS:
{
// TODO: add support
// ref: https://github.com/ggml-org/llama.cpp/pull/14274
#pragma message("TODO: implement F32, F16, BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
return false;
} break;
case GGML_OP_SET_ROWS: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
}
} break;
case GGML_OP_CPY: {
ggml_tensor *src = op->src[0];
if ((op->type != GGML_TYPE_F32 && op->type != GGML_TYPE_F16) ||

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -341,6 +347,9 @@ static __global__ void flash_attn_vec_ext_f16(
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -1,6 +1,12 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
@@ -336,6 +342,9 @@ static __global__ void flash_attn_vec_ext_f32(
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {

View File

@@ -31,7 +31,9 @@
#include "ggml-cuda/pool2d.cuh"
#include "ggml-cuda/quantize.cuh"
#include "ggml-cuda/rope.cuh"
#include "ggml-cuda/roll.cuh"
#include "ggml-cuda/scale.cuh"
#include "ggml-cuda/softcap.cuh"
#include "ggml-cuda/softmax.cuh"
#include "ggml-cuda/ssm-conv.cuh"
#include "ggml-cuda/ssm-scan.cuh"
@@ -2419,6 +2421,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_ROPE_BACK:
ggml_cuda_op_rope_back(ctx, dst);
break;
case GGML_OP_ROLL:
ggml_cuda_op_roll(ctx, dst);
break;
case GGML_OP_IM2COL:
ggml_cuda_op_im2col(ctx, dst);
break;
@@ -2766,7 +2771,12 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {
}
#endif
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops, std::initializer_list<enum ggml_unary_op> unary_ops) {
#ifndef NDEBUG
const size_t num_unary = std::count(ops.begin(), ops.end(), GGML_OP_UNARY);
GGML_ASSERT(unary_ops.size() == num_unary);
#endif
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
return false;
}
@@ -2794,9 +2804,32 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
return false;
}
return true;
}
return true;
if (ops.size() == 3 && ops.begin()[0] == GGML_OP_SCALE && ops.begin()[1] == GGML_OP_UNARY && ops.begin()[2] == GGML_OP_SCALE
&& unary_ops.size() == 1 && unary_ops.begin()[0] == GGML_UNARY_OP_TANH) {
const ggml_tensor *scale = cgraph->nodes[node_idx];
const ggml_tensor *tanh = cgraph->nodes[node_idx+1];
const ggml_tensor *scale2 = cgraph->nodes[node_idx+2];
GGML_ASSERT(scale->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(scale->type == GGML_TYPE_F32);
if (ggml_get_unary_op(tanh) != GGML_UNARY_OP_TANH) {
return false;
}
// Check for bias
if (ggml_get_op_params_f32(scale, 1) != 0.0f || ggml_get_op_params_f32(scale2, 1) != 0.0f) {
return false;
}
return true;
}
return false;
}
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
@@ -2817,10 +2850,18 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion && ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
if (!disable_fusion) {
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
i++;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_SCALE, GGML_OP_UNARY, GGML_OP_SCALE }, { GGML_UNARY_OP_TANH })) {
i += 2;
ggml_cuda_op_softcap(*cuda_ctx, cgraph->nodes[i], node);
continue;
}
}
#ifndef NDEBUG
assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
@@ -3411,6 +3452,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
return max_bias == 0.0f;
}
case GGML_OP_ROLL:
if(op->src[0]->type == GGML_TYPE_F32) {
return true;
}
return false;
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: {
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);

View File

@@ -0,0 +1,67 @@
#include "ggml-cuda/common.cuh"
#include "roll.cuh"
static __forceinline__ __device__ int64_t wrap_index(const int64_t idx, const int64_t ne) {
if (idx < 0) {
return idx + ne;
}
if (idx >= ne) {
return idx - ne;
}
return idx;
}
static __global__ void roll_f32_cuda(const float * __restrict__ src,
float * __restrict__ dst,
const int64_t ne00,
const int64_t ne01,
const int64_t ne02,
const int64_t ne03,
const int s0,
const int s1,
const int s2,
const int s3) {
const int64_t idx = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
const int64_t n_elements = ne00 * ne01 * ne02 * ne03;
if (idx >= n_elements) {
return;
}
const int64_t i0 = idx % ne00;
const int64_t i1 = (idx / ne00) % ne01;
const int64_t i2 = (idx / (ne00 * ne01)) % ne02;
const int64_t i3 = (idx / (ne00 * ne01 * ne02)) % ne03;
const int64_t d0 = wrap_index(i0 - s0, ne00);
const int64_t d1 = wrap_index(i1 - s1, ne01);
const int64_t d2 = wrap_index(i2 - s2, ne02);
const int64_t d3 = wrap_index(i3 - s3, ne03);
dst[i3 * (ne00 * ne01 * ne02) + i2 * (ne01 * ne00) + i1 * ne00 + i0] =
src[d3 * (ne00 * ne01 * ne02) + d2 * (ne01 * ne00) + d1 * ne00 + d0];
}
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
int s0 = dst->op_params[0];
int s1 = dst->op_params[1];
int s2 = dst->op_params[2];
int s3 = dst->op_params[3];
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *) dst->src[0]->data;
float * dst_d = (float *) dst->data;
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_are_same_shape(dst->src[0], dst));
cudaStream_t stream = ctx.stream();
int64_t sz = (ne00 * ne01 * ne02 * ne03);
int64_t num_blocks = (sz + CUDA_ROLL_BLOCK_SIZE - 1) / CUDA_ROLL_BLOCK_SIZE;
roll_f32_cuda<<<num_blocks, CUDA_ROLL_BLOCK_SIZE, 0, stream>>>(
src0_d, dst_d, ne00, ne01, ne02, ne03, s0, s1, s2, s3);
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_ROLL_BLOCK_SIZE 256
void ggml_cuda_op_roll(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -0,0 +1,34 @@
#include "softcap.cuh"
static __global__ void softcap_f32(const float * x, float * dst, const float scale, const float softcap, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = tanhf(scale * x[i]) * softcap;
}
static void softcap_f32_cuda(const float * x, float * dst, const float scale, const float softcap, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SOFTCAP_BLOCK_SIZE - 1) / CUDA_SOFTCAP_BLOCK_SIZE;
softcap_f32<<<num_blocks, CUDA_SOFTCAP_BLOCK_SIZE, 0, stream>>>(x, dst, scale, softcap, k);
}
// fused GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src) {
const ggml_tensor * src0 = src->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
float softcap;
memcpy(&scale, (float *) src->op_params + 0, sizeof(float));
memcpy(&softcap, (float *) dst->op_params + 0, sizeof(float));
softcap_f32_cuda(src0_d, dst_d, scale, softcap, ggml_nelements(src0), stream);
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_SOFTCAP_BLOCK_SIZE 256
void ggml_cuda_op_softcap(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * src);

View File

@@ -32,11 +32,12 @@ def get_prompts_text(dataset_name: str, n_prompts: int) -> Optional[list[str]]:
return ret
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int) -> list[int]:
def get_prompt_lengths_rng(n_prompts: int, prompt_length_min: int, prompt_length_max: int, seed_offset: int) -> list[int]:
assert n_prompts >= 0
ret: list[int] = []
for i in range(n_prompts):
random.seed(13 * i + 0)
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 0)
ret.append(random.randint(prompt_length_min, prompt_length_max))
return ret
@@ -46,12 +47,20 @@ def get_prompts_rng(prompt_lengths: list[int]) -> list[list[int]]:
def get_server(path_server: str, path_log: Optional[str]) -> dict:
logger.info("Starting the llama.cpp server...")
hostname: str = os.environ.get("LLAMA_ARG_HOST", "127.0.0.1")
port: str = os.environ.get("LLAMA_ARG_PORT", "8080")
if os.environ.get("LLAMA_ARG_HOST") is None:
logger.info("LLAMA_ARG_HOST not explicitly set, using 127.0.0.1")
os.environ["LLAMA_ARG_HOST"] = "127.0.0.1"
if os.environ.get("LLAMA_ARG_PORT") is None:
logger.info("LLAMA_ARG_PORT not explicitly set, using 8080")
os.environ["LLAMA_ARG_PORT"] = "8080"
hostname: Optional[str] = os.environ.get("LLAMA_ARG_HOST")
port: Optional[str] = os.environ.get("LLAMA_ARG_PORT")
assert hostname is not None
assert port is not None
address: str = f"http://{hostname}:{port}"
logger.info(f"Starting the llama.cpp server under {address}...")
fout = open(path_log, "w") if path_log is not None else subprocess.DEVNULL
fout = open(path_log.format(port=port), "w") if path_log is not None else subprocess.DEVNULL
process = subprocess.Popen([path_server], stdout=fout, stderr=subprocess.STDOUT)
n_failures: int = 0
@@ -60,7 +69,7 @@ def get_server(path_server: str, path_log: Optional[str]) -> dict:
sleep(1.0)
exit_code = process.poll()
if exit_code is not None:
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}, see {path_log}")
raise RuntimeError(f"llama.cpp server exited unexpectedly with exit code {exit_code}{path_log and f', see {path_log.format(port=port)}' or ''}")
response = requests.get(f"{address}/health")
if response.status_code == 200:
break
@@ -128,7 +137,7 @@ def send_prompt(data: dict) -> tuple[float, list[float]]:
return (t_submit, token_arrival_times)
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int):
def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_prompts: int, n_predict: int, n_predict_min: int, seed_offset: int):
if os.environ.get("LLAMA_ARG_N_PARALLEL") is None:
logger.info("LLAMA_ARG_N_PARALLEL not explicitly set, using 32")
os.environ["LLAMA_ARG_N_PARALLEL"] = "32"
@@ -139,7 +148,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
logger.info("LLAMA_ARG_FLASH_ATTN not explicitly set, using 'true'")
os.environ["LLAMA_ARG_FLASH_ATTN"] = "true"
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL", 1))
parallel: int = int(os.environ.get("LLAMA_ARG_N_PARALLEL")) # type: ignore
prompts: Union[None, list[str], list[list[int]]] = get_prompts_text(prompt_source, n_prompts)
synthetic_prompts: bool = prompts is None
prompt_n = []
@@ -151,7 +160,7 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
prompt_length_min: int = int(prompt_source_split[1])
prompt_length_max: int = int(prompt_source_split[2])
logger.info("Generating random prompts...")
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max)
prompt_n = get_prompt_lengths_rng(n_prompts, prompt_length_min, prompt_length_max, seed_offset)
prompts = get_prompts_rng(prompt_n)
else:
n_predict_min = n_predict
@@ -176,10 +185,11 @@ def benchmark(path_server: str, path_log: Optional[str], prompt_source: str, n_p
data: list[dict] = []
for i, p in enumerate(prompts):
random.seed(13 * i + 1)
if seed_offset >= 0:
random.seed(3 * (seed_offset + 1000 * i) + 1)
data.append({
"session": session, "server_address": server_address, "prompt": p, "synthetic_prompt": synthetic_prompts,
"n_predict": random.randint(n_predict_min, n_predict), "seed": 13 * i + 2})
"n_predict": random.randint(n_predict_min, n_predict), "seed": (3 * (seed_offset + 1000 * i) + 2) if seed_offset >= 0 else -1})
if not synthetic_prompts:
logger.info("Getting the prompt lengths...")
@@ -251,7 +261,7 @@ if __name__ == "__main__":
"Results are printed to console and visualized as plots (saved to current working directory). "
"To pass arguments such as the model path to the server, set the corresponding environment variables (see llama-server --help).")
parser.add_argument("--path_server", type=str, default="llama-server", help="Path to the llama.cpp server binary")
parser.add_argument("--path_log", type=str, default="server-bench.log", help="Path to the model to use for the benchmark")
parser.add_argument("--path_log", type=str, default="server-bench-{port}.log", help="Path to the model to use for the benchmark")
parser.add_argument(
"--prompt_source", type=str, default="rng-1024-2048",
help="How to get the prompts for the benchmark, either 'mmlu' for MMLU questions or "
@@ -261,5 +271,7 @@ if __name__ == "__main__":
parser.add_argument(
"--n_predict_min", type=int, default=1024,
help="Min. number of tokens to predict per prompt (supported for synthetic prompts only)")
parser.add_argument("--seed_offset", type=int, default=0, help="Offset for determining the seeds for pseudorandom prompt/generation lengths. "
"Corelations between seeds can occur when set >= 1000. Negative values mean no seed.")
args = parser.parse_args()
benchmark(**vars(args))

View File

@@ -2545,6 +2545,41 @@ struct test_scale : public test_case {
}
};
// GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
struct test_softcap : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float softcap;
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "SOFTCAP";
}
bool run_whole_graph() override { return true; }
std::string vars() override {
return VARS_TO_STR3(type, ne, softcap);
}
test_softcap(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {10, 10, 10, 10},
float softcap = 30.0f)
: type(type), ne(ne), softcap(softcap) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(a);
ggml_set_name(a, "a");
ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
ggml_set_name(out, "out");
return out;
}
};
// GGML_OP_SILU_BACK
struct test_silu_back : public test_case {
const ggml_type type;
@@ -5421,6 +5456,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_add1());
test_cases.emplace_back(new test_scale());
test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
test_cases.emplace_back(new test_silu_back());
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {